Download citation
Download citation
link to html
The syntheses and structures of di­methyl [11,21:24,31-terphenyl]-14,34-di­carboxyl­ate (1), di­methyl 22,25-di­iodo­[11,21:24,31-terphenyl]-14,34-di­carboxyl­ate (2), potassium [11,21:24,31-terphenyl]-14,34-di­carboxyl­ate (3) and di­methyl [1,1′-bi­phenyl]-4,4′-di­carboxyl­ate (4) are reported. Neighboring phenyl rings in compounds 1, 3 and 4 have a planar structure (torsion angles are 0.6–4.1°) and the molecules are packed into regular layers. In the structure of the iodinated derivative of terphenyldi­carb­oxy­lic acid (2), the middle benzene ring of the terphenyl fragment is rotated relative to the other rings by 64° due to the repulsion between the protons and the iodine atoms of neighboring rings. The formation of halogen bonds between iodine and oxygen atoms of the carbonyl group leads to the movement of molecules of one layer into another layer and the loss of layered structure. Potassium [11,21:24,31-terphenyl]-14,34-di­carboxyl­ate (3) forms crystals with an ionic structure. The coordination number of the potassium cation is eight and the resulting coordination polyhedron is a distorted square antiprism. Dianions in the potassium salt crystal are packed in layers similar to the layers in the di­methyl ethers 1 and 4. Salt 3 has high thermal stability to 500°C.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520624001318/aw5083sup1.cif
Contains datablocks global, 1, 2, 3, 4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520624001318/aw50831sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520624001318/aw50832sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520624001318/aw50833sup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520624001318/aw50834sup5.hkl
Contains datablock 4

CCDC references: 2204949; 2240217; 2254788; 2254789

Computing details top

(1) top
Crystal data top
C22H18O4Dx = 1.421 Mg m3
Mr = 346.36Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 2973 reflections
a = 7.2034 (3) Åθ = 2.4–79.8°
b = 5.9610 (2) ŵ = 0.79 mm1
c = 37.6935 (12) ÅT = 100 K
V = 1618.54 (10) Å3Plate, clear colourless
Z = 40.14 × 0.12 × 0.02 mm
F(000) = 728
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix
diffractometer
1530 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1358 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.0000 pixels mm-1θmax = 70.0°, θmin = 2.3°
ω scansh = 78
Absorption correction: multi-scan
CrysAlisPro 1.171.41.118a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 75
Tmin = 0.865, Tmax = 1.000l = 3945
5265 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0975P)2 + 2.0199P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1530 reflectionsΔρmax = 0.62 e Å3
119 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5623 (2)0.3433 (3)0.31907 (4)0.0260 (5)
O20.4419 (3)0.6611 (3)0.29650 (4)0.0327 (5)
C10.5055 (3)0.6421 (4)0.35849 (5)0.0193 (5)
C20.4318 (3)0.8540 (4)0.36526 (6)0.0207 (5)
H20.3835980.9409650.3462550.025*
C30.4283 (3)0.9389 (4)0.39939 (6)0.0195 (5)
H30.3749991.0823330.4034820.023*
C40.5014 (3)0.8182 (3)0.42811 (5)0.0171 (5)
C50.5760 (3)0.6049 (4)0.42072 (5)0.0181 (5)
H50.6257740.5180230.4395910.022*
C60.5787 (3)0.5188 (4)0.38670 (6)0.0188 (5)
H60.6306140.3747480.3824730.023*
C70.4992 (3)0.5555 (4)0.32156 (6)0.0216 (5)
C80.5505 (3)0.2450 (4)0.28423 (6)0.0285 (6)
H8A0.6289130.3299170.2677610.043*
H8B0.4215010.2491340.2760200.043*
H8C0.5932100.0889900.2852050.043*
C90.5011 (2)0.9102 (3)0.46469 (5)0.0160 (5)
C100.5846 (3)0.7970 (4)0.49315 (5)0.0184 (5)
H100.6439550.6572680.4889020.022*
C110.5830 (3)0.8832 (4)0.52725 (6)0.0180 (5)
H110.6403680.8002140.5457590.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0324 (9)0.0217 (8)0.0241 (8)0.0060 (6)0.0019 (6)0.0031 (6)
O20.0460 (11)0.0300 (9)0.0220 (9)0.0077 (8)0.0043 (7)0.0020 (7)
C10.0164 (10)0.0199 (10)0.0215 (11)0.0019 (8)0.0005 (8)0.0002 (8)
C20.0205 (11)0.0206 (10)0.0212 (10)0.0007 (8)0.0015 (8)0.0019 (8)
C30.0175 (10)0.0173 (10)0.0236 (11)0.0019 (8)0.0006 (8)0.0002 (8)
C40.0106 (9)0.0182 (10)0.0225 (11)0.0011 (8)0.0007 (7)0.0011 (8)
C50.0127 (10)0.0189 (10)0.0228 (11)0.0004 (8)0.0016 (7)0.0019 (8)
C60.0152 (10)0.0163 (10)0.0250 (11)0.0015 (7)0.0008 (8)0.0009 (8)
C70.0200 (10)0.0221 (11)0.0226 (11)0.0001 (9)0.0022 (8)0.0008 (9)
C80.0342 (12)0.0272 (12)0.0240 (11)0.0027 (10)0.0011 (9)0.0071 (9)
C90.0087 (9)0.0166 (10)0.0226 (10)0.0008 (8)0.0001 (7)0.0004 (8)
C100.0141 (9)0.0173 (10)0.0239 (11)0.0026 (7)0.0009 (7)0.0002 (8)
C110.0133 (10)0.0182 (10)0.0224 (10)0.0020 (8)0.0008 (7)0.0016 (8)
Geometric parameters (Å, º) top
O1—C71.348 (3)C5—H50.9500
O1—C81.441 (3)C5—C61.381 (3)
O2—C71.208 (3)C6—H60.9500
C1—C21.394 (3)C8—H8A0.9800
C1—C61.396 (3)C8—H8B0.9800
C1—C71.485 (3)C8—H8C0.9800
C2—H20.9500C9—C101.403 (3)
C2—C31.382 (3)C9—C11i1.406 (3)
C3—H30.9500C10—H100.9500
C3—C41.402 (3)C10—C111.384 (3)
C4—C51.409 (3)C11—H110.9500
C4—C91.484 (3)
C7—O1—C8115.19 (17)O1—C7—C1112.40 (18)
C2—C1—C6118.79 (19)O2—C7—O1123.4 (2)
C2—C1—C7118.34 (19)O2—C7—C1124.2 (2)
C6—C1—C7122.86 (19)O1—C8—H8A109.5
C1—C2—H2119.7O1—C8—H8B109.5
C3—C2—C1120.6 (2)O1—C8—H8C109.5
C3—C2—H2119.7H8A—C8—H8B109.5
C2—C3—H3119.2H8A—C8—H8C109.5
C2—C3—C4121.6 (2)H8B—C8—H8C109.5
C4—C3—H3119.2C10—C9—C4122.17 (18)
C3—C4—C5116.97 (19)C10—C9—C11i116.2 (2)
C3—C4—C9121.83 (19)C11i—C9—C4121.67 (19)
C5—C4—C9121.20 (19)C9—C10—H10119.1
C4—C5—H5119.2C11—C10—C9121.87 (19)
C6—C5—C4121.62 (19)C11—C10—H10119.1
C6—C5—H5119.2C9i—C11—H11119.0
C1—C6—H6119.8C10—C11—C9i122.0 (2)
C5—C6—C1120.42 (19)C10—C11—H11119.0
C5—C6—H6119.8
C1—C2—C3—C41.3 (3)C5—C4—C9—C11i176.08 (17)
C2—C1—C6—C50.7 (3)C6—C1—C2—C31.1 (3)
C2—C1—C7—O1175.48 (17)C6—C1—C7—O13.3 (3)
C2—C1—C7—O23.6 (3)C6—C1—C7—O2177.6 (2)
C2—C3—C4—C51.0 (3)C7—C1—C2—C3177.68 (19)
C2—C3—C4—C9178.85 (18)C7—C1—C6—C5178.08 (18)
C3—C4—C5—C60.5 (3)C8—O1—C7—O22.3 (3)
C3—C4—C9—C10175.81 (18)C8—O1—C7—C1176.78 (18)
C3—C4—C9—C11i4.1 (3)C9—C4—C5—C6179.32 (18)
C4—C5—C6—C10.4 (3)C9—C10—C11—C9i0.5 (3)
C4—C9—C10—C11179.64 (18)C11i—C9—C10—C110.5 (3)
C5—C4—C9—C104.0 (3)
Symmetry code: (i) x+1, y+2, z+1.
(2) top
Crystal data top
C22H16I2O4F(000) = 572
Mr = 598.15Dx = 2.001 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4580 (3) ÅCell parameters from 4289 reflections
b = 14.6955 (5) Åθ = 4.3–32.3°
c = 9.7079 (4) ŵ = 3.19 mm1
β = 111.084 (5)°T = 100 K
V = 992.75 (7) Å3Prism, clear colourless
Z = 20.28 × 0.24 × 0.18 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
2282 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2165 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.3829 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 97
Absorption correction: multi-scan
CrysAlisPro 1.171.41.95a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1917
Tmin = 0.727, Tmax = 1.000l = 812
5135 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0261P)2 + 2.5099P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.09Δρmax = 1.91 e Å3
2282 reflectionsΔρmin = 0.66 e Å3
129 parametersExtinction correction: SHELXL-2018/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0015 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.78106 (3)0.53813 (2)0.12200 (2)0.01672 (9)
O10.1948 (3)0.87799 (14)0.3065 (2)0.0190 (4)
O20.0125 (3)0.75271 (15)0.2430 (3)0.0211 (5)
C10.3474 (4)0.7331 (2)0.3330 (3)0.0145 (5)
C20.5293 (4)0.7671 (2)0.4120 (3)0.0159 (5)
H20.5449920.8293690.4403870.019*
C30.6879 (4)0.7102 (2)0.4494 (3)0.0152 (5)
H30.8119550.7333700.5045380.018*
C40.6663 (4)0.6188 (2)0.4063 (3)0.0134 (5)
C50.4834 (4)0.5851 (2)0.3268 (3)0.0165 (6)
H50.4676210.5231220.2968960.020*
C60.3248 (4)0.6416 (2)0.2912 (3)0.0168 (6)
H60.2002860.6180790.2383350.020*
C70.8377 (4)0.55792 (19)0.4507 (3)0.0133 (5)
C80.9051 (4)0.51537 (19)0.3503 (3)0.0132 (5)
C91.0645 (4)0.45816 (19)0.3991 (3)0.0140 (5)
H91.1074520.4295170.3288470.017*
C100.1804 (4)0.7964 (2)0.2944 (3)0.0158 (6)
C110.1552 (5)0.8113 (2)0.1916 (4)0.0269 (7)
H11A0.1469030.8509770.1129870.040*
H11B0.1603710.8485770.2737900.040*
H11C0.2714450.7738970.1533390.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01561 (12)0.01899 (13)0.01278 (12)0.00220 (7)0.00175 (8)0.00138 (7)
O10.0225 (10)0.0127 (10)0.0215 (11)0.0037 (8)0.0077 (9)0.0005 (8)
O20.0135 (10)0.0155 (10)0.0337 (13)0.0048 (8)0.0077 (9)0.0011 (9)
C10.0156 (13)0.0145 (13)0.0139 (13)0.0036 (10)0.0059 (10)0.0027 (11)
C20.0190 (14)0.0115 (12)0.0169 (14)0.0008 (10)0.0058 (11)0.0006 (11)
C30.0128 (12)0.0160 (13)0.0152 (13)0.0019 (10)0.0031 (10)0.0016 (11)
C40.0122 (12)0.0146 (13)0.0129 (13)0.0020 (10)0.0039 (10)0.0023 (11)
C50.0155 (13)0.0112 (13)0.0208 (15)0.0000 (10)0.0040 (11)0.0001 (11)
C60.0122 (12)0.0165 (14)0.0198 (15)0.0001 (10)0.0033 (11)0.0003 (11)
C70.0108 (12)0.0120 (12)0.0154 (14)0.0006 (10)0.0026 (10)0.0009 (11)
C80.0117 (12)0.0140 (12)0.0113 (13)0.0012 (10)0.0012 (10)0.0011 (10)
C90.0124 (13)0.0150 (13)0.0138 (14)0.0002 (10)0.0038 (10)0.0014 (10)
C100.0174 (13)0.0183 (14)0.0123 (13)0.0027 (11)0.0061 (10)0.0019 (11)
C110.0177 (15)0.0278 (17)0.0336 (19)0.0098 (13)0.0072 (13)0.0006 (15)
Geometric parameters (Å, º) top
I1—C82.099 (3)C4—C71.492 (4)
O1—C101.205 (4)C5—H50.9500
O2—C101.334 (4)C5—C61.383 (4)
O2—C111.451 (4)C6—H60.9500
C1—C21.390 (4)C7—C81.395 (4)
C1—C61.397 (4)C7—C9i1.396 (4)
C1—C101.491 (4)C8—C91.392 (4)
C2—H20.9500C9—H90.9500
C2—C31.387 (4)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
C3—C41.398 (4)C11—H11C0.9800
C4—C51.395 (4)
C10—O2—C11114.8 (2)C8—C7—C4123.7 (3)
C2—C1—C6119.9 (3)C8—C7—C9i118.0 (3)
C2—C1—C10118.4 (3)C9i—C7—C4118.3 (3)
C6—C1—C10121.7 (3)C7—C8—I1122.2 (2)
C1—C2—H2120.1C9—C8—I1117.0 (2)
C3—C2—C1119.9 (3)C9—C8—C7120.7 (3)
C3—C2—H2120.1C7i—C9—H9119.4
C2—C3—H3119.8C8—C9—C7i121.3 (3)
C2—C3—C4120.4 (3)C8—C9—H9119.4
C4—C3—H3119.8O1—C10—O2123.6 (3)
C3—C4—C7119.7 (2)O1—C10—C1124.0 (3)
C5—C4—C3119.4 (3)O2—C10—C1112.3 (2)
C5—C4—C7120.8 (3)O2—C11—H11A109.5
C4—C5—H5119.9O2—C11—H11B109.5
C6—C5—C4120.2 (3)O2—C11—H11C109.5
C6—C5—H5119.9H11A—C11—H11B109.5
C1—C6—H6119.9H11A—C11—H11C109.5
C5—C6—C1120.2 (3)H11B—C11—H11C109.5
C5—C6—H6119.9
I1—C8—C9—C7i177.1 (2)C5—C4—C7—C864.8 (4)
C1—C2—C3—C40.8 (4)C5—C4—C7—C9i114.6 (3)
C2—C1—C6—C50.8 (4)C6—C1—C2—C30.1 (4)
C2—C1—C10—O112.2 (5)C6—C1—C10—O1167.6 (3)
C2—C1—C10—O2168.6 (3)C6—C1—C10—O211.7 (4)
C2—C3—C4—C50.7 (4)C7—C4—C5—C6177.6 (3)
C2—C3—C4—C7178.5 (3)C7—C8—C9—C7i0.4 (5)
C3—C4—C5—C60.2 (4)C9i—C7—C8—I1176.9 (2)
C3—C4—C7—C8117.4 (3)C9i—C7—C8—C90.4 (4)
C3—C4—C7—C9i63.1 (4)C10—C1—C2—C3179.8 (3)
C4—C5—C6—C11.0 (5)C10—C1—C6—C5178.9 (3)
C4—C7—C8—I13.6 (4)C11—O2—C10—O14.4 (4)
C4—C7—C8—C9179.0 (3)C11—O2—C10—C1174.9 (3)
Symmetry code: (i) x+2, y+1, z+1.
(3) top
Crystal data top
C20H13KO4F(000) = 736
Mr = 356.40Dx = 1.618 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 6.0126 (1) ÅCell parameters from 2893 reflections
b = 6.9783 (2) Åθ = 2.5–69.0°
c = 34.9410 (7) ŵ = 3.40 mm1
β = 93.359 (2)°T = 100 K
V = 1463.53 (6) Å3Prism, clear colourless
Z = 40.07 × 0.06 × 0.03 mm
Data collection top
SuperNova, Single source at offset/far, HyPix3000
diffractometer
1366 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1331 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.010
Detector resolution: 10.0000 pixels mm-1θmax = 69.1°, θmin = 2.5°
ω scansh = 76
Absorption correction: multi-scan
CrysAlisPro 1.171.41.104a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 87
Tmin = 0.901, Tmax = 1.000l = 4240
3516 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0518P)2 + 1.1166P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1366 reflectionsΔρmax = 0.27 e Å3
116 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.7500000.70369 (6)0.5000000.01442 (16)
O10.38249 (16)0.62101 (14)0.45426 (3)0.0140 (2)
O20.14599 (15)0.85388 (14)0.46875 (2)0.0129 (2)
H20.2500000.850 (7)0.5000000.087 (14)*
C10.1310 (2)0.74168 (19)0.40474 (4)0.0099 (3)
C20.0745 (2)0.82853 (19)0.39612 (4)0.0113 (3)
H2A0.1524380.8862500.4159940.014*
C30.1665 (2)0.8315 (2)0.35868 (4)0.0111 (3)
H30.3079780.8893070.3533950.013*
C40.0539 (2)0.75048 (19)0.32860 (4)0.0093 (3)
C50.1553 (2)0.66757 (19)0.33762 (4)0.0108 (3)
H50.2369510.6146710.3176860.013*
C60.2455 (2)0.66134 (19)0.37514 (4)0.0111 (3)
H60.3858900.6019590.3806390.013*
C70.1536 (2)0.74993 (19)0.28844 (4)0.0094 (3)
C80.0395 (2)0.67590 (19)0.25786 (4)0.0113 (3)
H80.1054170.6240000.2627750.014*
C90.1329 (2)0.67650 (19)0.22058 (4)0.0108 (3)
H90.0497610.6256450.2006280.013*
C100.2305 (2)0.73392 (19)0.44511 (4)0.0107 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0090 (2)0.0199 (3)0.0141 (2)0.0000.00129 (15)0.000
O10.0123 (5)0.0188 (5)0.0106 (5)0.0033 (4)0.0038 (3)0.0005 (4)
O20.0132 (5)0.0190 (5)0.0063 (4)0.0024 (4)0.0011 (3)0.0009 (4)
C10.0117 (6)0.0103 (6)0.0073 (6)0.0024 (5)0.0017 (5)0.0011 (5)
C20.0120 (6)0.0133 (6)0.0087 (6)0.0001 (5)0.0018 (5)0.0001 (5)
C30.0104 (6)0.0131 (6)0.0096 (6)0.0012 (5)0.0013 (5)0.0007 (5)
C40.0110 (6)0.0086 (6)0.0081 (6)0.0022 (5)0.0004 (5)0.0011 (5)
C50.0118 (6)0.0126 (6)0.0080 (6)0.0003 (5)0.0012 (5)0.0007 (5)
C60.0092 (6)0.0122 (6)0.0116 (6)0.0002 (5)0.0013 (5)0.0006 (5)
C70.0117 (6)0.0084 (6)0.0080 (6)0.0025 (5)0.0003 (5)0.0007 (5)
C80.0100 (6)0.0132 (6)0.0105 (6)0.0010 (5)0.0004 (5)0.0000 (5)
C90.0114 (6)0.0129 (6)0.0081 (6)0.0003 (5)0.0006 (5)0.0003 (5)
C100.0096 (6)0.0135 (6)0.0089 (6)0.0033 (5)0.0002 (5)0.0014 (5)
Geometric parameters (Å, º) top
K1—K1i4.1376 (6)C1—C101.5007 (17)
K1—K1ii4.1376 (6)C2—H2A0.9500
K1—O1i2.9106 (10)C2—C31.3901 (18)
K1—O12.7122 (9)C3—H30.9500
K1—O1iii2.9106 (10)C3—C41.4019 (19)
K1—O1iv2.7121 (9)C4—C51.4039 (19)
K1—O2v3.3220 (11)C4—C71.4932 (17)
K1—O2vi3.3220 (11)C5—H50.9500
K1—O2vii2.8748 (10)C5—C61.3895 (18)
K1—O2viii2.8748 (10)C6—H60.9500
O1—C101.2344 (17)C7—C81.4017 (19)
O2—H21.2266 (17)C7—C9ix1.4014 (19)
O2—C101.3000 (17)C8—H80.9500
C1—C21.3933 (19)C8—C91.3878 (18)
C1—C61.3930 (19)C9—H90.9500
K1i—K1—K1ii93.201 (17)O2v—K1—O2vi43.32 (3)
O1iv—K1—K1i114.88 (2)O2vii—K1—O2vi71.36 (2)
O1iii—K1—K1i71.78 (2)O2viii—K1—O2v71.36 (2)
O1i—K1—K1i40.790 (19)K1—O1—K1i94.69 (3)
O1iii—K1—K1ii40.790 (19)C10—O1—K1i114.63 (8)
O1—K1—K1i44.52 (2)C10—O1—K1125.59 (9)
O1—K1—K1ii114.88 (2)K1x—O2—K1v110.98 (3)
O1iv—K1—K1ii44.52 (2)K1v—O2—H270 (2)
O1i—K1—K1ii71.78 (2)K1x—O2—H292.5 (8)
O1iii—K1—O1i77.75 (4)C10—O2—K1x111.70 (8)
O1iv—K1—O1155.43 (4)C10—O2—K1v137.24 (8)
O1iv—K1—O1iii85.30 (3)C10—O2—H2110.6 (15)
O1—K1—O1iii75.56 (2)C2—C1—C10121.24 (12)
O1iv—K1—O1i75.56 (2)C6—C1—C2119.01 (12)
O1—K1—O1i85.31 (3)C6—C1—C10119.76 (12)
O1iv—K1—O2v82.69 (3)C1—C2—H2A119.7
O1—K1—O2viii68.72 (3)C3—C2—C1120.58 (12)
O1—K1—O2v121.51 (3)C3—C2—H2A119.7
O1iv—K1—O2vii68.72 (3)C2—C3—H3119.4
O1—K1—O2vii121.20 (3)C2—C3—C4121.11 (12)
O1—K1—O2vi82.69 (3)C4—C3—H3119.4
O1iii—K1—O2v148.40 (3)C3—C4—C5117.60 (12)
O1iv—K1—O2viii121.20 (3)C3—C4—C7121.40 (12)
O1i—K1—O2vi148.40 (2)C5—C4—C7121.00 (12)
O1iii—K1—O2vi126.54 (2)C4—C5—H5119.3
O1iv—K1—O2vi121.51 (3)C6—C5—C4121.31 (12)
O1i—K1—O2v126.54 (2)C6—C5—H5119.3
O2viii—K1—K1i68.44 (2)C1—C6—H6119.8
O2v—K1—K1i139.584 (18)C5—C6—C1120.36 (12)
O2viii—K1—K1ii150.28 (2)C5—C6—H6119.8
O2v—K1—K1ii121.049 (17)C8—C7—C4122.01 (12)
O2vii—K1—K1ii68.443 (19)C9ix—C7—C4121.48 (12)
O2vi—K1—K1ii139.584 (18)C9ix—C7—C8116.51 (12)
O2vi—K1—K1i121.049 (17)C7—C8—H8119.2
O2vii—K1—K1i150.28 (2)C9—C8—C7121.68 (13)
O2vii—K1—O1i138.74 (3)C9—C8—H8119.2
O2vii—K1—O1iii79.39 (3)C7ix—C9—H9119.1
O2viii—K1—O1i79.39 (3)C8—C9—C7ix121.80 (12)
O2viii—K1—O1iii138.74 (3)C8—C9—H9119.1
O2viii—K1—O2vi69.02 (3)O1—C10—O2123.88 (12)
O2vii—K1—O2viii137.24 (4)O1—C10—C1120.98 (12)
O2vii—K1—O2v69.02 (3)O2—C10—C1115.14 (11)
K1—O1—C10—O242.16 (18)C3—C4—C7—C8177.58 (13)
K1i—O1—C10—O273.88 (14)C3—C4—C7—C9ix2.5 (2)
K1i—O1—C10—C1106.62 (11)C4—C5—C6—C11.4 (2)
K1—O1—C10—C1137.35 (10)C4—C7—C8—C9179.77 (12)
K1v—O2—C10—O187.61 (16)C5—C4—C7—C83.2 (2)
K1x—O2—C10—O195.94 (13)C5—C4—C7—C9ix176.70 (12)
K1x—O2—C10—C184.53 (11)C6—C1—C2—C31.4 (2)
K1v—O2—C10—C191.92 (13)C6—C1—C10—O117.34 (19)
C1—C2—C3—C41.1 (2)C6—C1—C10—O2162.21 (12)
C2—C1—C6—C50.1 (2)C7—C4—C5—C6177.62 (12)
C2—C1—C10—O1162.83 (13)C7—C8—C9—C7ix0.4 (2)
C2—C1—C10—O217.62 (18)C9ix—C7—C8—C90.3 (2)
C2—C3—C4—C50.4 (2)C10—C1—C2—C3178.79 (12)
C2—C3—C4—C7178.87 (12)C10—C1—C6—C5179.98 (12)
C3—C4—C5—C61.65 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1/2, y+1, z; (iv) x+3/2, y, z+1; (v) x+1, y+2, z+1; (vi) x+1/2, y+2, z; (vii) x+1, y, z; (viii) x+1/2, y, z+1; (ix) x1/2, y+3/2, z+1/2; (x) x1, y, z.
(4) top
Crystal data top
C16H14O4Dx = 1.427 Mg m3
Mr = 270.27Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 3954 reflections
a = 7.1094 (2) Åθ = 3.0–77.9°
b = 5.9629 (2) ŵ = 0.85 mm1
c = 29.6773 (8) ÅT = 100 K
V = 1258.10 (6) Å3Prism, clear colourless
Z = 40.14 × 0.1 × 0.04 mm
F(000) = 568
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix
diffractometer
1175 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1049 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.0000 pixels mm-1θmax = 70.0°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
CrysAlisPro 1.171.42.72a (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 47
Tmin = 0.612, Tmax = 1.000l = 3535
6315 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.4708P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1175 reflectionsΔρmax = 0.21 e Å3
92 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56210 (12)0.51698 (14)0.33793 (3)0.0237 (3)
O20.44337 (13)0.19867 (15)0.30917 (3)0.0283 (3)
C10.50609 (15)0.2190 (2)0.38798 (4)0.0176 (3)
C20.58016 (15)0.3431 (2)0.42369 (4)0.0180 (3)
H20.6325920.4871300.4182540.022*
C30.57747 (15)0.2570 (2)0.46701 (4)0.0176 (3)
H30.6291020.3434180.4908950.021*
C40.50065 (15)0.04589 (19)0.47658 (4)0.0163 (3)
C50.42659 (15)0.07655 (19)0.44026 (4)0.0180 (3)
H50.3729380.2200130.4456110.022*
C60.43027 (15)0.0079 (2)0.39674 (4)0.0190 (3)
H60.3806740.0789390.3726770.023*
C70.50040 (16)0.3056 (2)0.34097 (4)0.0195 (3)
C80.55047 (18)0.6156 (2)0.29324 (4)0.0262 (3)
H8A0.6339920.5342480.2726800.039*
H8B0.5888250.7733270.2946630.039*
H8C0.4207520.6058340.2822460.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0311 (5)0.0212 (5)0.0188 (5)0.0046 (4)0.0018 (3)0.0042 (3)
O20.0403 (5)0.0262 (5)0.0183 (5)0.0058 (4)0.0033 (4)0.0009 (4)
C10.0153 (6)0.0197 (6)0.0179 (6)0.0022 (4)0.0010 (4)0.0009 (5)
C20.0163 (5)0.0163 (6)0.0213 (6)0.0000 (4)0.0005 (4)0.0004 (5)
C30.0156 (6)0.0185 (6)0.0187 (6)0.0002 (4)0.0003 (4)0.0028 (5)
C40.0127 (5)0.0176 (6)0.0187 (6)0.0026 (4)0.0012 (4)0.0012 (5)
C50.0173 (6)0.0158 (6)0.0208 (6)0.0011 (4)0.0004 (4)0.0001 (5)
C60.0180 (6)0.0198 (6)0.0192 (6)0.0000 (4)0.0001 (4)0.0032 (5)
C70.0177 (6)0.0203 (6)0.0204 (6)0.0009 (4)0.0015 (4)0.0006 (5)
C80.0328 (7)0.0258 (7)0.0200 (7)0.0021 (5)0.0017 (5)0.0068 (5)
Geometric parameters (Å, º) top
O1—C71.3378 (15)C3—C41.4015 (16)
O1—C81.4531 (15)C4—C4i1.494 (2)
O2—C71.2089 (15)C4—C51.4043 (16)
C1—C21.3958 (17)C5—H50.9500
C1—C61.3940 (17)C5—C61.3864 (17)
C1—C71.4881 (16)C6—H60.9500
C2—H20.9500C8—H8A0.9800
C2—C31.3844 (17)C8—H8B0.9800
C3—H30.9500C8—H8C0.9800
C7—O1—C8115.11 (9)C6—C5—C4121.27 (11)
C2—C1—C7122.57 (11)C6—C5—H5119.4
C6—C1—C2118.88 (11)C1—C6—H6119.7
C6—C1—C7118.53 (11)C5—C6—C1120.61 (11)
C1—C2—H2119.9C5—C6—H6119.7
C3—C2—C1120.22 (11)O1—C7—C1112.41 (10)
C3—C2—H2119.9O2—C7—O1123.65 (11)
C2—C3—H3119.1O2—C7—C1123.93 (11)
C2—C3—C4121.78 (11)O1—C8—H8A109.5
C4—C3—H3119.1O1—C8—H8B109.5
C3—C4—C4i121.33 (13)O1—C8—H8C109.5
C3—C4—C5117.23 (11)H8A—C8—H8B109.5
C5—C4—C4i121.43 (13)H8A—C8—H8C109.5
C4—C5—H5119.4H8B—C8—H8C109.5
C1—C2—C3—C40.34 (17)C4—C5—C6—C10.77 (17)
C2—C1—C6—C50.69 (16)C6—C1—C2—C30.15 (16)
C2—C1—C7—O14.03 (16)C6—C1—C7—O1174.40 (9)
C2—C1—C7—O2177.21 (11)C6—C1—C7—O24.36 (18)
C2—C3—C4—C4i179.69 (12)C7—C1—C2—C3178.28 (10)
C2—C3—C4—C50.27 (16)C7—C1—C6—C5177.80 (10)
C3—C4—C5—C60.28 (16)C8—O1—C7—O21.98 (16)
C4i—C4—C5—C6179.14 (12)C8—O1—C7—C1176.78 (9)
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds