Download citation
Download citation
link to html
The structures of two modifications, (I) and (II), of potassium di­hydrogenphosphate–hydro­fluoric acid (1/1), KH2PO4·HF, were determined at 250 and 150 K, and at 292 and 150 K, respectively. Modifications (I) and (II) crystallize from stoichiometric aqueous solutions at 295 (1) and 308 (3) K, respectively. The H atoms were located clearly from the difference Fourier maps in each modification. The two modifications differ mainly in the arrangement of the di­hydrogen­phosphate anions, i.e. (I) contains looped dimeric and tetrameric units of the di­hydrogen­phosphate ions, whereas (II) contains two types of looped tetrameric unit. In addition, both structures contain a very short F—H...O hydrogen bond (2.38–2.40 Å). The K+ ions are coordinated by O and F atoms, with similar K...O and K...F distances in both modifications.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103012654/bc1019sup1.cif
Contains datablocks global, KDPHF250I, KDPHF150I, KDPHF292II, KDPHF150II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012654/bc1019KDPHF250Isup2.hkl
Contains datablock KDPHF250I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012654/bc1019KDPHF150Isup3.hkl
Contains datablock KDPHF150I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012654/bc1019KDPHF292IIsup4.hkl
Contains datablock KDPHF292II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012654/bc1019KDPHF150IIsup5.hkl
Contains datablock KDPHF150II

Comment top

The title compounds were prepared as part of an investigation of trioxofluorophosphates (PO3F2−) and trioxohydrogenfluorophosphates (HPO3F). Both anions decompose as a result of the hydrolysis reactions H2O + PO3F2− HF + HPO42− or H2O + HPO3F HF + H2PO4. Therefore, it was of interest to investigate the formation of products that arise from the decomposition of the fluorophosphate anions, for example, in the reaction between dissolved KH2PO4 and HF.

The structures contain sheets of dihydrogenphosphate anions with attached HF molecules, and the anions in each sheet are connected to one another and to HF molecules by hydrogen bonds. Each sheet can be viewed as being composed of two kinds of condensed closed loops of hydrogen-bonded dihydrogenphosphate anions (Figs. 1 and 2), viz. dimers and tetramers in (I), and two kinds of tetramer in (II). The two modifications differ in the number of hydrogenphosphate ions forming these loops, the number of O atoms in the respective loops being four and ten in (I), and six and eight in (II). The loops are centrosymmetric.

The most interesting feature of each modification is a very short F—H···O hydrogen bond. The fact that fluorine is a hydrogen-bond donor is in accordance with the acid strengths of HF (pKa = 3.20) and of H3PO4 (pKa1 = 2.16; pKa values from the CRC Handbook of Chemistry and Physics, 1995). The bond length of this F—H···O hydrogen bond is very similar to that observed in the KH2PO3·HF adduct (F···O = 2.383 Å; Altenburg & Mootz, 1971), although the F—H···O angle [144.5 (2)°] is not in accordance with those in the present structures and seems to be improbably small for such a short hydrogen bond (Desiraju & Steiner, 1999).

In both modifications, the displacement parameters of the F atoms are substantially larger than those of the O atoms. Therefore, the occupational parameters of atoms F and H3 were refined. The results showed that, within 2 s.u., the occupational parameters of HF in either modification at each temperature were close to 1.0. The dependence of equivalent isotropic parameters, or principal axes, of the displacement parameters on temperature also indicates full occupancy of the F atoms in either modification.

The potassium cation is coordinated irregularly in both modifications. Its coordination polyhedron is formed by seven O atoms and two F atoms in each modification, with shorter distances to the F atoms. In (I), the coordination polyhedron is in the form of a distorted capped tetragonal antiprism with F atoms in cis positions. In (II), the closest atoms (five O atoms and two F atoms) form an irregular pentagonal bipyramid around the K atom, with the F atoms in equatorial positions.

Unexpectedly, although (II) grows at a higher temperature than (I), it has a higher density. Furthermore, the O1···O3 and O2···O3 hydrogen bonds are significantly shorter in (I). No reproducible anomaly indicating the presence of a structural phase transition was observed during differential scanning calorimetry? (DSC) measurements. Signs of decomposition were observed above 360 K for both modifications. The structures determined at low and high temperature are quite similar, thus confirming the results of the DSC measurements. The fractional parameters of the respective non-H atoms are affected in the third decimal place only.

Experimental top

To KH2PO4 (3.58 g; p.a. Fluka) was added commercial HF (1.38 g of 38 wt%; purum, Spolek pro hutn\'ιa chemickou v\' yrobu, Czech Republic) and enough water to dissolve the crystals of KH2PO4. The initial volume of the mixture was 20 ml. The solution was put in to a desiccator over P4O10. A few crystals of KH2PO4, several millimeters in size, grew after 30 d. These crystals were hand-picked from the solution, weighed (1.20 g) and checked on a diffractometer. Another batch of crystals of modification (II) of the adduct grew after 14 d from the remaining solution. The shape of these crystals clearly differed from that of the KH2PO4 crystals. A crystal of this batch was used for the structure determination of modification (II). The preparation was repeated several times with KH2PO4 (2.38 g) and the same quantities of the other reagents as given above. We found that the growth of a particular modification depended on the ambient temperature. At 295 (1) K, crystals of modification (I) were synthesized, whereas crystallization at 308 (3) K yielded modification (II). The growth of the crystal of modification (II) that was used for the structure determination (above) can be explained by a transitory increase of the temperature in a desiccator. The evolution of diffraction patterns recorded on a diffractometer equipped with a position-sensitive detector showed the gradual appearance of Debye rings, thus indicating that the crystals are unstable when kept in a glass capillary. For this reason, the data collection of modification (I) that followed that of (II) was carried out under a stream of nitrogen gas. If crystals of either modification are left in a desiccator over P4O10 for several months, the crystals become opaque and are covered with a white powder.

DSC measurements were carried with a Perkin Elmer DSC7 instrument with the Pyris Software (Perkin Elmer Instruments, 2001) over the temperature range 95–390 K, at a scanning rate of 10 K min−1.

Computing details top

Data collection: COLLECT (Nonius, 1997–2000) for KDPHF250I; COLLECT (Nonius BV, 1997-2000) for KDPHF150I, KDPHF292II, KDPHF150II. For all compounds, cell refinement: HKL DENZO SCALEPACK (Otwinowski & Minor, 1997). Data reduction: HKL DENZO and SCALEPACK for KDPHF250I; HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997) for KDPHF150I, KDPHF292II, KDPHF150II. For all compounds, program(s) used to solve structure: SIR97 (Cascarano et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of modification (I) (250 K), projected along the a axis. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. A view of modification (II) (292 K), projected along the a axis. Displacement ellipsoids are shown at the 30% probability level.
(KDPHF250I) 'potassium dihydrogenphosphate - hydrofluoric acid adduct (I)' top
Crystal data top
KH2PO4·HFF(000) = 312
Mr = 156.09Dx = 2.176 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 1419 reflections
a = 6.1903 (1) Åθ = 1.0–30.0°
b = 12.0733 (2) ŵ = 1.38 mm1
c = 7.0741 (1) ÅT = 250 K
β = 115.6700 (8)°Irregular, colourless
V = 476.52 (1) Å30.50 × 0.47 × 0.35 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1381 independent reflections
Radiation source: fine-focus sealed tube1318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 30.1°, θmin = 3.4°
Absorption correction: multi-scan
PLATON (Spek, 2002)
h = 88
Tmin = 0.669, Tmax = 0.736k = 1616
7968 measured reflectionsl = 89
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.1671P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.002
S = 1.11Δρmax = 0.28 e Å3
1381 reflectionsΔρmin = 0.50 e Å3
77 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.398 (11)
Primary atom site location: structure-invariant direct methods
Crystal data top
KH2PO4·HFV = 476.52 (1) Å3
Mr = 156.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1903 (1) ŵ = 1.38 mm1
b = 12.0733 (2) ÅT = 250 K
c = 7.0741 (1) Å0.50 × 0.47 × 0.35 mm
β = 115.6700 (8)°
Data collection top
Nonius KappaCCD
diffractometer
1381 independent reflections
Absorption correction: multi-scan
PLATON (Spek, 2002)
1318 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.736Rint = 0.039
7968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.057All H-atom parameters refined
S = 1.11Δρmax = 0.28 e Å3
1381 reflectionsΔρmin = 0.50 e Å3
77 parameters
Special details top

Experimental. Glued by epoxy resine; the sample was kept under a stream of dry nitrogen gas.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.85181 (5)0.86704 (2)0.11642 (4)0.02417 (10)
P0.65486 (5)0.13985 (2)0.40733 (4)0.01475 (10)
O10.55300 (15)0.03632 (7)0.26045 (13)0.02227 (18)
O20.48366 (15)0.23861 (7)0.29023 (14)0.02397 (19)
O30.63859 (16)0.12101 (6)0.61182 (13)0.02077 (18)
O40.90418 (14)0.16322 (7)0.43052 (13)0.02207 (19)
F1.01399 (18)0.07898 (8)0.17807 (16)0.0428 (2)
H10.480 (4)0.0160 (18)0.303 (3)0.047 (5)*
H20.546 (4)0.2848 (18)0.234 (3)0.047 (5)*
H30.969 (5)0.111 (2)0.266 (4)0.081 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.02135 (15)0.02922 (16)0.02017 (15)0.00345 (8)0.00732 (11)0.00064 (8)
P0.01686 (15)0.01367 (15)0.01484 (16)0.00059 (8)0.00792 (12)0.00039 (8)
O10.0299 (4)0.0212 (4)0.0189 (4)0.0085 (3)0.0136 (3)0.0056 (3)
O20.0221 (4)0.0211 (4)0.0318 (5)0.0041 (3)0.0145 (3)0.0103 (3)
O30.0319 (4)0.0168 (3)0.0172 (4)0.0021 (3)0.0139 (3)0.0018 (3)
O40.0176 (4)0.0243 (4)0.0249 (4)0.0023 (3)0.0097 (3)0.0041 (3)
F0.0595 (6)0.0367 (4)0.0550 (6)0.0045 (4)0.0463 (5)0.0083 (4)
Geometric parameters (Å, º) top
K—Fi2.6371 (9)O1—Kvi2.9934 (9)
K—Fii2.7141 (10)O1—Kvii3.2045 (9)
K—O2iii2.8880 (9)O1—H10.90 (2)
K—O3iv2.9007 (9)O2—Kviii2.8881 (9)
K—O4iv2.9143 (9)O2—Kvi3.0065 (10)
K—O4v2.9802 (9)O2—H20.87 (2)
K—O1vi2.9934 (9)O3—Kiv2.9006 (9)
K—O2vi3.0066 (10)O4—Kiv2.9143 (9)
K—O1ii3.2045 (9)O4—Kix2.9802 (9)
P—O11.5723 (8)F—Ki2.6370 (9)
P—O21.5718 (8)F—Kvii2.7140 (10)
P—O31.5102 (8)F—H30.88 (3)
P—O41.5064 (8)
Fi—K—Fii70.90 (3)Fii—K—O1ii64.65 (2)
Fi—K—O2iii144.80 (3)O2iii—K—O1ii72.45 (2)
Fii—K—O2iii136.22 (3)O3iv—K—O1ii111.68 (2)
Fi—K—O3iv83.51 (3)O4iv—K—O1ii79.97 (2)
Fii—K—O3iv68.05 (3)O4v—K—O1ii162.22 (2)
O2iii—K—O3iv123.95 (3)O1vi—K—O1ii70.05 (2)
Fi—K—O4iv135.17 (3)O2vi—K—O1ii108.68 (2)
Fii—K—O4iv87.83 (3)O1—P—O2105.60 (5)
O2iii—K—O4iv76.27 (2)O1—P—O3109.83 (5)
O3iv—K—O4iv51.73 (2)O1—P—O4108.63 (5)
Fi—K—O4v76.57 (3)O2—P—O3108.03 (5)
Fii—K—O4v128.78 (3)O2—P—O4109.90 (5)
O2iii—K—O4v91.81 (2)O3—P—O4114.47 (5)
O3iv—K—O4v69.92 (2)P—O1—Kvi102.71 (4)
O4iv—K—O4v88.44 (2)P—O1—Kvii126.56 (4)
Fi—K—O1vi68.21 (3)Kvi—O1—Kvii109.95 (2)
Fii—K—O1vi83.36 (3)P—O2—Kviii132.40 (5)
O2iii—K—O1vi90.31 (3)P—O2—Kvi102.18 (4)
O3iv—K—O1vi145.23 (2)Kviii—O2—Kvi100.34 (3)
O4iv—K—O1vi149.71 (2)P—O3—Kiv97.05 (4)
O4v—K—O1vi119.46 (2)P—O4—Kiv96.59 (4)
Fi—K—O2vi70.88 (3)P—O4—Kix133.42 (5)
Fii—K—O2vi127.43 (3)Kiv—O4—Kix100.36 (3)
O2iii—K—O2vi73.975 (17)P—O1—H1116.8 (13)
O3iv—K—O2vi139.23 (2)P—O2—H2113.4 (13)
O4iv—K—O2vi144.41 (2)P—O3—H1x132.0 (7)
O4v—K—O2vi73.53 (2)P—O3—H2xi124.9 (7)
O1vi—K—O2vi49.34 (2)P—O4—H3116 (1)
Fi—K—O1ii121.09 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+2, y+1/2, z+1/2; (vi) x+1, y+1, z; (vii) x, y1, z; (viii) x+1, y1/2, z+1/2; (ix) x+2, y1/2, z+1/2; (x) x+1, y, z+1; (xi) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
F—H3···O40.88 (3)1.52 (3)2.3953 (12)176 (3)
O1—H1···O3x0.90 (2)1.70 (2)2.5999 (11)175.5 (19)
O2—H2···O3xii0.87 (2)1.67 (2)2.5365 (11)174 (2)
Symmetry codes: (x) x+1, y, z+1; (xii) x, y+1/2, z1/2.
(KDPHF150I) 'potassium dihydrogenphosphate - hydrofluoric acid adduct (I)' top
Crystal data top
KH2PO4·HFF(000) = 312
Mr = 156.09Dx = 2.196 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 1412 reflections
a = 6.1624 (1) Åθ = 1.0–30.0°
b = 12.0744 (2) ŵ = 1.39 mm1
c = 7.0448 (1) ÅT = 150 K
β = 115.7400 (9)°Irregular shape, colourless
V = 472.17 (1) Å30.50 × 0.47 × 0.35 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1373 independent reflections
Radiation source: fine-focus sealed tube1322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 30.0°, θmin = 3.4°
Absorption correction: multi-scan
PLATON (Spek, 2002)
h = 88
Tmin = 0.662, Tmax = 0.733k = 1616
8085 measured reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.1281P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.23Δρmax = 0.55 e Å3
1373 reflectionsΔρmin = 0.51 e Å3
77 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.165 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
KH2PO4·HFV = 472.17 (1) Å3
Mr = 156.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1624 (1) ŵ = 1.39 mm1
b = 12.0744 (2) ÅT = 150 K
c = 7.0448 (1) Å0.50 × 0.47 × 0.35 mm
β = 115.7400 (9)°
Data collection top
Nonius KappaCCD
diffractometer
1373 independent reflections
Absorption correction: multi-scan
PLATON (Spek, 2002)
1322 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.733Rint = 0.038
8085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.059All H-atom parameters refined
S = 1.23Δρmax = 0.55 e Å3
1373 reflectionsΔρmin = 0.51 e Å3
77 parameters
Special details top

Experimental. Glued with epoxy resin; the sample was kept under a stream of dry nitrogen gas.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.85237 (4)0.86720 (2)0.11552 (4)0.01492 (10)
P0.65433 (5)0.14024 (2)0.40741 (4)0.00934 (10)
O10.55392 (13)0.03648 (6)0.25966 (12)0.01411 (17)
O20.48090 (14)0.23883 (6)0.28986 (13)0.01516 (17)
O30.63781 (14)0.12091 (6)0.61282 (13)0.01335 (17)
O40.90522 (13)0.16468 (7)0.43152 (13)0.01388 (17)
F1.01763 (14)0.07753 (7)0.18117 (13)0.02595 (19)
H10.479 (3)0.0173 (18)0.302 (3)0.038 (5)*
H20.542 (4)0.2854 (18)0.233 (3)0.039 (5)*
H30.973 (4)0.110 (2)0.277 (4)0.063 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.01333 (14)0.01750 (15)0.01283 (15)0.00208 (7)0.00464 (10)0.00047 (7)
P0.01049 (15)0.00855 (15)0.00968 (16)0.00030 (8)0.00504 (12)0.00029 (8)
O10.0187 (4)0.0130 (3)0.0127 (4)0.0051 (3)0.0088 (3)0.0034 (3)
O20.0142 (3)0.0133 (4)0.0199 (4)0.0025 (3)0.0092 (3)0.0064 (3)
O30.0193 (4)0.0109 (3)0.0117 (4)0.0011 (3)0.0085 (3)0.0009 (3)
O40.0113 (3)0.0148 (4)0.0160 (4)0.0015 (3)0.0064 (3)0.0025 (3)
F0.0360 (4)0.0219 (4)0.0336 (4)0.0028 (3)0.0278 (4)0.0051 (3)
Geometric parameters (Å, º) top
K—Fi2.6286 (8)O1—Kvi2.9764 (8)
K—Fii2.7003 (8)O1—Kvii3.1959 (8)
K—O2iii2.8729 (8)O1—H10.92 (2)
K—O3iv2.8864 (8)O2—Kviii2.8729 (8)
K—O4iv2.9021 (8)O2—Kvi2.9864 (9)
K—O4v2.9582 (8)O2—H20.86 (2)
K—O1vi2.9764 (8)O3—Kiv2.8864 (8)
K—O2vi2.9864 (9)O4—Kiv2.9021 (8)
K—O1ii3.1959 (8)O4—Kix2.9582 (8)
P—O11.5737 (8)F—Ki2.6286 (8)
P—O21.5737 (8)F—Kvii2.7003 (8)
P—O31.5122 (8)F—H30.92 (2)
P—O41.5093 (8)
Fi—K—Fii71.03 (3)Fii—K—O1ii64.55 (2)
Fi—K—O2iii144.77 (3)O2iii—K—O1ii72.74 (2)
Fii—K—O2iii136.23 (2)O3iv—K—O1ii111.62 (2)
Fi—K—O3iv83.96 (2)O4iv—K—O1ii80.09 (2)
Fii—K—O3iv67.59 (2)O4v—K—O1ii162.28 (2)
O2iii—K—O3iv123.70 (2)O1vi—K—O1ii69.76 (2)
Fi—K—O4iv135.96 (2)O2vi—K—O1ii109.05 (2)
Fii—K—O4iv87.75 (2)O1—P—O2105.79 (5)
O2iii—K—O4iv75.63 (2)O1—P—O3109.85 (4)
O3iv—K—O4iv52.06 (2)O1—P—O4108.63 (4)
Fi—K—O4v77.16 (2)O2—P—O3107.92 (4)
Fii—K—O4v128.71 (2)O2—P—O4109.86 (4)
O2iii—K—O4v91.53 (2)O3—P—O4114.45 (5)
O3iv—K—O4v70.01 (2)P—O1—Kvi102.34 (4)
O4iv—K—O4v88.26 (2)P—O1—Kvii127.16 (4)
Fi—K—O1vi67.92 (2)Kvi—O1—Kvii110.24 (2)
Fii—K—O1vi83.91 (2)P—O2—Kviii132.58 (4)
O2iii—K—O1vi90.37 (2)P—O2—Kvi101.93 (4)
O3iv—K—O1vi145.38 (2)Kviii—O2—Kvi100.90 (2)
O4iv—K—O1vi149.43 (2)P—O3—Kiv96.93 (4)
O4v—K—O1vi119.64 (2)P—O4—Kiv96.36 (4)
Fi—K—O2vi70.67 (2)P—O4—Kix133.74 (4)
Fii—K—O2vi128.21 (3)Kiv—O4—Kix100.89 (2)
O2iii—K—O2vi74.131 (16)Ki—F—Kvii108.97 (3)
O3iv—K—O2vi138.93 (2)P—O1—H1117.0 (12)
O4iv—K—O2vi143.75 (2)P—O2—H2113.9 (13)
O4v—K—O2vi73.11 (2)P—O3—H1x132.3 (7)
O1vi—K—O2vi49.79 (2)P—O3—H2xi124.5 (7)
Fi—K—O1ii120.43 (2)P—O4—H3115.6 (10)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+2, y+1/2, z+1/2; (vi) x+1, y+1, z; (vii) x, y1, z; (viii) x+1, y1/2, z+1/2; (ix) x+2, y1/2, z+1/2; (x) x+1, y, z+1; (xi) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
F—H3···O40.92 (2)1.48 (2)2.3998 (10)178.5 (9)
O1—H1···O3x0.92 (2)1.68 (2)2.5955 (11)175.5 (19)
O2—H2···O3xii0.86 (2)1.67 (2)2.5310 (11)176 (2)
Symmetry codes: (x) x+1, y, z+1; (xii) x, y+1/2, z1/2.
(KDPHF292II) 'potassium dihydrogenphosphate - hydrofluoric acid adduct (II)' top
Crystal data top
KH2PO4·HFF(000) = 312
Mr = 156.09Dx = 2.247 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 5501 reflections
a = 6.5004 (2) Åθ = 1.0–30.0°
b = 7.6116 (2) ŵ = 1.43 mm1
c = 9.5029 (2) ÅT = 292 K
β = 101.1500 (16)°Plate, colourless
V = 461.31 (2) Å30.65 × 0.5 × 0.4 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1344 independent reflections
Radiation source: fine-focus sealed tube1305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 30.0°, θmin = 3.2°
ω scansh = 09
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 1010
Tmin = 0.355, Tmax = 0.582l = 1313
8372 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.048P)2 + 0.1751P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.53 e Å3
1344 reflectionsΔρmin = 0.39 e Å3
77 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.147 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
KH2PO4·HFV = 461.31 (2) Å3
Mr = 156.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5004 (2) ŵ = 1.43 mm1
b = 7.6116 (2) ÅT = 292 K
c = 9.5029 (2) Å0.65 × 0.5 × 0.4 mm
β = 101.1500 (16)°
Data collection top
Nonius KappaCCD
diffractometer
1344 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
1305 reflections with I > 2σ(I)
Tmin = 0.355, Tmax = 0.582Rint = 0.041
8372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.071All H-atom parameters refined
S = 1.11Δρmax = 0.53 e Å3
1344 reflectionsΔρmin = 0.39 e Å3
77 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.84452 (5)0.22735 (4)0.45543 (4)0.02959 (13)
P0.61662 (5)0.70482 (4)0.32991 (3)0.01563 (12)
O10.64225 (17)0.86369 (13)0.43720 (10)0.0257 (2)
O20.40636 (15)0.61707 (13)0.35149 (11)0.0237 (2)
O30.59080 (16)0.77931 (12)0.18096 (10)0.0221 (2)
O40.79729 (15)0.57833 (14)0.36943 (10)0.0255 (2)
F0.96517 (16)0.47408 (16)0.18430 (12)0.0420 (3)
H10.632 (3)0.832 (3)0.519 (3)0.043 (6)*
H20.405 (4)0.506 (4)0.335 (3)0.059 (7)*
H30.898 (4)0.518 (4)0.251 (4)0.077 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.03004 (19)0.02608 (19)0.03087 (19)0.00392 (11)0.00145 (13)0.00407 (11)
P0.02087 (19)0.01432 (18)0.01216 (17)0.00039 (10)0.00433 (11)0.00048 (9)
O10.0412 (5)0.0209 (5)0.0171 (4)0.0088 (4)0.0112 (4)0.0045 (3)
O20.0241 (4)0.0176 (5)0.0310 (5)0.0024 (3)0.0092 (4)0.0028 (4)
O30.0348 (5)0.0190 (5)0.0130 (4)0.0034 (3)0.0057 (3)0.0018 (3)
O40.0249 (4)0.0283 (5)0.0237 (4)0.0078 (4)0.0059 (3)0.0072 (4)
F0.0380 (5)0.0506 (6)0.0396 (5)0.0048 (5)0.0129 (4)0.0148 (5)
Geometric parameters (Å, º) top
K—Fi2.6526 (11)P—O21.5699 (10)
K—Fii2.7650 (13)P—O31.5038 (10)
K—O42.7933 (11)P—O41.5089 (10)
K—O3iii2.9026 (11)O1—Kvii3.0549 (10)
K—O2iv2.9301 (10)O1—Kv3.3668 (12)
K—O4v2.9800 (11)O2—Kiv2.9301 (10)
K—O1vi3.0550 (10)O2—Kviii3.1672 (11)
K—O2iii3.1673 (11)O3—Kviii2.9026 (11)
K—O1v3.3668 (12)O4—Kv2.9800 (11)
K—F3.4003 (12)F—Kix2.6527 (11)
P—O11.5696 (10)F—Kx2.7650 (13)
Fi—K—Fii84.37 (4)Fi—K—O1v60.92 (3)
Fi—K—O4142.28 (4)Fii—K—O1v59.53 (3)
Fii—K—O4124.08 (3)O4—K—O1v109.39 (3)
Fi—K—O3iii123.57 (3)O3iii—K—O1v170.65 (3)
Fii—K—O3iii111.63 (3)O2iv—K—O1v122.16 (3)
O4—K—O3iii72.33 (3)O4v—K—O1v46.48 (3)
Fi—K—O2iv80.35 (3)O1vi—K—O1v102.77 (2)
Fii—K—O2iv159.62 (3)O2iii—K—O1v121.88 (3)
O4—K—O2iv75.74 (3)Fi—K—F149.95 (4)
O3iii—K—O2iv67.17 (3)Fii—K—F80.271 (13)
Fi—K—O4v75.74 (3)O4—K—F43.82 (3)
Fii—K—O4v103.91 (3)O3iii—K—F86.23 (3)
O4—K—O4v73.65 (3)O2iv—K—F119.28 (3)
O3iii—K—O4v140.42 (3)O4v—K—F83.06 (3)
O2iv—K—O4v85.36 (3)O1vi—K—F128.12 (3)
Fi—K—O1vi65.07 (3)O2iii—K—F66.53 (3)
Fii—K—O1vi64.45 (3)O1v—K—F89.03 (3)
O4—K—O1vi145.92 (3)O1—P—O2103.22 (6)
O3iii—K—O1vi74.12 (3)O1—P—O3107.42 (6)
O2iv—K—O1vi96.67 (3)O1—P—O4110.50 (6)
O4v—K—O1vi139.70 (3)O2—P—O3109.99 (6)
Fi—K—O2iii128.30 (3)O2—P—O4110.57 (6)
Fii—K—O2iii64.63 (3)O3—P—O4114.50 (6)
O4—K—O2iii88.63 (3)P—O1—H1112 (2)
O3iii—K—O2iii48.78 (3)P—O2—H2112 (2)
O2iv—K—O2iii115.72 (3)P—O3—H1xi127.7 (8)
O4v—K—O2iii148.58 (3)P—O3—H2viii117.1 (9)
O1vi—K—O2iii64.43 (3)P—O4—H3116 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x, y1, z; (vii) x, y+1, z; (viii) x+1, y+1/2, z+1/2; (ix) x, y+1/2, z1/2; (x) x+2, y+1/2, z+1/2; (xi) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
F—H3···O40.90 (3)1.48 (3)2.3787 (14)175 (3)
O1—H1···O3xii0.83 (3)1.82 (3)2.6386 (14)168 (3)
O2—H2···O3iii0.86 (3)1.73 (3)2.5898 (14)174 (3)
Symmetry codes: (iii) x+1, y1/2, z+1/2; (xii) x, y+3/2, z+1/2.
(KDPHF150II) 'potassium dihydrogenphosphate - hydrofluoric acid adduct (II)' top
Crystal data top
KH2PO4·HFF(000) = 312
Mr = 156.09Dx = 2.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 4563 reflections
a = 6.4480 (2) Åθ = 1.0–30.0°
b = 7.5660 (2) ŵ = 1.45 mm1
c = 9.4760 (3) ÅT = 150 K
β = 101.2370 (18)°Plate, colourless
V = 453.43 (2) Å30.65 × 0.5 × 0.4 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1297 independent reflections
Radiation source: fine-focus sealed tube1265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 30.1°, θmin = 3.2°
ω scansh = 09
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 1010
Tmin = 0.423, Tmax = 0.571l = 1313
6815 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.2532P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.18Δρmax = 0.51 e Å3
1297 reflectionsΔρmin = 0.50 e Å3
77 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.063 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
KH2PO4·HFV = 453.43 (2) Å3
Mr = 156.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4480 (2) ŵ = 1.45 mm1
b = 7.5660 (2) ÅT = 150 K
c = 9.4760 (3) Å0.65 × 0.5 × 0.4 mm
β = 101.2370 (18)°
Data collection top
Nonius KappaCCD
diffractometer
1297 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
1265 reflections with I > 2σ(I)
Tmin = 0.423, Tmax = 0.571Rint = 0.038
6815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.059All H-atom parameters refined
S = 1.18Δρmax = 0.51 e Å3
1297 reflectionsΔρmin = 0.50 e Å3
77 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.84556 (4)0.22681 (4)0.45470 (3)0.01566 (12)
P0.61626 (5)0.70589 (4)0.33024 (3)0.00889 (12)
O10.64216 (16)0.86712 (12)0.43691 (11)0.0143 (2)
O20.40382 (14)0.61818 (13)0.35198 (10)0.0134 (2)
O30.59098 (15)0.77907 (12)0.18009 (10)0.0125 (2)
O40.79879 (14)0.57840 (13)0.37120 (10)0.0140 (2)
F0.96623 (14)0.47367 (12)0.18426 (10)0.0220 (2)
H10.636 (4)0.833 (3)0.518 (3)0.037 (6)*
H20.397 (4)0.510 (4)0.338 (3)0.044 (7)*
H30.899 (5)0.516 (4)0.252 (4)0.061 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.01554 (17)0.01351 (16)0.01707 (17)0.00174 (9)0.00106 (11)0.00181 (9)
P0.01097 (17)0.00808 (17)0.00789 (17)0.00009 (10)0.00249 (11)0.00018 (9)
O10.0219 (5)0.0116 (4)0.0106 (4)0.0043 (3)0.0059 (3)0.0023 (3)
O20.0134 (4)0.0099 (4)0.0178 (5)0.0016 (3)0.0054 (3)0.0017 (3)
O30.0187 (5)0.0105 (4)0.0085 (4)0.0013 (3)0.0035 (3)0.0009 (3)
O40.0131 (4)0.0156 (4)0.0135 (4)0.0036 (3)0.0029 (3)0.0039 (3)
F0.0198 (4)0.0264 (5)0.0211 (4)0.0021 (3)0.0069 (3)0.0074 (3)
Geometric parameters (Å, º) top
K—Fi2.6416 (9)P—O21.5714 (10)
K—Fii2.7382 (10)P—O31.5057 (10)
K—O42.7749 (10)P—O41.5127 (9)
K—O3iii2.8827 (10)O1—Kvii3.0114 (10)
K—O2iv2.9096 (10)O1—Kv3.3390 (11)
K—O4v2.9459 (10)O2—Kiv2.9094 (10)
K—O1vi3.0114 (10)O2—Kviii3.1442 (10)
K—O2iii3.1441 (10)O3—Kviii2.8827 (10)
K—O1v3.3390 (11)O4—Kv2.9458 (10)
K—F3.3821 (10)F—Kix2.6417 (9)
P—O11.5722 (10)F—Kx2.7382 (10)
Fi—K—Fii84.68 (3)Fi—K—O1v60.63 (3)
Fi—K—O4141.58 (3)Fii—K—O1v59.63 (3)
Fii—K—O4124.55 (3)O4—K—O1v109.74 (3)
Fi—K—O3iii123.31 (3)O3iii—K—O1v170.95 (3)
Fii—K—O3iii111.64 (3)O2iv—K—O1v121.81 (3)
O4—K—O3iii72.52 (3)O4v—K—O1v47.06 (2)
Fi—K—O2iv79.82 (3)O1vi—K—O1v102.64 (2)
Fii—K—O2iv159.37 (3)O2iii—K—O1v121.72 (3)
O4—K—O2iv75.55 (3)Fi—K—F150.08 (4)
O3iii—K—O2iv67.17 (3)Fii—K—F80.382 (11)
Fi—K—O4v75.75 (3)O4—K—F44.18 (2)
Fii—K—O4v104.46 (3)O3iii—K—F86.42 (3)
O4—K—O4v73.12 (3)O2iv—K—F119.44 (3)
O3iii—K—O4v139.98 (3)O4v—K—F83.06 (3)
O2iv—K—O4v84.90 (3)O1vi—K—F128.22 (3)
Fi—K—O1vi65.31 (3)O2iii—K—F66.16 (2)
Fii—K—O1vi64.53 (3)O1v—K—F89.47 (2)
O4—K—O1vi145.93 (3)O1—P—O2103.27 (5)
O3iii—K—O1vi73.87 (3)O1—P—O3107.49 (5)
O2iv—K—O1vi96.40 (3)O1—P—O4110.49 (6)
O4v—K—O1vi140.04 (3)O2—P—O3110.03 (5)
Fi—K—O2iii128.79 (3)O2—P—O4110.58 (5)
Fii—K—O2iii64.37 (3)O3—P—O4114.36 (5)
O4—K—O2iii88.82 (3)P—O1—H1110 (2)
O3iii—K—O2iii49.23 (3)P—O2—H2115 (2)
O2iv—K—O2iii116.20 (3)P—O3—H1xi128.3 (8)
O4v—K—O2iii148.27 (3)P—O3—H2viii117.3 (9)
O1vi—K—O2iii64.74 (3)P—O4—H3116 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x, y1, z; (vii) x, y+1, z; (viii) x+1, y+1/2, z+1/2; (ix) x, y+1/2, z1/2; (x) x+2, y+1/2, z+1/2; (xi) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
F—H3···O40.90 (3)1.48 (3)2.3827 (13)176 (3)
O1—H1···O3xii0.82 (3)1.83 (3)2.6342 (14)169 (3)
O2—H2···O3iii0.83 (3)1.76 (3)2.5846 (13)174 (3)
Symmetry codes: (iii) x+1, y1/2, z+1/2; (xii) x, y+3/2, z+1/2.

Experimental details

(KDPHF250I)(KDPHF150I)(KDPHF292II)(KDPHF150II)
Crystal data
Chemical formulaKH2PO4·HFKH2PO4·HFKH2PO4·HFKH2PO4·HF
Mr156.09156.09156.09156.09
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)250150292150
a, b, c (Å)6.1903 (1), 12.0733 (2), 7.0741 (1)6.1624 (1), 12.0744 (2), 7.0448 (1)6.5004 (2), 7.6116 (2), 9.5029 (2)6.4480 (2), 7.5660 (2), 9.4760 (3)
β (°) 115.6700 (8) 115.7400 (9) 101.1500 (16) 101.2370 (18)
V3)476.52 (1)472.17 (1)461.31 (2)453.43 (2)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.381.391.431.45
Crystal size (mm)0.50 × 0.47 × 0.350.50 × 0.47 × 0.350.65 × 0.5 × 0.40.65 × 0.5 × 0.4
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
PLATON (Spek, 2002)
Multi-scan
PLATON (Spek, 2002)
Multi-scan
SORTAV (Blessing, 1997)
Multi-scan
SORTAV (Blessing, 1997)
Tmin, Tmax0.669, 0.7360.662, 0.7330.355, 0.5820.423, 0.571
No. of measured, independent and
observed [I > 2σ(I)] reflections
7968, 1381, 1318 8085, 1373, 1322 8372, 1344, 1305 6815, 1297, 1265
Rint0.0390.0380.0410.038
(sin θ/λ)max1)0.7050.7040.7040.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.11 0.020, 0.059, 1.23 0.025, 0.071, 1.11 0.024, 0.059, 1.18
No. of reflections1381137313441297
No. of parameters77777777
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.500.55, 0.510.53, 0.390.51, 0.50

Computer programs: COLLECT (Nonius, 1997–2000), COLLECT (Nonius BV, 1997-2000), HKL DENZO SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Cascarano et al., 1996), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) for (KDPHF250I) top
K—Fi2.6371 (9)K—O2vi3.0066 (10)
K—Fii2.7141 (10)K—O1ii3.2045 (9)
K—O2iii2.8880 (9)P—O11.5723 (8)
K—O3iv2.9007 (9)P—O21.5718 (8)
K—O4iv2.9143 (9)P—O31.5102 (8)
K—O4v2.9802 (9)P—O41.5064 (8)
K—O1vi2.9934 (9)
P—O1—H1116.8 (13)P—O3—H2viii124.9 (7)
P—O2—H2113.4 (13)P—O4—H3116 (1)
P—O3—H1vii132.0 (7)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+2, y+1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+1, y, z+1; (viii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (KDPHF250I) top
D—H···AD—HH···AD···AD—H···A
F—H3···O40.88 (3)1.52 (3)2.3953 (12)176 (3)
O1—H1···O3vii0.90 (2)1.70 (2)2.5999 (11)175.5 (19)
O2—H2···O3ix0.87 (2)1.67 (2)2.5365 (11)174 (2)
Symmetry codes: (vii) x+1, y, z+1; (ix) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (KDPHF150I) top
K—Fi2.6286 (8)K—O2vi2.9864 (9)
K—Fii2.7003 (8)K—O1ii3.1959 (8)
K—O2iii2.8729 (8)P—O11.5737 (8)
K—O3iv2.8864 (8)P—O21.5737 (8)
K—O4iv2.9021 (8)P—O31.5122 (8)
K—O4v2.9582 (8)P—O41.5093 (8)
K—O1vi2.9764 (8)
P—O1—H1117.0 (12)P—O3—H2viii124.5 (7)
P—O2—H2113.9 (13)P—O4—H3115.6 (10)
P—O3—H1vii132.3 (7)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+2, y+1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+1, y, z+1; (viii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (KDPHF150I) top
D—H···AD—HH···AD···AD—H···A
F—H3···O40.92 (2)1.48 (2)2.3998 (10)178.5 (9)
O1—H1···O3vii0.92 (2)1.68 (2)2.5955 (11)175.5 (19)
O2—H2···O3ix0.86 (2)1.67 (2)2.5310 (11)176 (2)
Symmetry codes: (vii) x+1, y, z+1; (ix) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (KDPHF292II) top
K—Fi2.6526 (11)K—O2iii3.1673 (11)
K—Fii2.7650 (13)K—O1v3.3668 (12)
K—O42.7933 (11)K—F3.4003 (12)
K—O3iii2.9026 (11)P—O11.5696 (10)
K—O2iv2.9301 (10)P—O21.5699 (10)
K—O4v2.9800 (11)P—O31.5038 (10)
K—O1vi3.0550 (10)P—O41.5089 (10)
P—O1—H1112 (2)P—O3—H2viii117.1 (9)
P—O2—H2112 (2)P—O4—H3116 (1)
P—O3—H1vii127.7 (8)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x, y1, z; (vii) x, y+3/2, z1/2; (viii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (KDPHF292II) top
D—H···AD—HH···AD···AD—H···A
F—H3···O40.90 (3)1.48 (3)2.3787 (14)175 (3)
O1—H1···O3ix0.83 (3)1.82 (3)2.6386 (14)168 (3)
O2—H2···O3iii0.86 (3)1.73 (3)2.5898 (14)174 (3)
Symmetry codes: (iii) x+1, y1/2, z+1/2; (ix) x, y+3/2, z+1/2.
Selected geometric parameters (Å, º) for (KDPHF150II) top
K—Fi2.6416 (9)K—O2iii3.1441 (10)
K—Fii2.7382 (10)K—O1v3.3390 (11)
K—O42.7749 (10)K—F3.3821 (10)
K—O3iii2.8827 (10)P—O11.5722 (10)
K—O2iv2.9096 (10)P—O21.5714 (10)
K—O4v2.9459 (10)P—O31.5057 (10)
K—O1vi3.0114 (10)P—O41.5127 (9)
P—O1—H1110 (2)P—O3—H2viii117.3 (9)
P—O2—H2115 (2)P—O4—H3116 (1)
P—O3—H1vii128.3 (8)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x, y1, z; (vii) x, y+3/2, z1/2; (viii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (KDPHF150II) top
D—H···AD—HH···AD···AD—H···A
F—H3···O40.90 (3)1.48 (3)2.3827 (13)176 (3)
O1—H1···O3ix0.82 (3)1.83 (3)2.6342 (14)169 (3)
O2—H2···O3iii0.83 (3)1.76 (3)2.5846 (13)174 (3)
Symmetry codes: (iii) x+1, y1/2, z+1/2; (ix) x, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds