Download citation
Download citation
link to html
The crystal structures of tricopper decavanadate tetracosa­hydrate, (I), and copper tetra­sodium decavanadate tricosa­hydrate, (II), have been determined by single-crystal X-ray diffraction. Both compounds exhibit a catenary structure consisting of [V10O28]6- anions linked by Cu2+ cations in (I) or by Na+ cations in (II). Compound (II) also contains a polymeric linear array of edge-sharing [Na(OH2)6]+ and [Cu(OH2)6]2+ octahedra. In both compounds, the [V10O28]6- ions lie about inversion centres and the Cu2+ ions in (I) also lie about inversion centers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103008552/bc1014sup1.cif
Contains datablocks global, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008552/bc1014Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008552/bc1014IIsup3.hkl
Contains datablock II

Comment top

Crystallization of polyoxometalates with metal cations often gives rise to (i) the linkage of polyxometalate anions into one-, two- or three-dimensional networks and/or (ii) the arrangement of metal cations into oligo/polycationic assemblies (e.g. Hedman, 1977), many of which are observed only in the solid state. The formation of these oligo/polymeric entities could be applied to the design of new materials with properties specific to the structure, especially when some of the constituent cations or anions possess microscopic features (spins, dipoles etc.) that would lead to macroscopic properties when appropriately aligned. Thus, we began an investigation of three-dimensional assemblies involving the decavanadate anion, [V10O28]6−, and Cu2+, which is a transition metal cation with the d9 electron configuration. From this Cu2+–[V10O28]6− system, we obtained crystals of tricopper decavanadate tetraicosahydrate, Cu3V10O28.24H2O, (I), and copper tetrasodium decavanadate triicosahydrate, CuNa4V10O28.23H2O, (II), the structures of which are reported here.

From solutions containing only Cu2+ as cationic species, the decavanadate anion crystallizes only with Cu2+ cations to give (I). A unit cell of (I) consists of a [V10O28]6− anion and three Cu2+ cations, all of which are located at the 1 sites, and water molecules of crystallization. As shown in Fig. 1, the metal–oxygen framework of the decavanadate anion is identical to that reported by Evans (1966). Each Cu2+ cation is ligated by six O atoms to complete an octahedral coordination, elongated in one direction as the result of the Jahn–Teller effect. The equatorial Cu—O distances range from 1.9296 (14) to 2.0166 (14) Å and the axial distances from 2.2918 (14) to 2.3272 (14) Å. The coordination sphere of atom Cu1 consists of four water O atoms as the equatorial ligands and two O atoms from different decavanadate anions as the axial ligands. As a result, Cu1 links two decavanadate anions in a one-dimensional {[Cu(H2O)4]2+···[V10O28]6−···} chain structure running along the [111] direction, as illustrated in Fig. 2. In contrast, atoms Cu2 and Cu3 are fully hydrated by six water molecules, completing discrete octahedra without sharing any ligands with other cations. Their aqua ligands accept hydrogen bonds from the aqua ligands of atom Cu1 (O16—H16B···O22 and O15—H15A···O19[-x, 1 − y, −z]) and donate hydrogen bonds to the surface O atoms of the decavanadate anion.

From solutions containing both Cu2+ and Na+ as cationic species, the decavanadate anion crystallizes with both Cu2+ and Na+ cations to give a double salt, (II). The unit cell of (II) includes a [V10O28]6− anion, a Cu2+ cation, four Na+ cations and water molecules. The decavanadate anion, the Cu2+ cation and two of the three independent Na+ cations (Na2 and Na3) are located at the inversion centers. As shown in Fig. 3, the molecular structure of the decavanadate anion in (II) has a metal–oxygen framework identical to that reported by Evans (1966). The Cu2+ cation and two of the three independent Na+ cations (Na1 and Na2) are octahedrally coordinated by six water O atoms. These cations share aqua ligands to form an edge-sharing linear polycationic array of octahedra, viz. {[Na1(H2O)2]+(µ-H2O)2[Cu1(H2O)2]2+(µ-H2O)2 [Na1(H2O)2]+(µ-H2O)2[Na2(H2O)2]+(µ-H2O)2} running along the [011] direction, as illustrated in Fig 4. The Cu2+ cation in (II) also exhibits a Jahn–Teller distortion, with equatorial and axial Cu—O distances of 1.9247 (15)–2.0420 (14) and 2.3896 (18) Å, respectively. The water molecules at the axial sites also coordinate to adjacent Na+ cations, participating in the linkage of the catenary polycation. This longer Cu—O bond, together with the O15—H15B···O18 and O19—H19B···O22 hydrogen bonds, may stabilize the infinite chain. The remaining Na+ cation, Na3, shares aqua ligands with this array to connect adjacent arrays into a two-dimensional polycationic network, as shown in Fig. 4. The terminal O atoms of decavanadate anions also coordinate to this Na cation, to form a one-dimensional {[Na(H2O)4]+···[V10O28]6−···} chain structure running along the [111] direction. The decavanadate anions link the polycationic sheet structure into a three-dimensional network.

A similar catenary structure, viz. {[Na(H2O)4]+···[V10O28]6−···} has been observed in [HMTA-H···H2O][HMTA-CH2OH][H3V10O28{Na(H2O)4}]·4H2O (Duraisamy et al., 2000), where hydrogen bonds from the aqua ligands on the Na+ cations to O atoms of the decavanadate anions support the chain structure. In contrast, the aqua ligands in the {[Cu(H2O)4]2+···[V10O28]6−···} cahin of (I) and {[Na(H2O)4]+···[V10O28]6−···} chain of (II) do not form hydrogen bonds to the decavanadate anions. The absence of such hydrogen bonds results in almost linear Cu/Na···O—V linkage [170.50° for Cu1···O3—V3 for (I) and 169.40° for Na3···O3—V3 for (II)] compared with a bent Na···O—V linkage (141.5 °) in [HMTA-H···H2O][HMTA-CH2OH][H3V10O28{Na(H2O)4}]·4H2O. A discrete oligocationic structure, {[Na(H2O)3][Ni(H2O)6][Na(H2O)3]}4+, has recently been reported in [Ni(H2O)6]2[Na(H2O)3]2[V10O28]·4H2O obtained from a similar system of Na+–Ni2+–[V10O28]6− (Higami et al., 2002). The difference in the M2+—O distances {2.053–2.107 Å for Ni2+ in [Ni(H2O)6]2[Na(H2O)3]2[V10O28]·4H2O versus 1.925–2.390 Å for Cu2+ in (II)] may lead to different poly/oligocationic structures. Zheng et al. (2001) demonstrated that the decavanadate anion works as a template for the self-assembly of Cu2+ complexes with organic ligands. Compound (II) exemplifies that the decavanadate anion also acts as a template for the self-assembly of purely inorganic cations.

Experimental top

A decavanadic solution was prepared according to the method described by Jahr & Preuss (1965). V2O5 (1.48 g) was dissolved in aqueous H2O2 [30% aqueous H2O2 (20 ml) diluted by water (200 ml)], and the solution was stirred vigorously for 12 h to remove excess H2O2. An aqueous solution (20 ml) containing 1.28 g of Cu(CH3COO)2·H2O was added to this solution and its pH was adjusted to 2.98 by CH3COOH. The reaction solution was concentrated to the total volume of 175 ml by slow evaporation at room temperature, and the solubility of the target compound was reduced via vapor-phase transfer of acetone into this solution. Orange prismatic crystals of (I) were obtained after 2–5 d. To an aqueous solution (50 ml) containing NaVO3 (0.78 g), Cu(CH3COO)2·H2O (0.512 g in 20 ml water) was added, followed by an adjustment of pH to 3.39 with CH3COOH. Following vapor-phase diffusion of acetone into this mixture, orange prismatic crystals of (II) precipitated after 1–2 days.

Refinement top

In (II), the O25 water molecule is disordered over two sites, viz. O25A and O25B, with site occupancies of 0.53 and 0.47, respectively. Because of the correlation between the site-occupancy factors and the displacement parameters, these atoms were refined with isotropic displacement parameters and fixed site occupancies. The H atoms attached to atoms O25A and O25B could not be located. Atom O26 is located close to a center of symmetry, and thus its site occupancy was fixed at 0.5.

Computing details top

For both compounds, data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO (Rigaku Corporation, 1998); data reduction: PROCESS-AUTO (Rigaku Corporation, 1998). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I); SHELXS97 (Sheldrick, 1990) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999) and ORTEP-III (Burnett & Johnson, 1996).

Figures top
[Figure 1] Fig. 1. A view of an asymmetric unit and selected neighbors of (I). Displacement ellipsoids are shown at the 50% probability level. The elongated Cu···O contacts are shown as broken lines. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −x, −y, −z; (iii) −x, 1 − y, −z; (iv) 1 + x, 1 + y, 1 + z; (v) −x, −y, 1 − z.]
[Figure 2] Fig. 2. Packing diagram of (I), projected on to the bc plane. Hatched octahedra represent CuO6 moieties. Open circles denote water O atoms that do not coordinate to Cu2+.
[Figure 3] Fig. 3. A view of an asymmetric unit and selected neighbors of (II). Displacement ellipsoids are shown at the 50% probability level. The elongated Cu···O contacts are shown as broken lines. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −x, −y, −z; (iii) 1 + x, 1 + y, 1 + z; (iv) −x, 1 − y, −z; (v) −x, −y, −1 − z; (vi) x, 1 + y, 1 + z.]
[Figure 4] Fig. 4. Packing diagram of (II), projected on to the bc plane. Hatched and shaded octahedra represent CuO6 and NaO6 moieties, respectively. Open circles represent water O atoms that do not coordinate to any metal cations.
(I) top
Crystal data top
(Cu2+)3·(V10O286)·24(H2O)Z = 1
Mr = 1580.40F(000) = 781
Triclinic, P1Dx = 2.562 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8567 (5) ÅCell parameters from 5734 reflections
b = 10.7189 (6) Åθ = 1.9–27.5°
c = 11.5492 (7) ŵ = 3.83 mm1
α = 104.662 (2)°T = 93 K
β = 95.579 (3)°Plate, orange
γ = 102.064 (3)°0.36 × 0.23 × 0.12 mm
V = 1024.14 (10) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4688 independent reflections
Radiation source: Rigaku Ultrax rotating anode4486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 1.9°
oscillation scansh = 1111
Absorption correction: numerical
(Higashi, 1999)
k = 1313
Tmin = 0.359, Tmax = 0.687l = 1414
9090 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.0054P]
where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max = 0.001
4688 reflectionsΔρmax = 1.23 e Å3
395 parametersΔρmin = 0.97 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0433 (12)
Crystal data top
(Cu2+)3·(V10O286)·24(H2O)γ = 102.064 (3)°
Mr = 1580.40V = 1024.14 (10) Å3
Triclinic, P1Z = 1
a = 8.8567 (5) ÅMo Kα radiation
b = 10.7189 (6) ŵ = 3.83 mm1
c = 11.5492 (7) ÅT = 93 K
α = 104.662 (2)°0.36 × 0.23 × 0.12 mm
β = 95.579 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4688 independent reflections
Absorption correction: numerical
(Higashi, 1999)
4486 reflections with I > 2σ(I)
Tmin = 0.359, Tmax = 0.687Rint = 0.020
9090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.077All H-atom parameters refined
S = 1.34Δρmax = 1.23 e Å3
4688 reflectionsΔρmin = 0.97 e Å3
395 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.53219 (4)0.25248 (3)0.49179 (3)0.00474 (9)
V20.49289 (3)0.53923 (3)0.27729 (3)0.00470 (9)
V30.34345 (3)0.23907 (3)0.24763 (3)0.00528 (9)
V40.69766 (3)0.34159 (3)0.29233 (3)0.00527 (9)
V50.69120 (3)0.55304 (3)0.52498 (3)0.00416 (9)
O10.55160 (15)0.15223 (13)0.57144 (12)0.0081 (3)
O20.47598 (16)0.64489 (13)0.20311 (12)0.0081 (3)
O30.21018 (16)0.12944 (13)0.14779 (12)0.0088 (3)
O40.84023 (15)0.30436 (13)0.22750 (12)0.0084 (3)
O50.20212 (15)0.31873 (13)0.35851 (12)0.0066 (3)
O60.81769 (15)0.49716 (13)0.43730 (12)0.0065 (2)
O70.52630 (15)0.22144 (13)0.19323 (12)0.0065 (2)
O80.37908 (15)0.15298 (13)0.36620 (12)0.0065 (3)
O90.69089 (15)0.24208 (13)0.40304 (12)0.0060 (2)
O100.34679 (15)0.38865 (12)0.18861 (11)0.0060 (2)
O110.65813 (15)0.47844 (12)0.22793 (12)0.0062 (2)
O120.66089 (15)0.42109 (13)0.60845 (12)0.0055 (2)
O130.62615 (15)0.66223 (12)0.42872 (11)0.0052 (2)
O140.50980 (14)0.40849 (13)0.39905 (12)0.0053 (3)
Cu10.00000.00000.00000.00584 (9)
O150.08264 (18)0.14887 (13)0.01566 (13)0.0098 (3)
H15A0.060 (4)0.186 (3)0.069 (3)0.025 (8)*
H15B0.162 (4)0.142 (3)0.016 (3)0.014 (7)*
O160.13962 (18)0.01832 (16)0.12053 (14)0.0103 (3)
H16A0.190 (3)0.083 (3)0.112 (3)0.013 (7)*
H16B0.114 (4)0.014 (3)0.177 (3)0.019 (8)*
Cu20.00000.50000.00000.00569 (9)
O170.07195 (19)0.43920 (14)0.13441 (13)0.0088 (3)
H17A0.151 (4)0.431 (3)0.142 (2)0.011 (7)*
H17B0.016 (4)0.389 (3)0.150 (3)0.016 (7)*
O180.22563 (16)0.57171 (15)0.01182 (13)0.0088 (3)
H18A0.264 (4)0.645 (3)0.011 (3)0.021 (8)*
H18B0.256 (3)0.556 (3)0.068 (3)0.014 (7)*
O190.02503 (18)0.68568 (14)0.14011 (13)0.0095 (3)
H19A0.106 (4)0.691 (3)0.129 (3)0.015 (7)*
H19B0.000 (3)0.686 (3)0.213 (3)0.016 (7)*
Cu30.00000.00000.50000.00673 (9)
O200.14801 (18)0.05280 (16)0.39250 (14)0.0117 (3)
H20A0.163 (4)0.118 (3)0.394 (3)0.024 (8)*
H20B0.222 (3)0.009 (3)0.391 (2)0.009 (6)*
O210.17012 (17)0.14005 (15)0.61836 (13)0.0097 (3)
H21A0.215 (4)0.190 (3)0.601 (3)0.023 (8)*
H21B0.232 (4)0.111 (3)0.653 (3)0.026 (8)*
O220.05521 (19)0.12780 (14)0.37322 (13)0.0089 (3)
H22A0.117 (4)0.160 (3)0.388 (3)0.022 (8)*
H22B0.010 (4)0.180 (3)0.369 (3)0.011 (7)*
O230.69220 (17)0.72591 (14)0.06397 (14)0.0103 (3)
H23A0.672 (3)0.687 (3)0.002 (3)0.019 (8)*
H23B0.631 (4)0.698 (3)0.093 (3)0.027 (8)*
O240.61483 (17)0.15879 (15)0.03738 (14)0.0122 (3)
H24A0.544 (4)0.117 (3)0.099 (3)0.022 (7)*
H24B0.570 (4)0.157 (3)0.017 (3)0.030 (9)*
O250.40781 (19)0.04716 (15)0.73914 (14)0.0111 (3)
H25A0.448 (4)0.069 (3)0.706 (3)0.020 (9)*
H25B0.404 (5)0.029 (4)0.716 (4)0.043 (10)*
O260.92834 (19)0.32765 (15)0.63665 (13)0.0099 (3)
H26A0.861 (4)0.362 (3)0.638 (3)0.030 (9)*
H26B0.990 (4)0.364 (3)0.609 (3)0.013 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.00640 (16)0.00386 (16)0.00442 (15)0.00153 (11)0.00137 (11)0.00156 (11)
V20.00622 (17)0.00431 (15)0.00382 (15)0.00133 (11)0.00086 (11)0.00152 (11)
V30.00559 (16)0.00464 (15)0.00453 (15)0.00039 (11)0.00009 (11)0.00031 (11)
V40.00590 (16)0.00513 (16)0.00516 (15)0.00158 (11)0.00197 (11)0.00150 (11)
V50.00433 (16)0.00377 (16)0.00421 (16)0.00049 (11)0.00074 (11)0.00118 (11)
O10.0097 (6)0.0070 (6)0.0084 (6)0.0021 (5)0.0027 (5)0.0033 (5)
O20.0097 (6)0.0080 (6)0.0079 (6)0.0029 (5)0.0024 (5)0.0038 (5)
O30.0083 (6)0.0081 (6)0.0077 (6)0.0000 (5)0.0005 (5)0.0005 (5)
O40.0090 (6)0.0091 (6)0.0079 (6)0.0030 (5)0.0032 (5)0.0027 (5)
O50.0061 (6)0.0062 (6)0.0068 (6)0.0006 (5)0.0001 (5)0.0017 (5)
O60.0064 (6)0.0067 (6)0.0068 (6)0.0015 (5)0.0018 (5)0.0025 (5)
O70.0074 (6)0.0060 (6)0.0060 (6)0.0016 (5)0.0014 (5)0.0014 (5)
O80.0070 (6)0.0049 (6)0.0072 (6)0.0004 (5)0.0019 (5)0.0014 (5)
O90.0063 (6)0.0064 (6)0.0057 (6)0.0015 (5)0.0011 (4)0.0021 (5)
O100.0061 (6)0.0064 (6)0.0050 (6)0.0012 (5)0.0002 (5)0.0015 (5)
O110.0067 (6)0.0063 (6)0.0059 (6)0.0016 (5)0.0019 (5)0.0017 (5)
O120.0060 (6)0.0051 (6)0.0059 (6)0.0016 (5)0.0015 (5)0.0020 (5)
O130.0052 (6)0.0054 (6)0.0053 (6)0.0010 (5)0.0011 (5)0.0018 (5)
O140.0056 (6)0.0049 (6)0.0056 (6)0.0010 (5)0.0010 (5)0.0021 (5)
Cu10.00695 (16)0.00494 (16)0.00579 (16)0.00122 (12)0.00167 (11)0.00175 (11)
O150.0092 (7)0.0094 (6)0.0128 (7)0.0028 (5)0.0039 (5)0.0055 (5)
O160.0122 (7)0.0082 (7)0.0077 (7)0.0017 (6)0.0027 (5)0.0003 (6)
Cu20.00587 (16)0.00631 (16)0.00563 (16)0.00160 (11)0.00088 (11)0.00292 (12)
O170.0056 (7)0.0116 (7)0.0109 (7)0.0019 (6)0.0015 (5)0.0063 (5)
O180.0091 (6)0.0090 (7)0.0075 (7)0.0008 (5)0.0028 (5)0.0015 (5)
O190.0097 (7)0.0108 (6)0.0090 (7)0.0035 (5)0.0015 (5)0.0037 (5)
Cu30.00562 (16)0.00574 (16)0.00873 (16)0.00064 (11)0.00146 (12)0.00232 (12)
O200.0087 (7)0.0077 (7)0.0197 (7)0.0022 (6)0.0064 (6)0.0041 (6)
O210.0087 (7)0.0075 (6)0.0132 (7)0.0006 (5)0.0009 (5)0.0058 (5)
O220.0079 (7)0.0067 (6)0.0134 (7)0.0021 (6)0.0041 (5)0.0042 (5)
O230.0110 (7)0.0112 (7)0.0075 (7)0.0007 (5)0.0033 (5)0.0018 (6)
O240.0104 (7)0.0166 (7)0.0090 (6)0.0035 (6)0.0024 (6)0.0024 (6)
O250.0146 (7)0.0080 (7)0.0119 (7)0.0016 (5)0.0066 (6)0.0041 (6)
O260.0090 (7)0.0104 (6)0.0115 (7)0.0036 (6)0.0020 (5)0.0041 (5)
Geometric parameters (Å, º) top
V1—O11.6054 (13)Cu1—O151.9296 (14)
V1—O81.8193 (13)Cu1—O15ii1.9296 (14)
V1—O91.8238 (13)Cu1—O161.9690 (14)
V1—O121.9972 (13)Cu1—O16ii1.9690 (14)
V1—O13i2.0016 (13)Cu1—O32.3254 (13)
V1—O142.2331 (12)Cu1—O3ii2.3255 (13)
V1—V2i3.0748 (4)O15—H15A0.83 (3)
V1—V33.0894 (4)O15—H15B0.69 (3)
V1—V43.0906 (4)O16—H16A0.72 (3)
V2—O21.6050 (13)O16—H16B0.65 (3)
V2—O111.8067 (13)Cu2—O171.9323 (14)
V2—O101.8333 (13)Cu2—O17iii1.9323 (14)
V2—O131.9927 (13)Cu2—O18iii2.0166 (14)
V2—O12i2.0211 (13)Cu2—O182.0166 (14)
V2—O142.2379 (12)Cu2—O192.2918 (14)
V2—V1i3.0748 (4)Cu2—O19iii2.2918 (14)
V2—V43.0884 (4)O17—H17A0.72 (3)
V3—O31.6041 (14)O17—H17B0.72 (3)
V3—O71.8218 (13)O18—H18A0.75 (3)
V3—O81.8719 (14)O18—H18B0.72 (3)
V3—O101.8903 (13)O19—H19A0.73 (3)
V3—O52.0349 (13)O19—H19B0.85 (3)
V3—O142.3021 (13)Cu3—O20iv1.9624 (14)
V3—V43.0451 (4)Cu3—O201.9624 (14)
V3—V5i3.0719 (4)Cu3—O212.0018 (15)
V4—O41.5992 (13)Cu3—O21iv2.0019 (15)
V4—O71.8360 (13)Cu3—O222.3272 (14)
V4—O91.8587 (13)Cu3—O22iv2.3272 (14)
V4—O111.8825 (13)O20—H20A0.74 (4)
V4—O62.0526 (13)O20—H20B0.73 (3)
V4—O142.2916 (13)O21—H21A0.69 (4)
V4—V53.0595 (4)O21—H21B0.81 (4)
V5—O61.6833 (13)O22—H22A0.72 (4)
V5—O5i1.6930 (14)O22—H22B0.73 (3)
V5—O121.8930 (13)O23—H23A0.72 (3)
V5—O131.9375 (13)O23—H23B0.72 (3)
V5—O142.1122 (13)O24—H24A0.86 (3)
V5—O14i2.1299 (13)O24—H24B0.78 (4)
V5—V3i3.0719 (4)O25—H25A0.60 (3)
O5—V5i1.6930 (13)O25—H25B0.79 (4)
O12—V2i2.0211 (13)O26—H26A0.76 (4)
O13—V1i2.0016 (13)O26—H26B0.75 (3)
O14—V5i2.1299 (13)
O1—V1—O8103.63 (7)O9—V4—V132.59 (4)
O1—V1—O9102.29 (6)O11—V4—V1124.37 (4)
O8—V1—O994.73 (6)O6—V4—V182.19 (4)
O1—V1—O1298.87 (6)O14—V4—V146.13 (3)
O8—V1—O12155.10 (6)V3—V4—V160.461 (10)
O9—V1—O1290.76 (6)V5—V4—V161.479 (10)
O1—V1—O13i100.39 (6)V2—V4—V192.251 (11)
O8—V1—O13i89.24 (6)O6—V5—O5i106.90 (7)
O9—V1—O13i155.33 (6)O6—V5—O1298.66 (6)
O12—V1—O13i76.21 (5)O5i—V5—O1298.09 (6)
O1—V1—O14174.08 (6)O6—V5—O1396.53 (6)
O8—V1—O1481.16 (5)O5i—V5—O1395.80 (6)
O9—V1—O1480.58 (5)O12—V5—O13155.43 (6)
O12—V1—O1475.80 (5)O6—V5—O1487.66 (6)
O13i—V1—O1475.99 (5)O5i—V5—O14165.35 (6)
O1—V1—V2i89.22 (5)O12—V5—O1480.95 (5)
O8—V1—V2i128.80 (4)O13—V5—O1480.50 (5)
O9—V1—V2i131.12 (4)O6—V5—O14i166.18 (6)
O12—V1—V2i40.36 (4)O5i—V5—O14i86.79 (6)
O13i—V1—V2i39.56 (4)O12—V5—O14i80.86 (5)
O14—V1—V2i85.02 (4)O13—V5—O14i79.80 (5)
O1—V1—V3137.12 (5)O14—V5—O14i78.61 (6)
O8—V1—V333.72 (4)O6—V5—V439.21 (5)
O9—V1—V383.25 (4)O5i—V5—V4146.10 (5)
O12—V1—V3123.76 (4)O12—V5—V489.95 (4)
O13i—V1—V386.74 (4)O13—V5—V489.72 (4)
O14—V1—V348.01 (3)O14—V5—V448.46 (4)
V2i—V1—V3119.196 (12)O14i—V5—V4127.07 (4)
O1—V1—V4135.52 (5)O6—V5—V3i145.18 (5)
O8—V1—V484.24 (4)O5i—V5—V3i38.31 (4)
O9—V1—V433.29 (4)O12—V5—V3i90.10 (4)
O12—V1—V487.18 (4)O13—V5—V3i88.35 (4)
O13i—V1—V4123.68 (4)O14—V5—V3i127.09 (4)
O14—V1—V447.72 (3)O14i—V5—V3i48.49 (4)
V2i—V1—V4119.980 (12)V4—V5—V3i175.450 (13)
V3—V1—V459.041 (10)V3—O3—Cu1170.50 (9)
O2—V2—O11103.97 (6)V5i—O5—V3110.65 (7)
O2—V2—O10103.37 (7)V5—O6—V4109.56 (7)
O11—V2—O1094.65 (6)V3—O7—V4112.71 (7)
O2—V2—O1399.21 (6)V1—O8—V3113.64 (7)
O11—V2—O1391.21 (6)V1—O9—V4114.12 (7)
O10—V2—O13154.52 (6)V2—O10—V3114.38 (7)
O2—V2—O12i98.68 (6)V2—O11—V4113.66 (7)
O11—V2—O12i155.49 (6)V5—O12—V1107.79 (6)
O10—V2—O12i89.08 (6)V5—O12—V2i108.09 (6)
O13—V2—O12i75.87 (5)V1—O12—V2i99.85 (6)
O2—V2—O14173.34 (6)V5—O13—V2107.06 (6)
O11—V2—O1481.21 (5)V5—O13—V1i107.95 (6)
O10—V2—O1480.14 (5)V2—O13—V1i100.67 (6)
O13—V2—O1476.29 (5)V5—O14—V5i101.39 (6)
O12i—V2—O1475.57 (5)V5—O14—V192.64 (5)
O2—V2—V1i88.38 (5)V5i—O14—V193.79 (5)
O11—V2—V1i130.98 (4)V5—O14—V293.16 (5)
O10—V2—V1i128.86 (4)V5i—O14—V293.00 (5)
O13—V2—V1i39.77 (4)V1—O14—V2170.04 (7)
O12i—V2—V1i39.79 (4)V5—O14—V487.92 (5)
O14—V2—V1i85.03 (4)V5i—O14—V4170.69 (7)
O2—V2—V4137.78 (5)V1—O14—V486.15 (5)
O11—V2—V433.94 (4)V2—O14—V485.97 (4)
O10—V2—V483.33 (4)V5—O14—V3170.91 (7)
O13—V2—V487.90 (4)V5i—O14—V387.66 (5)
O12i—V2—V4123.30 (4)V1—O14—V385.86 (4)
O14—V2—V447.74 (3)V2—O14—V387.14 (5)
V1i—V2—V4120.000 (12)V4—O14—V383.04 (5)
O3—V3—O7104.80 (7)O15ii—Cu1—O15180.0
O3—V3—O8103.22 (7)O15ii—Cu1—O1693.45 (6)
O7—V3—O892.15 (6)O15—Cu1—O1686.55 (6)
O3—V3—O10100.26 (7)O15ii—Cu1—O16ii86.55 (6)
O7—V3—O1090.61 (6)O15—Cu1—O16ii93.45 (6)
O8—V3—O10154.79 (6)O16—Cu1—O16ii180.00 (6)
O3—V3—O598.15 (6)O15ii—Cu1—O385.69 (6)
O7—V3—O5157.01 (6)O15—Cu1—O394.31 (6)
O8—V3—O583.92 (6)O16—Cu1—O392.68 (6)
O10—V3—O583.82 (5)O16ii—Cu1—O387.32 (6)
O3—V3—O14172.78 (6)O15ii—Cu1—O3ii94.31 (6)
O7—V3—O1482.12 (5)O15—Cu1—O3ii85.69 (6)
O8—V3—O1478.25 (5)O16—Cu1—O3ii87.32 (6)
O10—V3—O1477.33 (5)O16ii—Cu1—O3ii92.68 (6)
O5—V3—O1474.89 (5)O3—Cu1—O3ii180.0
O3—V3—V4138.58 (5)Cu1—O15—H15A120 (2)
O7—V3—V433.79 (4)Cu1—O15—H15B117 (2)
O8—V3—V484.75 (4)H15A—O15—H15B107 (3)
O10—V3—V483.70 (4)Cu1—O16—H16A117 (2)
O5—V3—V4123.23 (4)Cu1—O16—H16B119 (3)
O14—V3—V448.33 (3)H16A—O16—H16B113 (3)
O3—V3—V5i129.16 (5)O17—Cu2—O17iii180.0
O7—V3—V5i125.96 (4)O17—Cu2—O18iii91.66 (6)
O8—V3—V5i79.60 (4)O17iii—Cu2—O18iii88.34 (6)
O10—V3—V5i78.54 (4)O17—Cu2—O1888.34 (6)
O5—V3—V5i31.05 (4)O17iii—Cu2—O1891.66 (6)
O14—V3—V5i43.85 (3)O18iii—Cu2—O18180.0
V4—V3—V5i92.179 (12)O17—Cu2—O1987.46 (6)
O3—V3—V1135.85 (5)O17iii—Cu2—O1992.54 (6)
O7—V3—V182.43 (4)O18iii—Cu2—O1983.88 (6)
O8—V3—V132.65 (4)O18—Cu2—O1996.12 (6)
O10—V3—V1123.46 (4)O17—Cu2—O19iii92.54 (6)
O5—V3—V182.14 (4)O17iii—Cu2—O19iii87.46 (6)
O14—V3—V146.13 (3)O18iii—Cu2—O19iii96.12 (6)
V4—V3—V160.498 (10)O18—Cu2—O19iii83.88 (6)
V5i—V3—V162.278 (10)O19—Cu2—O19iii180.00 (6)
O4—V4—O7103.02 (7)Cu2—O17—H17A119 (2)
O4—V4—O9100.96 (6)Cu2—O17—H17B116 (2)
O7—V4—O991.06 (6)H17A—O17—H17B114 (3)
O4—V4—O11101.85 (6)Cu2—O18—H18A122 (2)
O7—V4—O1191.69 (6)Cu2—O18—H18B122 (2)
O9—V4—O11155.77 (6)H18A—O18—H18B99 (3)
O4—V4—O6100.02 (6)Cu2—O19—H19A108 (2)
O7—V4—O6156.96 (6)Cu2—O19—H19B114.0 (19)
O9—V4—O684.80 (6)H19A—O19—H19B111 (3)
O11—V4—O683.30 (6)O20iv—Cu3—O20180.0
O4—V4—O14174.83 (6)O20iv—Cu3—O2188.11 (6)
O7—V4—O1482.12 (5)O20—Cu3—O2191.89 (6)
O9—V4—O1478.30 (5)O20iv—Cu3—O21iv91.89 (6)
O11—V4—O1478.24 (5)O20—Cu3—O21iv88.11 (6)
O6—V4—O1474.84 (5)O21—Cu3—O21iv180.00 (7)
O4—V4—V3136.51 (5)O20iv—Cu3—O2293.98 (6)
O7—V4—V333.50 (4)O20—Cu3—O2286.02 (6)
O9—V4—V384.01 (4)O21—Cu3—O2297.37 (6)
O11—V4—V385.08 (4)O21iv—Cu3—O2282.62 (6)
O6—V4—V3123.47 (4)O20iv—Cu3—O22iv86.02 (6)
O14—V4—V348.63 (3)O20—Cu3—O22iv93.98 (6)
O4—V4—V5131.23 (5)O21—Cu3—O22iv82.63 (6)
O7—V4—V5125.74 (4)O21iv—Cu3—O22iv97.38 (6)
O9—V4—V579.34 (4)O22—Cu3—O22iv180.0
O11—V4—V579.54 (4)Cu3—O20—H20A112 (2)
O6—V4—V531.23 (4)Cu3—O20—H20B124 (2)
O14—V4—V543.62 (3)H20A—O20—H20B108 (3)
V3—V4—V592.249 (11)Cu3—O21—H21A121 (3)
O4—V4—V2134.19 (5)Cu3—O21—H21B114 (2)
O7—V4—V282.54 (4)H21A—O21—H21B105 (3)
O9—V4—V2124.59 (4)Cu3—O22—H22A114 (2)
O11—V4—V232.40 (4)Cu3—O22—H22B117 (2)
O6—V4—V281.26 (4)H22A—O22—H22B106 (3)
O14—V4—V246.29 (3)H23A—O23—H23B104 (3)
V3—V4—V261.357 (10)H24A—O24—H24B103 (3)
V5—V4—V261.874 (10)H25A—O25—H25B101 (4)
O4—V4—V1133.50 (5)H26A—O26—H26B108 (3)
O7—V4—V182.19 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O19iii0.83 (3)1.85 (3)2.640 (2)160 (3)
O15—H15B···O24v0.69 (3)2.02 (3)2.694 (2)165 (3)
O16—H16A···O23vi0.72 (3)2.00 (3)2.713 (2)169 (3)
O16—H16B···O220.65 (3)2.23 (4)2.881 (2)173 (4)
O17—H17A···O100.72 (3)1.94 (3)2.653 (2)167 (3)
O17—H17B···O4v0.72 (3)2.04 (3)2.726 (2)161 (3)
O18—H18A···O24vii0.75 (3)2.08 (3)2.823 (2)168 (3)
O18—H18B···O11vii0.72 (3)2.04 (3)2.7623 (19)176 (3)
O19—H19A···O23v0.73 (3)2.02 (3)2.729 (2)165 (3)
O19—H19B···O26i0.85 (3)1.84 (3)2.685 (2)172 (3)
O20—H20A···O26viii0.74 (4)2.15 (3)2.805 (2)148 (3)
O20—H20A···O1viii0.74 (4)2.64 (3)3.095 (2)122 (3)
O20—H20B···O80.73 (3)2.09 (3)2.778 (2)159 (3)
O21—H21A···O13i0.69 (4)2.01 (4)2.6868 (19)170 (4)
O21—H21B···O250.81 (4)2.09 (4)2.894 (2)175 (3)
O22—H22A···O9v0.72 (4)2.07 (4)2.786 (2)172 (3)
O22—H22B···O50.73 (3)2.05 (3)2.777 (2)176 (3)
O23—H23A···O10vii0.72 (3)2.12 (4)2.820 (2)166 (3)
O23—H23B···O20.72 (3)2.05 (4)2.759 (2)170 (4)
O24—H24A···O25ix0.86 (3)2.00 (3)2.838 (2)167 (3)
O24—H24B···O70.78 (4)2.08 (4)2.807 (2)156 (3)
O25—H25A···O10.60 (3)2.17 (4)2.761 (2)169 (4)
O25—H25B···O9viii0.79 (4)2.27 (4)3.014 (2)156 (4)
O26—H26A···O120.76 (4)2.04 (4)2.780 (2)167 (4)
O26—H26B···O6x0.75 (3)2.22 (3)2.956 (2)168 (3)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y+1, z; (v) x1, y, z; (vi) x1, y1, z; (vii) x+1, y+1, z; (viii) x+1, y, z+1; (ix) x, y, z1; (x) x+2, y+1, z+1.
(II) top
Crystal data top
(Cu2+)·(Na+)4·(V10O286)·23(H2O)Z = 1
Mr = 1527.27F(000) = 757
Triclinic, P1Dx = 2.352 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9829 (6) ÅCell parameters from 4086 reflections
b = 10.7777 (5) Åθ = 1.8–27.4°
c = 11.9761 (9) ŵ = 2.72 mm1
α = 104.979 (4)°T = 93 K
β = 99.028 (2)°Pillar, orange
γ = 99.963 (3)°0.20 × 0.14 × 0.07 mm
V = 1078.12 (12) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4887 independent reflections
Radiation source: Rigaku Ultrax rotating anode4594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10 pixels mm-1θmax = 27.4°, θmin = 1.8°
oscillation scansh = 1110
Absorption correction: multi-scan
(Higashi, 1995)
k = 1313
Tmin = 0.666, Tmax = 0.827l = 1515
12066 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.881P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max = 0.001
4887 reflectionsΔρmax = 0.47 e Å3
395 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0126 (5)
Crystal data top
(Cu2+)·(Na+)4·(V10O286)·23(H2O)γ = 99.963 (3)°
Mr = 1527.27V = 1078.12 (12) Å3
Triclinic, P1Z = 1
a = 8.9829 (6) ÅMo Kα radiation
b = 10.7777 (5) ŵ = 2.72 mm1
c = 11.9761 (9) ÅT = 93 K
α = 104.979 (4)°0.20 × 0.14 × 0.07 mm
β = 99.028 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4887 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
4594 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.827Rint = 0.029
12066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.068All H-atom parameters refined
S = 1.24Δρmax = 0.47 e Å3
4887 reflectionsΔρmin = 0.54 e Å3
395 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.53319 (4)0.25300 (3)0.48964 (3)0.00568 (8)
V20.46591 (4)0.53578 (3)0.28150 (3)0.00577 (8)
V30.32465 (4)0.24148 (3)0.25376 (3)0.00674 (9)
V40.67424 (4)0.33645 (3)0.29340 (3)0.00674 (8)
V50.68812 (3)0.55088 (3)0.52117 (3)0.00467 (8)
O10.55743 (16)0.15336 (14)0.56759 (12)0.0096 (3)
O20.43200 (16)0.63825 (14)0.20764 (12)0.0097 (3)
O30.18816 (16)0.13196 (14)0.15835 (13)0.0115 (3)
O40.80993 (16)0.29788 (14)0.22845 (13)0.0110 (3)
O50.19531 (15)0.32395 (13)0.36715 (12)0.0076 (3)
O60.80281 (15)0.48889 (13)0.43178 (12)0.0079 (3)
O70.49913 (16)0.22071 (13)0.19768 (12)0.0080 (3)
O80.37396 (16)0.15718 (13)0.36786 (12)0.0074 (3)
O90.68101 (15)0.23828 (13)0.40084 (12)0.0079 (3)
O100.31620 (16)0.38888 (13)0.19927 (12)0.0081 (3)
O110.62319 (16)0.47229 (13)0.23035 (12)0.0080 (3)
O120.67156 (15)0.41938 (13)0.60149 (12)0.0062 (3)
O130.61067 (15)0.65597 (13)0.42766 (12)0.0055 (2)
O140.49889 (15)0.40787 (13)0.40025 (12)0.0060 (3)
Cu10.00000.50000.00000.00838 (9)
O150.04076 (18)0.58214 (16)0.12299 (14)0.0108 (3)
H15A0.125 (4)0.591 (3)0.138 (3)0.026 (8)*
H15B0.027 (3)0.546 (3)0.177 (3)0.014 (7)*
O160.14380 (17)0.32667 (15)0.10421 (13)0.0109 (3)
H16A0.157 (4)0.272 (3)0.077 (3)0.022 (8)*
H16B0.230 (4)0.341 (3)0.140 (3)0.032 (9)*
O170.2011 (2)0.42336 (18)0.08768 (15)0.0164 (3)
H17A0.249 (3)0.393 (3)0.062 (3)0.012 (8)*
H17B0.251 (4)0.458 (3)0.125 (3)0.025 (8)*
Na10.02091 (9)0.23607 (8)0.23870 (7)0.01050 (16)
O180.03175 (19)0.39953 (15)0.32790 (14)0.0106 (3)
H18A0.111 (4)0.400 (3)0.354 (3)0.023 (8)*
H18B0.023 (4)0.424 (3)0.366 (3)0.023 (8)*
O190.1101 (2)0.08322 (17)0.14125 (15)0.0168 (3)
H19A0.195 (4)0.114 (3)0.111 (3)0.026 (9)*
H19B0.111 (4)0.030 (4)0.201 (3)0.034 (9)*
O200.17316 (18)0.06606 (16)0.37551 (14)0.0112 (3)
H20A0.231 (3)0.093 (3)0.395 (3)0.009 (7)*
H20B0.217 (4)0.005 (4)0.364 (3)0.034 (9)*
O210.19540 (17)0.16821 (15)0.35689 (13)0.0108 (3)
H21A0.239 (4)0.220 (3)0.379 (3)0.021 (8)*
H21B0.260 (4)0.129 (3)0.333 (3)0.027 (8)*
Na20.00000.00000.50000.0096 (2)
O220.06246 (19)0.12213 (15)0.36558 (14)0.0119 (3)
H22A0.002 (4)0.181 (3)0.365 (3)0.017 (7)*
H22B0.128 (4)0.155 (3)0.381 (3)0.030 (9)*
Na30.00000.00000.00000.0135 (2)
O230.1871 (2)0.14156 (17)0.00752 (15)0.0170 (3)
H23A0.271 (4)0.106 (4)0.004 (3)0.032 (10)*
H23B0.161 (5)0.189 (4)0.065 (4)0.055 (13)*
O240.4377 (2)0.0562 (2)0.74941 (16)0.0203 (4)
H24A0.491 (5)0.088 (4)0.721 (4)0.046 (12)*
H24B0.447 (5)0.003 (5)0.735 (4)0.049 (14)*
O25A0.4130 (3)0.2930 (3)0.0304 (3)0.0145 (6)*0.53
O25B0.3958 (4)0.2336 (4)0.0408 (3)0.0120 (6)*0.47
O260.4936 (6)0.0240 (4)0.0088 (4)0.0174 (9)0.50
H26A0.486 (6)0.090 (6)0.038 (6)0.016 (14)*0.50
H26B0.478 (9)0.046 (7)0.055 (7)0.03 (2)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.00648 (15)0.00458 (15)0.00643 (15)0.00168 (11)0.00139 (11)0.00209 (11)
V20.00677 (15)0.00577 (15)0.00487 (15)0.00112 (11)0.00070 (11)0.00228 (11)
V30.00673 (16)0.00592 (16)0.00594 (16)0.00021 (11)0.00043 (12)0.00028 (12)
V40.00683 (16)0.00662 (16)0.00687 (15)0.00173 (11)0.00287 (11)0.00116 (12)
V50.00386 (15)0.00499 (15)0.00518 (15)0.00085 (11)0.00068 (11)0.00176 (11)
O10.0104 (7)0.0086 (7)0.0112 (7)0.0034 (5)0.0023 (5)0.0046 (5)
O20.0108 (7)0.0097 (7)0.0088 (6)0.0017 (5)0.0007 (5)0.0044 (5)
O30.0110 (7)0.0107 (7)0.0095 (7)0.0005 (5)0.0009 (5)0.0009 (5)
O40.0113 (7)0.0103 (7)0.0129 (7)0.0030 (5)0.0060 (5)0.0037 (5)
O50.0059 (6)0.0085 (6)0.0081 (6)0.0008 (5)0.0007 (5)0.0028 (5)
O60.0067 (6)0.0079 (6)0.0090 (6)0.0018 (5)0.0022 (5)0.0020 (5)
O70.0099 (6)0.0079 (6)0.0061 (6)0.0026 (5)0.0022 (5)0.0011 (5)
O80.0082 (6)0.0052 (6)0.0081 (6)0.0003 (5)0.0013 (5)0.0018 (5)
O90.0083 (6)0.0067 (6)0.0091 (6)0.0027 (5)0.0022 (5)0.0021 (5)
O100.0085 (6)0.0089 (6)0.0065 (6)0.0012 (5)0.0010 (5)0.0026 (5)
O110.0090 (6)0.0080 (6)0.0078 (6)0.0021 (5)0.0031 (5)0.0027 (5)
O120.0059 (6)0.0063 (6)0.0067 (6)0.0012 (5)0.0007 (5)0.0028 (5)
O130.0056 (6)0.0052 (6)0.0063 (6)0.0007 (5)0.0018 (5)0.0025 (5)
O140.0056 (6)0.0062 (6)0.0060 (6)0.0011 (5)0.0009 (5)0.0016 (5)
Cu10.00807 (16)0.01000 (17)0.00642 (16)0.00132 (12)0.00011 (12)0.00258 (12)
O150.0084 (7)0.0152 (7)0.0085 (7)0.0024 (6)0.0015 (6)0.0036 (6)
O160.0094 (7)0.0119 (7)0.0113 (7)0.0010 (5)0.0009 (5)0.0050 (6)
O170.0162 (8)0.0198 (8)0.0124 (7)0.0017 (7)0.0053 (6)0.0056 (6)
Na10.0110 (4)0.0105 (4)0.0103 (4)0.0030 (3)0.0025 (3)0.0030 (3)
O180.0066 (7)0.0154 (7)0.0120 (7)0.0024 (5)0.0023 (6)0.0078 (6)
O190.0228 (9)0.0160 (8)0.0127 (8)0.0060 (7)0.0023 (7)0.0060 (6)
O200.0076 (7)0.0092 (7)0.0184 (8)0.0023 (6)0.0023 (6)0.0069 (6)
O210.0095 (7)0.0110 (7)0.0137 (7)0.0011 (6)0.0039 (6)0.0066 (6)
Na20.0097 (5)0.0098 (5)0.0093 (5)0.0023 (4)0.0016 (4)0.0028 (4)
O220.0089 (7)0.0103 (7)0.0192 (8)0.0037 (6)0.0050 (6)0.0072 (6)
Na30.0146 (6)0.0116 (5)0.0108 (5)0.0010 (4)0.0029 (4)0.0031 (4)
O230.0257 (10)0.0118 (8)0.0108 (8)0.0034 (7)0.0005 (7)0.0013 (6)
O240.0310 (10)0.0175 (9)0.0182 (8)0.0137 (8)0.0109 (7)0.0066 (7)
O260.0318 (19)0.011 (3)0.010 (2)0.010 (2)0.0047 (16)0.002 (2)
Geometric parameters (Å, º) top
V1—O11.6148 (14)Cu1—O17ii2.3896 (18)
V1—O81.8152 (14)Cu1—Na13.5283 (8)
V1—O91.8298 (14)Cu1—Na1ii3.5283 (8)
V1—O13i1.9879 (14)O15—H15A0.78 (4)
V1—O122.0049 (14)O15—H15B0.71 (3)
V1—O142.2417 (13)O16—H16A0.74 (3)
V1—V2i3.0751 (5)O16—H16B0.88 (4)
V1—V43.0936 (5)O17—H17A0.67 (3)
V1—V33.0956 (5)O17—H17B0.79 (4)
V2—O21.6223 (14)Na1—O202.3511 (17)
V2—O111.7969 (14)Na1—O212.3565 (17)
V2—O101.8239 (14)Na1—O182.3603 (17)
V2—O131.9909 (13)Na1—O192.4239 (18)
V2—O12i2.0302 (14)Na1—O172.4553 (18)
V2—O142.2436 (13)Na1—O162.4842 (17)
V2—V1i3.0751 (5)Na1—Na23.4404 (8)
V2—V43.0989 (5)Na1—H17A2.67 (3)
V2—V33.1163 (5)Na1—H19B2.61 (3)
V3—O31.6014 (14)Na1—H20A2.64 (3)
V3—O71.8253 (14)O18—H18A0.73 (4)
V3—O81.8655 (14)O18—H18B0.77 (3)
V3—O101.8755 (14)O19—H19A0.77 (3)
V3—O52.0525 (14)O19—H19B0.80 (4)
V3—O142.2988 (13)O20—H20A0.68 (3)
V3—V43.0501 (5)O20—H20B0.76 (4)
V3—V5i3.0585 (5)O21—H21A0.76 (3)
V4—O41.6029 (14)O21—H21B0.83 (4)
V4—O71.8331 (14)Na2—O212.3778 (15)
V4—O91.8655 (14)Na2—O21iii2.3778 (15)
V4—O111.9024 (14)Na2—O222.3888 (15)
V4—O62.0286 (14)Na2—O22iii2.3888 (15)
V4—O142.2922 (14)Na2—O202.3899 (16)
V4—V53.0549 (5)Na2—O20iii2.3900 (16)
V5—O5i1.6865 (14)Na2—Na1iii3.4404 (8)
V5—O61.6936 (14)O22—H22A0.79 (3)
V5—O121.9060 (14)O22—H22B0.76 (4)
V5—O131.9248 (14)Na3—O32.2900 (14)
V5—O14i2.1079 (13)Na3—O3iv2.2900 (14)
V5—O142.1282 (13)Na3—O192.3765 (17)
V5—V3i3.0585 (5)Na3—O19iv2.3764 (17)
O5—V5i1.6865 (14)Na3—O232.4543 (17)
O12—V2i2.0302 (14)Na3—O23iv2.4544 (17)
O13—V1i1.9879 (14)O23—H23A0.76 (4)
O14—V5i2.1079 (13)O23—H23B0.71 (5)
Cu1—O151.9247 (15)O24—H24A0.72 (5)
Cu1—O15ii1.9247 (15)O24—H24B0.64 (5)
Cu1—O162.0420 (15)O26—H26A0.80 (7)
Cu1—O16ii2.0420 (15)O26—H26B0.67 (7)
Cu1—O172.3896 (18)
O1—V1—O8103.56 (7)V1—O9—V4113.69 (7)
O1—V1—O9103.62 (7)V2—O10—V3114.78 (7)
O8—V1—O994.57 (6)V2—O11—V4113.77 (7)
O1—V1—O13i98.85 (7)V5—O12—V1108.28 (6)
O8—V1—O13i90.58 (6)V5—O12—V2i107.58 (6)
O9—V1—O13i155.03 (6)V1—O12—V2i99.30 (6)
O1—V1—O1299.42 (6)V5—O13—V1i107.45 (6)
O8—V1—O12155.02 (6)V5—O13—V2108.48 (6)
O9—V1—O1289.38 (6)V1i—O13—V2101.23 (6)
O13i—V1—O1276.22 (6)V5i—O14—V5101.58 (6)
O1—V1—O14173.60 (6)V5i—O14—V192.93 (5)
O8—V1—O1480.54 (6)V5—O14—V192.97 (5)
O9—V1—O1480.75 (6)V5i—O14—V293.73 (5)
O13i—V1—O1476.03 (5)V5—O14—V293.21 (5)
O12—V1—O1475.77 (5)V1—O14—V2169.83 (7)
O1—V1—V2i88.29 (5)V5i—O14—V4171.05 (7)
O8—V1—V2i130.00 (5)V5—O14—V487.35 (5)
O9—V1—V2i130.04 (4)V1—O14—V486.05 (5)
O13i—V1—V2i39.42 (4)V2—O14—V486.18 (5)
O12—V1—V2i40.66 (4)V5i—O14—V387.79 (5)
O14—V1—V2i85.31 (4)V5—O14—V3170.61 (7)
O1—V1—V4137.06 (5)V1—O14—V385.96 (5)
O8—V1—V483.77 (5)V2—O14—V386.63 (5)
O9—V1—V433.52 (4)V4—O14—V383.27 (5)
O13i—V1—V4123.61 (4)O15ii—Cu1—O15180.00 (7)
O12—V1—V486.09 (4)O15ii—Cu1—O1689.14 (6)
O14—V1—V447.66 (3)O15—Cu1—O1690.86 (6)
V2i—V1—V4119.473 (13)O15ii—Cu1—O16ii90.86 (6)
O1—V1—V3136.71 (5)O15—Cu1—O16ii89.14 (6)
O8—V1—V333.26 (4)O16—Cu1—O16ii180.0
O9—V1—V383.51 (4)O15ii—Cu1—O17ii88.65 (7)
O13i—V1—V387.60 (4)O15—Cu1—O17ii91.35 (7)
O12—V1—V3123.55 (4)O16—Cu1—O17ii93.37 (6)
O14—V1—V347.79 (3)O16ii—Cu1—O17ii86.63 (6)
V2i—V1—V3119.887 (13)O15ii—Cu1—O1791.35 (7)
V4—V1—V359.051 (11)O15—Cu1—O1788.65 (7)
O2—V2—O11105.22 (7)O16—Cu1—O1786.63 (6)
O2—V2—O10101.87 (7)O16ii—Cu1—O1793.37 (6)
O11—V2—O1095.63 (6)O17ii—Cu1—O17180.0
O2—V2—O13101.31 (6)O15ii—Cu1—Na197.32 (5)
O11—V2—O1390.52 (6)O15—Cu1—Na182.68 (5)
O10—V2—O13153.49 (6)O16—Cu1—Na143.53 (4)
O2—V2—O12i98.07 (7)O16ii—Cu1—Na1136.47 (4)
O11—V2—O12i154.88 (6)O17ii—Cu1—Na1136.00 (4)
O10—V2—O12i88.59 (6)O17—Cu1—Na144.00 (4)
O13—V2—O12i75.58 (5)O15ii—Cu1—Na1ii82.68 (5)
O2—V2—O14172.94 (6)O15—Cu1—Na1ii97.32 (5)
O11—V2—O1481.31 (6)O16—Cu1—Na1ii136.47 (4)
O10—V2—O1479.85 (6)O16ii—Cu1—Na1ii43.53 (4)
O13—V2—O1475.63 (5)O17ii—Cu1—Na1ii44.00 (4)
O12i—V2—O1475.07 (5)O17—Cu1—Na1ii136.00 (4)
O2—V2—V1i89.13 (5)Na1—Cu1—Na1ii180.00 (3)
O11—V2—V1i129.87 (5)Cu1—O15—H15A115 (2)
O10—V2—V1i128.63 (5)Cu1—O15—H15B112 (2)
O13—V2—V1i39.35 (4)H15A—O15—H15B105 (3)
O12i—V2—V1i40.05 (4)Cu1—O16—Na1101.99 (6)
O14—V2—V1i84.53 (4)Cu1—O16—H16A117 (2)
O2—V2—V4139.19 (5)Na1—O16—H16A98 (2)
O11—V2—V434.18 (4)Cu1—O16—H16B111 (2)
O10—V2—V484.03 (5)Na1—O16—H16B115 (2)
O13—V2—V486.79 (4)H16A—O16—H16B113 (3)
O12i—V2—V4122.59 (4)Cu1—O17—Na193.47 (6)
O14—V2—V447.56 (3)Cu1—O17—H17A123 (3)
V1i—V2—V4118.765 (13)Na1—O17—H17A101 (3)
O2—V2—V3134.92 (5)Cu1—O17—H17B126 (2)
O11—V2—V383.88 (4)Na1—O17—H17B104 (2)
O10—V2—V333.12 (4)H17A—O17—H17B104 (3)
O13—V2—V3123.01 (4)O20—Na1—O2187.53 (6)
O12i—V2—V386.36 (4)O20—Na1—O1894.61 (6)
O14—V2—V347.42 (3)O21—Na1—O1894.70 (6)
V1i—V2—V3119.017 (13)O20—Na1—O1991.54 (7)
V4—V2—V358.778 (11)O21—Na1—O1981.28 (6)
O3—V3—O7104.60 (7)O18—Na1—O19172.51 (7)
O3—V3—O8102.43 (7)O20—Na1—O17173.84 (7)
O7—V3—O892.10 (6)O21—Na1—O1798.42 (6)
O3—V3—O10101.22 (7)O18—Na1—O1783.36 (7)
O7—V3—O1091.33 (6)O19—Na1—O1790.95 (7)
O8—V3—O10154.39 (6)O20—Na1—O1697.74 (6)
O3—V3—O598.67 (7)O21—Na1—O16174.60 (6)
O7—V3—O5156.73 (6)O18—Na1—O1683.75 (6)
O8—V3—O583.36 (6)O19—Na1—O1699.68 (6)
O10—V3—O583.52 (6)O17—Na1—O1676.28 (6)
O3—V3—O14173.47 (7)O20—Na1—Na243.92 (4)
O7—V3—O1481.86 (6)O21—Na1—Na243.63 (4)
O8—V3—O1478.01 (5)O18—Na1—Na295.25 (5)
O10—V3—O1477.38 (5)O19—Na1—Na286.21 (5)
O5—V3—O1474.87 (5)O17—Na1—Na2141.95 (5)
O3—V3—V4138.20 (6)O16—Na1—Na2141.58 (4)
O7—V3—V433.60 (4)O20—Na1—Cu1131.33 (5)
O8—V3—V484.26 (4)O21—Na1—Cu1140.12 (5)
O10—V3—V484.65 (4)O18—Na1—Cu176.10 (4)
O5—V3—V4123.14 (4)O19—Na1—Cu1102.93 (5)
O14—V3—V448.27 (3)O17—Na1—Cu142.53 (4)
O3—V3—V5i130.00 (6)O16—Na1—Cu134.48 (4)
O7—V3—V5i125.39 (4)Na2—Na1—Cu1170.32 (3)
O8—V3—V5i78.99 (4)O20—Na1—H17A168.6 (7)
O10—V3—V5i78.37 (4)O21—Na1—H17A92.3 (6)
O5—V3—V5i31.34 (4)O18—Na1—H17A96.7 (7)
O14—V3—V5i43.53 (3)O19—Na1—H17A77.2 (7)
V4—V3—V5i91.799 (12)O17—Na1—H17A14.3 (7)
O3—V3—V1134.66 (5)O16—Na1—H17A82.8 (6)
O7—V3—V182.50 (4)Na2—Na1—H17A135.1 (6)
O8—V3—V132.25 (4)Cu1—Na1—H17A51.7 (6)
O10—V3—V1123.63 (4)O20—Na1—H19B79.6 (8)
O5—V3—V181.58 (4)O21—Na1—H19B68.0 (8)
O14—V3—V146.25 (3)O18—Na1—H19B161.8 (8)
V4—V3—V160.443 (10)O19—Na1—H19B17.7 (8)
V5i—V3—V161.671 (11)O17—Na1—H19B104.0 (8)
O3—V3—V2133.23 (5)O16—Na1—H19B114.0 (8)
O7—V3—V281.24 (4)Na2—Na1—H19B68.6 (8)
O8—V3—V2123.95 (4)Cu1—Na1—H19B120.6 (8)
O10—V3—V232.10 (4)H17A—Na1—H19B89.8 (10)
O5—V3—V282.46 (4)O20—Na1—H20A14.1 (7)
O14—V3—V245.95 (3)O21—Na1—H20A95.5 (6)
V4—V3—V260.326 (10)O18—Na1—H20A82.3 (7)
V5i—V3—V261.917 (11)O19—Na1—H20A104.3 (7)
V1—V3—V291.977 (12)O17—Na1—H20A160.8 (7)
O4—V4—O7103.86 (7)O16—Na1—H20A89.4 (6)
O4—V4—O9101.04 (7)Na2—Na1—H20A52.6 (6)
O7—V4—O991.61 (6)Cu1—Na1—H20A120.8 (6)
O4—V4—O11101.74 (7)H17A—Na1—H20A172.2 (9)
O7—V4—O1190.30 (6)H19B—Na1—H20A93.4 (10)
O9—V4—O11155.97 (6)Na1—O18—H18A121 (3)
O4—V4—O698.76 (7)Na1—O18—H18B120 (2)
O7—V4—O6157.34 (6)H18A—O18—H18B109 (3)
O9—V4—O685.21 (6)Na3—O19—Na1126.92 (8)
O11—V4—O683.87 (6)Na3—O19—H19A105 (2)
O4—V4—O14174.26 (6)Na1—O19—H19A106 (2)
O7—V4—O1481.88 (6)Na3—O19—H19B116 (3)
O9—V4—O1478.67 (5)Na1—O19—H19B95 (3)
O11—V4—O1477.90 (5)H19A—O19—H19B106 (3)
O6—V4—O1475.49 (5)Na1—O20—Na293.04 (6)
O4—V4—V3137.29 (5)Na1—O20—H20A108 (2)
O7—V4—V333.44 (4)Na2—O20—H20A120 (2)
O9—V4—V384.29 (4)Na1—O20—H20B126 (3)
O11—V4—V384.18 (4)Na2—O20—H20B109 (3)
O6—V4—V3123.95 (4)H20A—O20—H20B103 (3)
O14—V4—V348.46 (3)Na1—O21—Na293.22 (6)
O4—V4—V5130.16 (5)Na1—O21—H21A117 (2)
O7—V4—V5125.98 (5)Na2—O21—H21A116 (2)
O9—V4—V579.92 (4)Na1—O21—H21B119 (2)
O11—V4—V579.61 (4)Na2—O21—H21B105 (2)
O6—V4—V531.40 (4)H21A—O21—H21B106 (3)
O14—V4—V544.10 (3)O21iii—Na2—O21180.0
V3—V4—V592.556 (12)O21iii—Na2—O22iii81.74 (5)
O4—V4—V1133.80 (5)O21—Na2—O22iii98.26 (5)
O7—V4—V182.44 (4)O21iii—Na2—O2298.26 (5)
O9—V4—V132.80 (4)O21—Na2—O2281.74 (5)
O11—V4—V1124.19 (4)O22iii—Na2—O22180.0
O6—V4—V182.82 (4)O21iii—Na2—O2093.85 (5)
O14—V4—V146.29 (3)O21—Na2—O2086.15 (5)
V3—V4—V160.506 (10)O22iii—Na2—O2096.43 (6)
V5—V4—V162.067 (11)O22—Na2—O2083.57 (6)
O4—V4—V2133.76 (5)O21iii—Na2—O20iii86.15 (5)
O7—V4—V281.63 (5)O21—Na2—O20iii93.85 (5)
O9—V4—V2124.92 (4)O22iii—Na2—O20iii83.57 (6)
O11—V4—V232.05 (4)O22—Na2—O20iii96.43 (6)
O6—V4—V281.88 (4)O20—Na2—O20iii180.00 (5)
O14—V4—V246.25 (3)O21iii—Na2—Na1iii43.15 (4)
V3—V4—V260.895 (11)O21—Na2—Na1iii136.85 (4)
V5—V4—V262.174 (11)O22iii—Na2—Na1iii81.09 (4)
V1—V4—V292.349 (12)O22—Na2—Na1iii98.91 (4)
O5i—V5—O6106.47 (7)O20—Na2—Na1iii136.97 (4)
O5i—V5—O1298.26 (6)O20iii—Na2—Na1iii43.03 (4)
O6—V5—O1297.25 (6)O21iii—Na2—Na1136.85 (4)
O5i—V5—O1397.30 (6)O21—Na2—Na143.15 (4)
O6—V5—O1396.56 (6)O22iii—Na2—Na198.91 (4)
O12—V5—O13155.32 (6)O22—Na2—Na181.09 (4)
O5i—V5—O14i87.95 (6)O20—Na2—Na143.03 (4)
O6—V5—O14i165.56 (6)O20iii—Na2—Na1136.97 (4)
O12—V5—O14i80.92 (6)Na1iii—Na2—Na1180.0
O13—V5—O14i80.61 (5)Na2—O22—H22A117 (2)
O5i—V5—O14166.34 (6)Na2—O22—H22B110 (3)
O6—V5—O1487.15 (6)H22A—O22—H22B104 (3)
O12—V5—O1480.59 (5)O3—Na3—O3iv180.0
O13—V5—O1479.78 (5)O3—Na3—O19iv85.47 (6)
O14i—V5—O1478.42 (6)O3iv—Na3—O19iv94.53 (6)
O5i—V5—V4145.08 (5)O3—Na3—O1994.53 (6)
O6—V5—V438.61 (5)O3iv—Na3—O1985.47 (6)
O12—V5—V488.91 (4)O19iv—Na3—O19180.0
O13—V5—V489.22 (4)O3—Na3—O2398.57 (6)
O14i—V5—V4126.97 (4)O3iv—Na3—O2381.44 (6)
O14—V5—V448.55 (4)O19iv—Na3—O2387.44 (6)
O5i—V5—V3i39.27 (5)O19—Na3—O2392.56 (6)
O6—V5—V3i145.74 (5)O3—Na3—O23iv81.43 (6)
O12—V5—V3i90.21 (4)O3iv—Na3—O23iv98.57 (6)
O13—V5—V3i89.80 (4)O19iv—Na3—O23iv92.56 (6)
O14i—V5—V3i48.68 (4)O19—Na3—O23iv87.44 (6)
O14—V5—V3i127.10 (4)O23—Na3—O23iv180.0
V4—V5—V3i175.645 (14)Na3—O23—H23A115 (3)
V3—O3—Na3169.40 (9)Na3—O23—H23B104 (3)
V5i—O5—V3109.38 (7)H23A—O23—H23B113 (4)
V5—O6—V4109.99 (7)H24A—O24—H24B102 (5)
V3—O7—V4112.97 (7)H26A—O26—H26B94 (7)
V1—O8—V3114.49 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y, z1; (iv) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O10ii0.78 (4)1.83 (4)2.600 (2)170 (3)
O15—H15B···O180.71 (3)2.06 (3)2.743 (2)164 (3)
O16—H16A···O230.74 (3)1.94 (3)2.683 (2)175 (3)
O16—H16B···O2ii0.88 (4)1.94 (4)2.820 (2)174 (3)
O17—H17A···O25A0.67 (3)2.01 (3)2.661 (4)164 (3)
O17—H17A···O25B0.67 (3)2.37 (3)3.013 (4)160 (3)
O17—H17B···O11v0.79 (4)2.02 (4)2.811 (2)174 (3)
O18—H18A···O12vi0.73 (4)2.01 (4)2.729 (2)170 (3)
O18—H18B···O6v0.77 (3)2.06 (3)2.819 (2)168 (3)
O19—H19A···O25B0.77 (3)1.94 (4)2.691 (4)165 (3)
O19—H19A···O25A0.77 (3)2.37 (4)3.076 (4)154 (3)
O19—H19B···O220.80 (4)2.14 (4)2.922 (2)168 (3)
O20—H20A···O1vi0.68 (3)2.13 (3)2.794 (2)166 (3)
O20—H20B···O8iv0.76 (4)2.04 (4)2.778 (2)165 (4)
O21—H21A···O13v0.76 (3)1.99 (3)2.738 (2)169 (3)
O21—H21B···O24vii0.83 (4)2.12 (4)2.941 (2)171 (3)
O22—H22A···O5iv0.79 (3)2.10 (3)2.884 (2)173 (3)
O22—H22B···O9viii0.76 (4)2.09 (4)2.844 (2)173 (3)
O23—H23A···O26ix0.76 (4)2.13 (4)2.883 (5)171 (4)
O23—H23A···O26iv0.76 (4)2.28 (4)3.015 (5)162 (4)
O23—H23B···O4ix0.71 (5)2.09 (5)2.752 (2)154 (5)
O23—H23B···O15ii0.71 (5)2.65 (4)3.137 (2)127 (4)
O24—H24A···O10.72 (5)2.25 (5)2.918 (3)154 (4)
O24—H24B···O9x0.64 (5)2.59 (4)3.118 (2)143 (5)
O26—H26A···O70.80 (7)2.04 (7)2.798 (5)158 (6)
O26—H26B···O24vii0.67 (7)2.34 (8)2.980 (4)161 (8)
Symmetry codes: (ii) x, y+1, z; (iv) x, y, z; (v) x+1, y+1, z; (vi) x1, y, z1; (vii) x, y, z1; (viii) x+1, y, z; (ix) x1, y, z; (x) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula(Cu2+)3·(V10O286)·24(H2O)(Cu2+)·(Na+)4·(V10O286)·23(H2O)
Mr1580.401527.27
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)9393
a, b, c (Å)8.8567 (5), 10.7189 (6), 11.5492 (7)8.9829 (6), 10.7777 (5), 11.9761 (9)
α, β, γ (°)104.662 (2), 95.579 (3), 102.064 (3)104.979 (4), 99.028 (2), 99.963 (3)
V3)1024.14 (10)1078.12 (12)
Z11
Radiation typeMo KαMo Kα
µ (mm1)3.832.72
Crystal size (mm)0.36 × 0.23 × 0.120.20 × 0.14 × 0.07
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Rigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(Higashi, 1999)
Multi-scan
(Higashi, 1995)
Tmin, Tmax0.359, 0.6870.666, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
9090, 4688, 4486 12066, 4887, 4594
Rint0.0200.029
(sin θ/λ)max1)0.6490.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.077, 1.34 0.028, 0.068, 1.24
No. of reflections46884887
No. of parameters395395
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.23, 0.970.47, 0.54

Computer programs: PROCESS-AUTO (Rigaku Corporation, 1998), SHELXS97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 1999) and ORTEP-III (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) for (I) top
V1—O11.6054 (13)V4—O91.8587 (13)
V1—O81.8193 (13)V4—O111.8825 (13)
V1—O91.8238 (13)V4—O62.0526 (13)
V1—O121.9972 (13)V4—O142.2916 (13)
V1—O13i2.0016 (13)V5—O61.6833 (13)
V1—O142.2331 (12)V5—O5i1.6930 (14)
V2—O21.6050 (13)V5—O121.8930 (13)
V2—O111.8067 (13)V5—O131.9375 (13)
V2—O101.8333 (13)V5—O142.1122 (13)
V2—O131.9927 (13)V5—O14i2.1299 (13)
V2—O12i2.0211 (13)Cu1—O151.9296 (14)
V2—O142.2379 (12)Cu1—O161.9690 (14)
V3—O31.6041 (14)Cu1—O32.3254 (13)
V3—O71.8218 (13)Cu2—O171.9323 (14)
V3—O81.8719 (14)Cu2—O182.0166 (14)
V3—O101.8903 (13)Cu2—O192.2918 (14)
V3—O52.0349 (13)Cu3—O201.9624 (14)
V3—O142.3021 (13)Cu3—O212.0018 (15)
V4—O41.5992 (13)Cu3—O222.3272 (14)
V4—O71.8360 (13)
V3—O3—Cu1170.50 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O19ii0.83 (3)1.85 (3)2.640 (2)160 (3)
O15—H15B···O24iii0.69 (3)2.02 (3)2.694 (2)165 (3)
O16—H16A···O23iv0.72 (3)2.00 (3)2.713 (2)169 (3)
O16—H16B···O220.65 (3)2.23 (4)2.881 (2)173 (4)
O17—H17A···O100.72 (3)1.94 (3)2.653 (2)167 (3)
O17—H17B···O4iii0.72 (3)2.04 (3)2.726 (2)161 (3)
O18—H18A···O24v0.75 (3)2.08 (3)2.823 (2)168 (3)
O18—H18B···O11v0.72 (3)2.04 (3)2.7623 (19)176 (3)
O19—H19A···O23iii0.73 (3)2.02 (3)2.729 (2)165 (3)
O19—H19B···O26i0.85 (3)1.84 (3)2.685 (2)172 (3)
O20—H20A···O26vi0.74 (4)2.15 (3)2.805 (2)148 (3)
O20—H20A···O1vi0.74 (4)2.64 (3)3.095 (2)122 (3)
O20—H20B···O80.73 (3)2.09 (3)2.778 (2)159 (3)
O21—H21A···O13i0.69 (4)2.01 (4)2.6868 (19)170 (4)
O21—H21B···O250.81 (4)2.09 (4)2.894 (2)175 (3)
O22—H22A···O9iii0.72 (4)2.07 (4)2.786 (2)172 (3)
O22—H22B···O50.73 (3)2.05 (3)2.777 (2)176 (3)
O23—H23A···O10v0.72 (3)2.12 (4)2.820 (2)166 (3)
O23—H23B···O20.72 (3)2.05 (4)2.759 (2)170 (4)
O24—H24A···O25vii0.86 (3)2.00 (3)2.838 (2)167 (3)
O24—H24B···O70.78 (4)2.08 (4)2.807 (2)156 (3)
O25—H25A···O10.60 (3)2.17 (4)2.761 (2)169 (4)
O25—H25B···O9vi0.79 (4)2.27 (4)3.014 (2)156 (4)
O26—H26A···O120.76 (4)2.04 (4)2.780 (2)167 (4)
O26—H26B···O6viii0.75 (3)2.22 (3)2.956 (2)168 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x1, y1, z; (v) x+1, y+1, z; (vi) x+1, y, z+1; (vii) x, y, z1; (viii) x+2, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
V1—O11.6148 (14)V4—O142.2922 (14)
V1—O81.8152 (14)V5—O5i1.6865 (14)
V1—O91.8298 (14)V5—O61.6936 (14)
V1—O13i1.9879 (14)V5—O121.9060 (14)
V1—O122.0049 (14)V5—O131.9248 (14)
V1—O142.2417 (13)V5—O14i2.1079 (13)
V2—O21.6223 (14)V5—O142.1282 (13)
V2—O111.7969 (14)Cu1—O151.9247 (15)
V2—O101.8239 (14)Cu1—O162.0420 (15)
V2—O131.9909 (13)Cu1—O172.3896 (18)
V2—O12i2.0302 (14)Na1—O202.3511 (17)
V2—O142.2436 (13)Na1—O212.3565 (17)
V3—O31.6014 (14)Na1—O182.3603 (17)
V3—O71.8253 (14)Na1—O192.4239 (18)
V3—O81.8655 (14)Na1—O172.4553 (18)
V3—O101.8755 (14)Na1—O162.4842 (17)
V3—O52.0525 (14)Na2—O212.3778 (15)
V3—O142.2988 (13)Na2—O222.3888 (15)
V4—O41.6029 (14)Na2—O202.3899 (16)
V4—O71.8331 (14)Na3—O32.2900 (14)
V4—O91.8655 (14)Na3—O192.3765 (17)
V4—O111.9024 (14)Na3—O232.4543 (17)
V4—O62.0286 (14)
V3—O3—Na3169.40 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O10ii0.78 (4)1.83 (4)2.600 (2)170 (3)
O15—H15B···O180.71 (3)2.06 (3)2.743 (2)164 (3)
O16—H16A···O230.74 (3)1.94 (3)2.683 (2)175 (3)
O16—H16B···O2ii0.88 (4)1.94 (4)2.820 (2)174 (3)
O17—H17A···O25A0.67 (3)2.01 (3)2.661 (4)164 (3)
O17—H17A···O25B0.67 (3)2.37 (3)3.013 (4)160 (3)
O17—H17B···O11iii0.79 (4)2.02 (4)2.811 (2)174 (3)
O18—H18A···O12iv0.73 (4)2.01 (4)2.729 (2)170 (3)
O18—H18B···O6iii0.77 (3)2.06 (3)2.819 (2)168 (3)
O19—H19A···O25B0.77 (3)1.94 (4)2.691 (4)165 (3)
O19—H19A···O25A0.77 (3)2.37 (4)3.076 (4)154 (3)
O19—H19B···O220.80 (4)2.14 (4)2.922 (2)168 (3)
O20—H20A···O1iv0.68 (3)2.13 (3)2.794 (2)166 (3)
O20—H20B···O8v0.76 (4)2.04 (4)2.778 (2)165 (4)
O21—H21A···O13iii0.76 (3)1.99 (3)2.738 (2)169 (3)
O21—H21B···O24vi0.83 (4)2.12 (4)2.941 (2)171 (3)
O22—H22A···O5v0.79 (3)2.10 (3)2.884 (2)173 (3)
O22—H22B···O9vii0.76 (4)2.09 (4)2.844 (2)173 (3)
O23—H23A···O26viii0.76 (4)2.13 (4)2.883 (5)171 (4)
O23—H23A···O26v0.76 (4)2.28 (4)3.015 (5)162 (4)
O23—H23B···O4viii0.71 (5)2.09 (5)2.752 (2)154 (5)
O23—H23B···O15ii0.71 (5)2.65 (4)3.137 (2)127 (4)
O24—H24A···O10.72 (5)2.25 (5)2.918 (3)154 (4)
O24—H24B···O9ix0.64 (5)2.59 (4)3.118 (2)143 (5)
O26—H26A···O70.80 (7)2.04 (7)2.798 (5)158 (6)
O26—H26B···O24vi0.67 (7)2.34 (8)2.980 (4)161 (8)
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x1, y, z1; (v) x, y, z; (vi) x, y, z1; (vii) x+1, y, z; (viii) x1, y, z; (ix) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds