Download citation
Download citation
link to html
The structures of ortho­rhom­bic bis­[penta­ammineaqua­cobalt(III)] tetra-μ2-fluorido-tetra­deca­fluorido­tri­zir­co­nium(IV) hexa­hydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis­[hexa­amminecobalt(III)] tetra-μ2-fluorido-tetra­deca­fluoridotrizirconium(IV) hexa­hydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or \overline{1} and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010704108X/bc3047sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010704108X/bc3047Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010704108X/bc3047IIsup3.hkl
Contains datablock II

Comment top

Double salts built from both cationic and anionic metal complexes represent an intensively studied field of modern chemistry [Du et al., 2005; Gubanov et al., 2003; Korenev et al., 1996; Korolkov et al., 2005]. Special attention has been paid to the unique products of their thermal decomposition which, in many cases, yields nano-particles of metal solid solutions. The latter can be used in many areas of applied chemistry, such as powder metallurgy and catalysis. The decomposition of double complexes in an oxygen atmosphere may afford complex ceramics with unusual properties. The title double complexes, [Co(NH3)5H2O]2[Zr3F18]·6H2O, (I), and [Co(NH3)6]2[Zr3F18]·6H2O, (II), are expected to yield nanosized ceramic powders.

The two title compounds have isotypic structures. The octahedral coordination of the CoIII cation is similar in both cases, the only difference being the presence of a water molecule instead of ammonia in (I) (Figs. 1 and 2). Both structures include an analogous [Zr3F18]6− anion with a trimeric chain structure. The terminal Zr atoms have a coordination number of seven with a distorted pentagonal–bipyramidal geometry. The central Zr atoms are coordinated by eight F atoms forming a distorted square antiprism. The average Zr—F distance of 2.08 (9) Å is the same in both compounds.

The chain defined by the Zr atoms of the trimeric anion is parallel to the crystallographic a axis in both cases (Figs. 3 and 4). In spite of similar unit-cell dimensions, the two compounds have different local symmetries. In (I), the anion has point symmetry 222 and the Co atom is located on a mirror plane. In (II), the anion occupies a position of symmetry 2 and the two unique Co1 and Co2 atoms are located on an inversion centre and a twofold axis, respectively.

Both compounds contain several solvent water molecules that form a hydrogen-bond network with the NH3 ligands and the F atoms of the anions, with average distances of 2.67 Å for (I) and 2.79 Å for (II). Differential thermal analysis and thermogravimetric analysis data (Derivatograf NETZCH STA 409) show that (II) loses about 5.5 water molecules over the 333–373 K range, whereas (I) loses water in three stages, at 333–393 K (two H2O), 393–443 K (four H2O) and 443–513 K (two H2O). These data confirm the presence of three types of water molecules in (I): the first stage of weight loss corresponds to water molecules with contacts to hydrogen-bond acceptor atoms of more than 3 Å, the second stage corresponds to the loss of all hydrogen-bonded water molecules with an average distance of 2.66 Å, and the last stage represents the loss of coordinated water molecules.

Experimental top

Crystals of (I) were grown from an aqueous solution prepared at room temperature by the reaction of 0.001 M solutions of [Co(NH3)5Cl]Cl2 (100 ml) and K2[ZrF6] (150 ml). After one week, deep-purple crystals were collected by filtration and dried in air. Crystals of (II) were grown from the reaction of aqueous 0.001 M solutions of [Co(NH3)6]Cl3 (100 ml) and K2[ZrF6] (150 ml). After 4 d, fine yellow crystals were collected and dried in air. The crystal size was 2–3 mm for both (I) and (II).

Refinement top

The H atoms of the H2O molecules were not located for either compound. The H atoms of the NH3 ligands were determined by geometry (N—H = 0.89 Å) and some of these ligands were disordered over two orientations [N1, N3 and N4 in (I), and N22 and N24 in (II)]. Atoms F11 and F31 in (II) were displaced from special positions and disordered over two general sites with 50% occupancy.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2004); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure fragment of compound (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The structure fragment of compound (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A packing diagram for (I), viewed along the a axis. The [Zr3F18]6− anions have a chain structure aligned long the a axis.
[Figure 4] Fig. 4. A packing diagram for (II), viewed along the a axis. The structure of the [Zr3F18]6− anion differs from that in (I).
(I) tetra-µ2-fluorido-tetradecafluoridotrizirconium(IV) hexahydrate top
Crystal data top
[Co(NH3)5(H2O)]2[Zr3F18]·6H2OF(000) = 2064
Mr = 1047.99Dx = 2.308 Mg m3
Orthorhombic, IbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2 2cCell parameters from 4145 reflections
a = 16.1440 (4) Åθ = 3.2–30.4°
b = 12.7191 (3) ŵ = 2.23 mm1
c = 14.6859 (3) ÅT = 293 K
V = 3015.56 (12) Å3Prism, purple
Z = 40.17 × 0.12 × 0.12 mm
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
1614 independent reflections
Radiation source: fine-focus sealed tube1460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 25 pixels mm-1θmax = 26.4°, θmin = 2.0°
ϕ scansh = 2018
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1515
Tmin = 0.703, Tmax = 0.775l = 1815
10490 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0395P)2 + 40.5555P]
where P = (Fo2 + 2Fc2)/3
1614 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 1.52 e Å3
6 restraintsΔρmin = 2.37 e Å3
Crystal data top
[Co(NH3)5(H2O)]2[Zr3F18]·6H2OV = 3015.56 (12) Å3
Mr = 1047.99Z = 4
Orthorhombic, IbamMo Kα radiation
a = 16.1440 (4) ŵ = 2.23 mm1
b = 12.7191 (3) ÅT = 293 K
c = 14.6859 (3) Å0.17 × 0.12 × 0.12 mm
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
1614 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1460 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.775Rint = 0.033
10490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0395P)2 + 40.5555P]
where P = (Fo2 + 2Fc2)/3
1614 reflectionsΔρmax = 1.52 e Å3
113 parametersΔρmin = 2.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zr10.22644 (4)0.00000.25000.0240 (2)
Zr20.00000.00000.25000.0141 (2)
F10.3523 (4)0.00000.25000.081 (2)
F20.2598 (3)0.0840 (4)0.3629 (3)0.0582 (12)
F30.2278 (2)0.1295 (3)0.1733 (3)0.0533 (11)
F40.11569 (18)0.0662 (3)0.3054 (2)0.0301 (8)
F50.0336 (2)0.1056 (3)0.1546 (3)0.0485 (11)
Co10.38985 (6)0.21269 (8)0.00000.0169 (2)
O10.5048 (4)0.1662 (6)0.00000.0411 (16)
N10.4227 (5)0.3602 (6)0.00000.0375 (18)
H110.38450.39810.02870.056*0.50
H120.47110.36700.02840.056*0.50
H130.42760.38270.05710.056*0.50
N20.3916 (3)0.2137 (4)0.1332 (3)0.0282 (10)
H210.39410.27970.15300.042*
H220.43560.17830.15290.042*
H230.34570.18340.15420.042*
N30.3588 (5)0.0630 (6)0.00000.0395 (18)
H310.31520.05340.03620.059*0.50
H320.40110.02470.02020.059*0.50
H330.34600.04320.05640.059*0.50
N40.2759 (4)0.2536 (7)0.00000.0377 (18)
H410.26370.28450.05270.057*0.50
H420.24420.19700.00720.057*0.50
H430.26680.29840.04550.057*0.50
O1W0.0949 (3)0.3024 (4)0.1454 (4)0.0521 (13)
O3W0.1502 (7)0.0831 (10)0.00000.035 (3)0.50
O2W0.00000.50000.1695 (10)0.053 (4)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0129 (3)0.0226 (4)0.0365 (5)0.0000.0000.0070 (3)
Zr20.0135 (4)0.0158 (4)0.0132 (4)0.0000.0000.000
F10.039 (3)0.088 (4)0.115 (4)0.0000.0000.032 (4)
F20.041 (2)0.070 (3)0.063 (3)0.002 (2)0.025 (2)0.027 (2)
F30.047 (2)0.042 (2)0.071 (3)0.0114 (18)0.017 (2)0.018 (2)
F40.0182 (15)0.0365 (18)0.0356 (18)0.0023 (13)0.0026 (13)0.0180 (15)
F50.0219 (17)0.065 (3)0.059 (2)0.0110 (17)0.0049 (17)0.046 (2)
Co10.0187 (5)0.0186 (5)0.0134 (5)0.0021 (4)0.0000.000
O10.029 (3)0.064 (4)0.031 (3)0.017 (3)0.0000.000
N10.058 (5)0.031 (4)0.024 (4)0.022 (4)0.0000.000
N20.034 (3)0.030 (2)0.020 (2)0.002 (2)0.001 (2)0.005 (2)
N30.061 (5)0.025 (4)0.032 (4)0.010 (4)0.0000.000
N40.029 (4)0.057 (5)0.028 (4)0.007 (4)0.0000.000
O1W0.047 (3)0.051 (3)0.057 (3)0.013 (2)0.022 (2)0.003 (3)
O3W0.030 (6)0.056 (8)0.017 (5)0.021 (6)0.0000.000
O2W0.049 (8)0.056 (9)0.054 (9)0.013 (7)0.0000.000
Geometric parameters (Å, º) top
Co1—O11.947 (6)Zr2—F5iii2.014 (3)
Co1—N11.949 (7)Zr2—F5iv2.014 (3)
Co1—N21.956 (5)Zr2—F5ii2.014 (3)
Co1—N31.969 (7)Zr2—F52.015 (3)
Co1—N41.911 (7)Zr2—Zr1iii3.6556 (7)
Co1—N2i1.956 (5)N1—H110.89
Zr1—F12.032 (7)N1—H120.89
Zr1—F22.045 (4)N1—H130.89
Zr1—F31.995 (4)N2—H210.89
Zr1—F3ii1.995 (4)N2—H220.89
Zr1—F42.137 (3)N2—H230.89
Zr1—F4ii2.137 (3)N3—H310.89
Zr1—F2ii2.045 (4)N3—H320.89
Zr1—Zr23.6556 (7)N3—H330.89
Zr2—F42.205 (3)N4—H410.89
Zr2—F4iii2.205 (3)N4—H420.89
Zr2—F4iv2.205 (3)N4—H430.89
Zr2—F4ii2.205 (3)
F3ii—Zr1—F3178.7 (2)F5iv—Zr2—Zr1105.61 (10)
F3ii—Zr1—F189.36 (11)F5ii—Zr2—Zr174.39 (10)
F3—Zr1—F189.36 (11)F5—Zr2—Zr174.39 (10)
F3ii—Zr1—F288.32 (19)F4—Zr2—Zr132.09 (8)
F3—Zr1—F291.34 (19)F4iii—Zr2—Zr1147.91 (8)
F1—Zr1—F274.74 (12)F4iv—Zr2—Zr1147.91 (8)
F3ii—Zr1—F2ii91.35 (19)F4ii—Zr2—Zr132.09 (8)
F3—Zr1—F2ii88.32 (19)F5iii—Zr2—Zr1iii74.39 (10)
F1—Zr1—F2ii74.74 (12)F5iv—Zr2—Zr1iii74.39 (10)
F2—Zr1—F2ii149.5 (2)F5ii—Zr2—Zr1iii105.61 (10)
F3ii—Zr1—F4ii84.22 (15)F5—Zr2—Zr1iii105.61 (10)
F3—Zr1—F4ii96.87 (16)F4—Zr2—Zr1iii147.91 (8)
F1—Zr1—F4ii146.77 (8)F4iii—Zr2—Zr1iii32.09 (8)
F2—Zr1—F4ii137.29 (15)F4iv—Zr2—Zr1iii32.09 (8)
F2ii—Zr1—F4ii72.87 (14)F4ii—Zr2—Zr1iii147.91 (8)
F3ii—Zr1—F496.87 (16)Zr1—Zr2—Zr1iii180.0
F3—Zr1—F484.22 (15)Zr1—F4—Zr2114.69 (13)
F1—Zr1—F4146.78 (8)N4—Co1—O1178.1 (3)
F2—Zr1—F472.87 (14)N4—Co1—N190.0 (4)
F2ii—Zr1—F4137.29 (15)O1—Co1—N191.9 (3)
F4ii—Zr1—F466.45 (16)N4—Co1—N290.68 (14)
F3ii—Zr1—Zr290.64 (11)O1—Co1—N289.34 (14)
F3—Zr1—Zr290.64 (11)N1—Co1—N289.42 (14)
F1—Zr1—Zr2180.0N4—Co1—N2i90.68 (14)
F2—Zr1—Zr2105.26 (12)O1—Co1—N2i89.34 (14)
F2ii—Zr1—Zr2105.26 (12)N1—Co1—N2i89.43 (14)
F4ii—Zr1—Zr233.23 (8)N2—Co1—N2i178.2 (3)
F4—Zr1—Zr233.22 (8)N4—Co1—N391.1 (4)
F5iii—Zr2—F5iv148.78 (19)O1—Co1—N387.1 (3)
F5iii—Zr2—F5ii96.4 (3)N1—Co1—N3179.0 (4)
F5iv—Zr2—F5ii91.9 (3)N2—Co1—N390.56 (14)
F5iii—Zr2—F591.9 (3)N2i—Co1—N390.56 (14)
F5iv—Zr2—F596.4 (3)Co1—N1—H11109.5
F5ii—Zr2—F5148.78 (19)Co1—N1—H12109.5
F5iii—Zr2—F4137.66 (12)H11—N1—H12109.5
F5iv—Zr2—F473.54 (12)Co1—N1—H13109.5
F5ii—Zr2—F476.69 (15)H11—N1—H13109.5
F5—Zr2—F476.95 (14)H12—N1—H13109.5
F5iii—Zr2—F4iii76.95 (14)Co1—N2—H21109.5
F5iv—Zr2—F4iii76.70 (15)Co1—N2—H22109.5
F5ii—Zr2—F4iii73.54 (12)H21—N2—H22109.5
F5—Zr2—F4iii137.66 (12)Co1—N2—H23109.5
F4—Zr2—F4iii136.67 (18)H21—N2—H23109.5
F5iii—Zr2—F4iv76.70 (15)H22—N2—H23109.5
F5iv—Zr2—F4iv76.95 (14)Co1—N3—H31109.5
F5ii—Zr2—F4iv137.66 (12)Co1—N3—H32109.5
F5—Zr2—F4iv73.55 (12)H31—N3—H32109.5
F4—Zr2—F4iv135.10 (17)Co1—N3—H33109.5
F4iii—Zr2—F4iv64.17 (15)H31—N3—H33109.5
F5iii—Zr2—F4ii73.54 (12)H32—N3—H33109.5
F5iv—Zr2—F4ii137.66 (12)Co1—N4—H41109.5
F5ii—Zr2—F4ii76.95 (14)Co1—N4—H42109.5
F5—Zr2—F4ii76.69 (15)H41—N4—H42109.5
F4—Zr2—F4ii64.17 (15)Co1—N4—H43109.5
F4iii—Zr2—F4ii135.10 (17)H41—N4—H43109.5
F4iv—Zr2—F4ii136.67 (18)H42—N4—H43109.5
F5iii—Zr2—Zr1105.61 (10)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2; (iii) x, y, z; (iv) x, y, z+1/2.
(II) bis[hexaamminecobalt(III)] tetra-µ2-fluorido-tetradecafluoridotrizirconium(IV) hexahydrate top
Crystal data top
[Co(NH3)6]2[Zr3F18]·6H2OF(000) = 2064
Mr = 1046.02Dx = 2.269 Mg m3
Orthorhombic, PnnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 8258 reflections
a = 16.0370 (3) Åθ = 2.5–32.6°
b = 14.6920 (2) ŵ = 2.20 mm1
c = 12.9942 (2) ÅT = 293 K
V = 3061.64 (9) Å3Prism, yellow
Z = 40.26 × 0.20 × 0.16 mm
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
3136 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 25 pixels mm-1θmax = 26.4°, θmin = 2.0°
ϕ scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1418
Tmin = 0.599, Tmax = 0.720l = 1614
20871 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0489P)2 + 15.8103P]
where P = (Fo2 + 2Fc2)/3
3136 reflections(Δ/σ)max = 0.002
211 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 2.23 e Å3
Crystal data top
[Co(NH3)6]2[Zr3F18]·6H2OV = 3061.64 (9) Å3
Mr = 1046.02Z = 4
Orthorhombic, PnnaMo Kα radiation
a = 16.0370 (3) ŵ = 2.20 mm1
b = 14.6920 (2) ÅT = 293 K
c = 12.9942 (2) Å0.26 × 0.20 × 0.16 mm
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
3136 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2608 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.720Rint = 0.031
20871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0489P)2 + 15.8103P]
where P = (Fo2 + 2Fc2)/3
3136 reflectionsΔρmax = 1.24 e Å3
211 parametersΔρmin = 2.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zr10.13816 (3)0.25000.75000.01921 (16)
Co10.00000.00000.00000.01850 (19)
Zr20.36785 (3)0.25000.75000.01612 (15)
Co20.25000.00000.47050 (6)0.0191 (2)
Zr30.59825 (4)0.25000.75000.01999 (16)
F110.0108 (3)0.2633 (9)0.7306 (8)0.036 (2)0.50
N110.1134 (3)0.0292 (3)0.0437 (3)0.0334 (10)
H11A0.14350.02160.04680.050*
H11B0.11200.05530.10540.050*
H11C0.13650.06730.00140.050*
F120.25049 (16)0.18864 (19)0.6937 (2)0.0312 (6)
N120.0203 (3)0.1300 (3)0.0211 (3)0.0300 (9)
H12A0.05890.13730.06970.045*
H12B0.02680.15700.04080.045*
H12C0.03800.15480.03740.045*
F130.1390 (2)0.1615 (2)0.8662 (3)0.0536 (9)
N130.0376 (3)0.0085 (3)0.1438 (3)0.0303 (9)
H13A0.06480.04210.16090.045*
H13B0.07140.05620.15080.045*
H13C0.00640.01540.18480.045*
F140.1052 (2)0.1457 (2)0.6532 (3)0.0559 (10)
F210.33673 (19)0.1700 (3)0.8697 (3)0.0554 (11)
N210.1308 (3)0.0272 (3)0.4704 (4)0.0361 (10)
H21A0.11850.06110.41570.054*
H21B0.11770.05740.52750.054*
H21C0.10200.02450.46790.054*
F220.40106 (19)0.1412 (2)0.6659 (3)0.0501 (9)
N220.25000.00000.3209 (4)0.0326 (13)
H22A0.25230.05710.29800.049*0.50
H22B0.20360.02640.29800.049*0.50
H22C0.29410.03070.29800.049*0.50
F230.48665 (15)0.2071 (2)0.8248 (2)0.0334 (7)
N230.2716 (3)0.1312 (3)0.4704 (3)0.0302 (9)
H23A0.32090.14210.44130.045*
H23B0.27210.15170.53490.045*
H23C0.23180.15950.43510.045*
N240.25000.00000.6213 (5)0.0438 (17)
H24A0.23410.05440.64420.066*0.50
H24B0.30110.01210.64420.066*0.50
H24C0.21480.04230.64420.066*0.50
F310.7251 (4)0.2678 (10)0.7648 (13)0.055 (3)0.50
F320.6244 (2)0.2539 (3)0.9015 (3)0.0647 (12)
F330.6093 (2)0.1131 (2)0.7434 (3)0.0532 (9)
O1W0.2823 (4)0.1483 (4)0.0647 (5)0.0770 (16)
O2W0.3836 (4)0.1253 (5)0.2389 (5)0.068 (2)0.75
O3W0.4607 (3)0.1485 (3)0.4634 (4)0.0581 (12)
O4W0.25000.00000.8746 (8)0.041 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0136 (3)0.0195 (3)0.0245 (3)0.0000.0000.0064 (2)
Co10.0211 (4)0.0172 (4)0.0172 (4)0.0043 (3)0.0032 (3)0.0053 (3)
Zr20.0143 (3)0.0171 (3)0.0170 (3)0.0000.0000.0034 (2)
Co20.0219 (4)0.0170 (4)0.0184 (4)0.0036 (3)0.0000.000
Zr30.0140 (3)0.0245 (3)0.0215 (3)0.0000.0000.0073 (2)
F110.016 (2)0.047 (7)0.045 (8)0.008 (3)0.004 (3)0.007 (4)
N110.026 (2)0.042 (3)0.032 (2)0.0076 (19)0.0021 (17)0.0070 (19)
F120.0190 (12)0.0305 (15)0.0441 (17)0.0001 (11)0.0001 (12)0.0188 (13)
N120.040 (2)0.025 (2)0.025 (2)0.0023 (18)0.0039 (17)0.0022 (16)
F130.058 (2)0.056 (2)0.046 (2)0.0208 (17)0.0136 (17)0.0168 (17)
N130.035 (2)0.024 (2)0.031 (2)0.0057 (17)0.0078 (18)0.0066 (16)
F140.0311 (16)0.058 (2)0.078 (3)0.0022 (16)0.0084 (17)0.044 (2)
F210.0236 (15)0.084 (3)0.059 (2)0.0006 (16)0.0049 (15)0.050 (2)
N210.030 (2)0.031 (2)0.047 (3)0.0065 (18)0.0072 (19)0.001 (2)
F220.0289 (16)0.049 (2)0.072 (2)0.0061 (15)0.0026 (16)0.0304 (18)
N220.038 (3)0.034 (3)0.026 (3)0.009 (3)0.0000.000
F230.0167 (13)0.0507 (18)0.0327 (15)0.0026 (12)0.0005 (11)0.0264 (14)
N230.034 (2)0.023 (2)0.034 (2)0.0010 (17)0.0032 (18)0.0032 (16)
N240.078 (5)0.024 (3)0.029 (3)0.005 (3)0.0000.000
F310.022 (3)0.072 (11)0.069 (10)0.001 (4)0.005 (4)0.008 (6)
F320.065 (2)0.099 (3)0.0302 (18)0.037 (2)0.0203 (16)0.0142 (18)
F330.068 (2)0.0320 (17)0.059 (2)0.0201 (17)0.0247 (18)0.0060 (15)
O1W0.076 (4)0.068 (3)0.087 (4)0.009 (3)0.019 (3)0.002 (3)
O2W0.081 (5)0.063 (4)0.062 (4)0.040 (4)0.022 (4)0.008 (3)
O3W0.044 (2)0.058 (3)0.072 (3)0.013 (2)0.012 (2)0.001 (2)
O4W0.071 (8)0.018 (5)0.035 (6)0.010 (5)0.0000.000
Geometric parameters (Å, º) top
Co1—N111.953 (4)Zr3—F23iii2.132 (3)
Co1—N11i1.953 (4)Zr3—F312.061 (6)
Co1—N121.957 (4)Zr3—F31iii2.061 (6)
Co1—N12i1.957 (4)Zr3—F322.013 (4)
Co1—N131.967 (4)Zr3—F32iii2.014 (4)
Co1—N13i1.967 (4)Zr3—F332.021 (3)
Co2—N211.953 (4)Zr3—F33iii2.021 (3)
Co2—N21ii1.953 (4)F11—F11iii0.638 (13)
Co2—N221.944 (6)N11—H11A0.89
Co2—N231.959 (4)N11—H11B0.89
Co2—N23ii1.959 (4)N11—H11C0.89
Co2—N241.960 (6)N12—H12A0.89
Zr1—F112.067 (5)N12—H12B0.89
Zr1—F11iii2.067 (5)N12—H12C0.89
Zr1—F122.143 (3)N13—H13A0.89
Zr1—F12iii2.143 (3)N13—H13B0.89
Zr1—F131.993 (3)N13—H13C0.89
Zr1—F13iii1.993 (3)N21—H21A0.89
Zr1—F142.051 (3)N21—H21B0.89
Zr1—F14iii2.051 (3)N21—H21C0.89
Zr2—F122.211 (3)N22—H22A0.89
Zr2—F12iii2.211 (3)N22—H22B0.89
Zr2—F212.013 (3)N22—H22C0.89
Zr2—F21iii2.013 (3)N23—H23A0.89
Zr2—F222.008 (3)N23—H23B0.89
Zr2—F22iii2.008 (3)N23—H23C0.89
Zr2—F232.230 (3)N24—H24A0.89
Zr2—F23iii2.230 (3)N24—H24B0.89
Zr3—F232.132 (3)N24—H24C0.89
F13—Zr1—F13iii179.2 (2)N23ii—Co2—N23179.9 (3)
F13—Zr1—F14iii91.40 (17)N22—Co2—N24180.000 (1)
F13iii—Zr1—F14iii88.81 (17)N21ii—Co2—N2490.04 (15)
F13—Zr1—F1488.81 (17)N21—Co2—N2490.04 (15)
F13iii—Zr1—F1491.40 (17)N23ii—Co2—N2490.03 (13)
F14iii—Zr1—F14150.10 (18)N23—Co2—N2490.03 (13)
F13—Zr1—F1199.3 (2)F32—Zr3—F32iii156.0 (2)
F13iii—Zr1—F1181.5 (2)F32—Zr3—F33iii84.92 (15)
F14iii—Zr1—F1175.5 (4)F32iii—Zr3—F33iii92.98 (16)
F14—Zr1—F1175.0 (4)F32—Zr3—F3392.99 (16)
F13—Zr1—F11iii81.5 (2)F32iii—Zr3—F3384.92 (15)
F13iii—Zr1—F11iii99.3 (2)F33iii—Zr3—F33170.0 (2)
F14iii—Zr1—F11iii75.0 (4)F32—Zr3—F3172.5 (5)
F14—Zr1—F11iii75.5 (4)F32iii—Zr3—F3183.6 (5)
F11—Zr1—F11iii17.8 (4)F33iii—Zr3—F3177.5 (4)
F13—Zr1—F12iii90.57 (13)F33—Zr3—F3192.5 (4)
F13iii—Zr1—F12iii88.76 (14)F32—Zr3—F31iii83.6 (5)
F14iii—Zr1—F12iii72.15 (11)F32iii—Zr3—F31iii72.5 (5)
F14—Zr1—F12iii137.75 (11)F33iii—Zr3—F31iii92.5 (4)
F11—Zr1—F12iii146.3 (4)F33—Zr3—F31iii77.5 (4)
F11iii—Zr1—F12iii146.0 (4)F31—Zr3—F31iii18.1 (4)
F13—Zr1—F1288.76 (14)F32—Zr3—F2374.79 (13)
F13iii—Zr1—F1290.57 (13)F32iii—Zr3—F23127.75 (15)
F14iii—Zr1—F12137.75 (12)F33iii—Zr3—F23110.39 (15)
F14—Zr1—F1272.15 (11)F33—Zr3—F2378.38 (13)
F11—Zr1—F12146.0 (4)F31—Zr3—F23145.5 (6)
F11iii—Zr1—F12146.3 (4)F31iii—Zr3—F23146.5 (6)
F12iii—Zr1—F1265.60 (14)F32—Zr3—F23iii127.75 (15)
N11—Co1—N11i180.0F32iii—Zr3—F23iii74.79 (13)
N11—Co1—N1288.93 (19)F33iii—Zr3—F23iii78.38 (13)
N11i—Co1—N1291.07 (19)F33—Zr3—F23iii110.39 (15)
N11—Co1—N12i91.07 (19)F31—Zr3—F23iii146.5 (6)
N11i—Co1—N12i88.93 (19)F31iii—Zr3—F23iii145.5 (6)
N12—Co1—N12i180.0F23—Zr3—F23iii65.84 (13)
N11—Co1—N1389.74 (18)F11iii—F11—Zr181.12 (18)
N11i—Co1—N1390.25 (18)Co1—N11—H11A109.5
N12—Co1—N1391.16 (17)Co1—N11—H11B109.5
N12i—Co1—N1388.85 (17)H11A—N11—H11B109.5
N11—Co1—N13i90.26 (18)Co1—N11—H11C109.5
N11i—Co1—N13i89.75 (18)H11A—N11—H11C109.5
N12—Co1—N13i88.84 (17)H11B—N11—H11C109.5
N12i—Co1—N13i91.16 (17)Zr1—F12—Zr2115.53 (11)
N13—Co1—N13i180.0Co1—N12—H12A109.5
F22—Zr2—F22iii149.23 (18)Co1—N12—H12B109.5
F22—Zr2—F21iii96.34 (17)H12A—N12—H12B109.5
F22iii—Zr2—F21iii91.21 (17)Co1—N12—H12C109.5
F22—Zr2—F2191.21 (17)H12A—N12—H12C109.5
F22iii—Zr2—F2196.34 (17)H12B—N12—H12C109.5
F21iii—Zr2—F21151.29 (17)Co1—N13—H13A109.5
F22—Zr2—F1273.82 (11)Co1—N13—H13B109.5
F22iii—Zr2—F12136.91 (11)H13A—N13—H13B109.5
F21iii—Zr2—F1276.79 (13)Co1—N13—H13C109.5
F21—Zr2—F1278.84 (13)H13A—N13—H13C109.5
F22—Zr2—F12iii136.91 (11)H13B—N13—H13C109.5
F22iii—Zr2—F12iii73.82 (11)Co2—N21—H21A109.5
F21iii—Zr2—F12iii78.84 (13)Co2—N21—H21B109.5
F21—Zr2—F12iii76.79 (13)H21A—N21—H21B109.5
F12—Zr2—F12iii63.33 (13)Co2—N21—H21C109.5
F22—Zr2—F2377.61 (13)H21A—N21—H21C109.5
F22iii—Zr2—F2376.19 (13)H21B—N21—H21C109.5
F21iii—Zr2—F23135.56 (11)Co2—N22—H22A109.5
F21—Zr2—F2373.12 (11)Co2—N22—H22B109.5
F12—Zr2—F23139.12 (11)H22A—N22—H22B109.5
F12iii—Zr2—F23134.29 (11)Co2—N22—H22C109.5
F22—Zr2—F23iii76.19 (13)H22A—N22—H22C109.5
F22iii—Zr2—F23iii77.61 (13)H22B—N22—H22C109.5
F21iii—Zr2—F23iii73.12 (11)Zr3—F23—Zr2115.77 (11)
F21—Zr2—F23iii135.56 (11)Co2—N23—H23A109.5
F12—Zr2—F23iii134.29 (11)Co2—N23—H23B109.5
F12iii—Zr2—F23iii139.12 (11)H23A—N23—H23B109.5
F23—Zr2—F23iii62.62 (13)Co2—N23—H23C109.5
N22—Co2—N21ii89.96 (15)H23A—N23—H23C109.5
N22—Co2—N2189.96 (15)H23B—N23—H23C109.5
N21ii—Co2—N21179.9 (3)Co2—N24—H24A109.5
N22—Co2—N23ii89.97 (13)Co2—N24—H24B109.5
N21ii—Co2—N23ii88.39 (18)H24A—N24—H24B109.5
N21—Co2—N23ii91.61 (18)Co2—N24—H24C109.5
N22—Co2—N2389.97 (13)H24A—N24—H24C109.5
N21ii—Co2—N2391.61 (18)H24B—N24—H24C109.5
N21—Co2—N2388.39 (18)F31iii—F31—Zr381.0 (2)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y, z; (iii) x, y+1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(NH3)5(H2O)]2[Zr3F18]·6H2O[Co(NH3)6]2[Zr3F18]·6H2O
Mr1047.991046.02
Crystal system, space groupOrthorhombic, IbamOrthorhombic, Pnna
Temperature (K)293293
a, b, c (Å)16.1440 (4), 12.7191 (3), 14.6859 (3)16.0370 (3), 14.6920 (2), 12.9942 (2)
V3)3015.56 (12)3061.64 (9)
Z44
Radiation typeMo KαMo Kα
µ (mm1)2.232.20
Crystal size (mm)0.17 × 0.12 × 0.120.26 × 0.20 × 0.16
Data collection
DiffractometerBruker Nonius X8 APEX CCD area-detector
diffractometer
Bruker Nonius X8 APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.703, 0.7750.599, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
10490, 1614, 1460 20871, 3136, 2608
Rint0.0330.031
(sin θ/λ)max1)0.6250.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.109, 1.11 0.041, 0.110, 1.19
No. of reflections16143136
No. of parameters113211
No. of restraints60
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0395P)2 + 40.5555P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0489P)2 + 15.8103P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.52, 2.371.24, 2.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXTL (Bruker, 2004), SHELXTL.

Selected bond lengths (Å) for (I) top
Co1—O11.947 (6)Zr1—F22.045 (4)
Co1—N11.949 (7)Zr1—F31.995 (4)
Co1—N21.956 (5)Zr1—F42.137 (3)
Co1—N31.969 (7)Zr2—F42.205 (3)
Co1—N41.911 (7)Zr2—F52.015 (3)
Zr1—F12.032 (7)
Selected bond lengths (Å) for (II) top
Co1—N111.953 (4)Zr1—F142.051 (3)
Co1—N121.957 (4)Zr2—F122.211 (3)
Co1—N131.967 (4)Zr2—F212.013 (3)
Co2—N211.953 (4)Zr2—F222.008 (3)
Co2—N221.944 (6)Zr2—F232.230 (3)
Co2—N231.959 (4)Zr3—F232.132 (3)
Co2—N241.960 (6)Zr3—F312.061 (6)
Zr1—F112.067 (5)Zr3—F322.013 (4)
Zr1—F122.143 (3)Zr3—F332.021 (3)
Zr1—F131.993 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds