Download citation
Download citation
link to html
5-Sulfosalicylic acid (5-SSA) and 3-amino­pyridine (3-APy) crystallize in the same solvent system, resulting in two kinds of 1:1 proton-transfer organic adduct, namely 3-aminopyridin­ium 3-carb­oxy-4-hydroxy­benzene­sulfonate monohydrate, C5H7N2+·C7H5O6S·H2O or 3-APy·5-SSA·H2O, (I), and the anhydrous adduct, C5H7N2+·C7H5O6S or 3-APy·5-SSA, (II). Both compounds have extensively hydrogen-bonded three-dimensional layered polymer structures, with inter­layer homo- and heterogeneous π–π inter­actions in (I) and (II), respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107047270/av3101sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107047270/av3101Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107047270/av3101IIsup3.hkl
Contains datablock II

CCDC references: 669196; 669197

Comment top

Recently, much attention has been devoted to the design and synthesis of supramolecular architectures assembled via various weak non-covalent interactions such as hydrogen bonds, ππ stacking and C—H···π interactions (Remenar et al., 2003; Aakeröy et al., 2001; Sokolov et al., 2006). 5-Sulfosalicylic acid, 5-SSA, is a particularly strong organic acid which is capable of protonating N-containing heterocycles and other Lewis bases (Smith et al., 2004, 2006; Smith, Wermuth & White, 2005a,b; Smith, Wermuth & Healy, 2005; Smith, 2005; Muthiah et al., 2003; Raj et al., 2003; Fan et al., 2005; Wang & Wei, 2007). As part of our research programme to gain further insight into hydrogen-bonding interactions involving 3-aminopyrimidine (3-APy) and 5-SSA, the present work has been undertaken. Two types of organic salts are formed from the same mixed solution of 3-APy and 5-SSA. We report here the molecular and supramolecular structures of 3-aminopyrimidinium 5-sulfosalicylate monohydrate, C5H7N2+·C7H5O6S·H2O, (I), and 3-aminopyrimidinium 5-sulfosalicylate, C5H7N2+·C7H5O6S, (II).

Similar to the analogous organic adducts reported by Smith and co-workers, the H atoms are transferred from the sulfonic acid group to the pyridine N atoms in both compounds (Fig. 1). One water solvent molecule is included in the molecular structure of (I), which enhances the weaker hydrogen-bonding interactions [Original meaning not clear - please check rephrasing] between 3-APy cations and 5-SSA anions. There is no solvent molecule in (II) (Fig. 1), although methanol and water were both present in the mixed solution of 3-Apy and 5-SSA. The monohydrate, (I), consists of one 3-APy anion, one 5-SSA anion and a water solvent molecule, with Z' = 1. However, the anhydrous structure of (II) has Z' = 2, with two 3-APy:5-SSA pairs in the selected asymmetric unit which are not related by any symmetry operation of the space group P21/n. Although the origin of these contrasting Z' values in the two compounds is largely unambiguous, the higher Z' structure of (II) may be a metastable relic of fast-growing crystal nuclei (Das et al., 2006; Anderson & Steed, 2007), and this conclusion is perhaps justified by the much higher yield of the brown crystals of (I) than of the pale-yellow crystals of (II).

Maybe owing to the difference in hydrogen bonds involving the sulfonate group, the conformation of the sulfonate groups with respect to the benzene rings is different in the two structures. In (I), the plane defined by three sulfonate O atoms is almost perpendicular to the attached phenyl ring, with a dihedral angle of 89.6 (1)° and with the closest distance of the three O atoms to the phenyl ring being only about 0.134 Å. However, the corresponding angles and distances in (II) are 83.2 (1)° and ca 0.387 Å for the anion containing atom S1, and 86.8 (1)° and ca 0.570 Å for the anion containing atom S2.

In the crystal structures of both compounds, the molecules are linked into three-dimensional frameworks by a combination of O—H···O, N—H···O and C—H···O hydrogen bonds and ππ stacking interactions. In (I), the supramolecular structure can be readily analysed in terms of simple substructures.

In the first of these substructures, water O7 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atoms H7A and H7B, respectively, to sulfonate atoms O4 at (x, y, z) and O5 (1 + x, y, z), respectively, so forming a C21(6) (Bernstein et al., 1995) chain running parallel to the [100] direction and generated by translation. Similarly, carboxyl O2 atom in the molecule at (x, y, z) acts as another hydrogen-bond donor, via atom H2, to atom O4 at (x, 1 + y, z), forming a C(8)chain running parallel to the [010] direction. The three O—H···O hydrogen bonds together generate a simple two-dimensional substructure running parallel to the (001) direction (Fig. 2).

The second substructure is formed by a combination of one C—H···O and three N—H···O hydrogen bonds. Pyridine N1 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H1, to water O7 atom in the same asymmetric unit, so forming a finite zero-dimensional substructure. Amine atom N2 acts as a bifurcated hydrogen-bond donor, via atoms H2A and H2B, to sulfonate atoms O4 at (x, 1 + y, z) and O6 at (−x, 2 − y, 2 − z), respectively, so linking the adjacent (001) framework into a further two-dimensional sheet running parallel to the (001) direction (Fig. 3) which lies in the domain of 0.331 < z < 1.669. In the two-dimensional substructure, another weak non-classic hydrogen-bond, C10–H10···O5 [C···O = 3.332 (3) Å and C—H···O = 158 (3)°], and a ππ stacking interaction between adjacent symmetry-related pyridine rings [centroid-to-centroid separation 3.722 (1) Å and interplanar spacing 3.412 (1) Å; symmetry code: ? Please complete] further consolidate the supramolecular structure. It is noteworthy that the ππ stacking interaction in (I) is homogeneous (Fig. 3): 3-APy cations stack only on top of 3-APy cations, and 5-SSA anions stack only on top of 5-SSA anions [centroid-to-centroid separation 4.075 (1) Å and interplanar spacing ca 3.574 (1) Å; symmetry code: 1 − x, 2 − y, 1 − z]. Through these weak ππ interactions between the sulfonate phenyl rings and a C12–H12···O3 hydrogen bond [C···O = 3.230 (2) Å and C—H···O = 129 (1)°], a three-dimensional network is formed (Fig. 3).

In the crystal structure of (II), the arrangement of the two sulfosalicylate anions and two aminopyrimidinium cations in the asymmetric unit is pseudocentrosymmetric. No further symmetry element was found by ADDSYMM in PLATON (Spek, 2003). By a combination of a series of X—H···O (X = C, N or O) hydrogen bonds and ππ stacking interactions, the anions and cations are also linked into a three-dimensional network, which can be readily analysed in terms of two simple substructures.

In the first substructure, the combined action of the 14 hydrogen bonds (Table 2) suffices to generate a two-dimensional network running parallel to the (100) direction (Fig. 4). In more detail, amino N2 atom at (x, y, z) acts as a dual hydrogen-bonding donor to sulfonate atoms O5 at (x, y, z) and O6 at (1/2 − x, 1/2 + y, 1/2 − z), and atom N4 at (x, y, z) acts as a dual hydrogen-bonding donor to the other sulfonate atoms O10 at (1/2 − x, −1/2 + y, 3/2 − z) and O11 at (x, y, z), so forming two discrete one-dimensional C22(6) chains running parallel to the [010] direction (Bernstein et al., 1995). By comparison, in both (I) and (II), the amino N atoms in the 3-APy anions [Should this be cations?] form hydrogen bonds to sulfonate O atoms. However, the hydrogen-bonding behaviour of the pyridine N atom is completely different in the two compounds, bonding to a sulfonate O atom in (II) but to a water O atom in (I).

Adjacent [010] chains in (II) are interconnected by the remaining hydrogen bonds, producing a simple two-dimensional network running parallel to the (100) direction, and this is further consolidated by ππ stacking interactions (see below). However, unlike the one-dimensional chains formed in (II), the hydrogen bonding in (I) involving amino N2—H···O interactions forms an R42(12) ring only.

For convenience, we denote the benzene ring in (II) containing atom C1 as A, the benzene ring containing atom C8 as B, the pyridine ring containing atom N1 as C and the pyridine ring containing atom N3 as D. It is noteworthy that the two-dimensional network is consolidated by ππ stacking interactions between phenyl ring A and pyridine ring D [centroid-to-centroid separation 3.832 (1) Å and interplanar spacing ca 3.527 (1) Å; symmetry code: 1/2 − x, 1/2 + y,1/2 − z], and between phenyl ring B and pyridine ring C [centroid-to-centroid separation ca 3.727 (1) Å and interplanar spacing ca 3.517 (1) Å; symmetry code: 1/2 − x, −1/2 + y, 3/2 − z]. An analysis using the program PLATON (Spek, 2003) indicates that, in the supramolecular structure of (II), adjacent two-dimensional networks are linked by another ππ interaction into a three-dimensional framework (Fig. 4). In detail, phenyl ring B at (x, y, z) is almost parallel to pyridine ring D in the same asymmetric unit, with a dihedral angle of ca 6.72 (1)°, a ring centroid separation of 3.707 (1) Å and an interplanar spacing of ca 3.506 (1) Å. Unlike (I), the ππ stacking interactions in (II) are heterogeneous (Fig. 4): pairs of 3-APy cations alternate with pairs of 5-SSA anions. The origin of the different ππ stacking patterns in these two compounds may be the effect of the incorporated water solvent molecule in (I), which can facilitate the formation of hydrogen-bonding interactions to a greater extent than any other solvent.

Experimental top

All reagents and solvents were used as obtained without further purification. Equivalent molar quantities of 3-aminopyrimidine (1 mmol, 0.094 g) and 5-sulfosalicylic acid dihydrate (1 mmol, 0.254 g) were dissolved in 95% methanol (20 ml). The mixture was stirred for 10 min at ambient temperature and then filtered. The resulting light-brown solution was kept in air for two weeks. Crystals of brown (I) and pale-yellow (II) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel. Crystals of (I) and (II) were isolated manually according to the difference in colour and shape.

Refinement top

For both compounds (I) and (II), H atoms bonded to C atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model [Uiso(H) = 1.2Ueq(C)]. H atoms bonded to N and water O atoms were found in a difference map and further refined with constraints of Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (I) and (b) (II), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown in dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the two-dimensional network running parallel to the (001) direction. Hydrogen bonds are shown as dashed lines. For the sake of clarity, the pyridine cations and H atoms not involved in the motif have been omitted. [Symmetry codes: (i) 1 + x, y, z; (ii) x, 1 + y, z.]
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of the three-dimensional network built from hydrogen bonds and ππ interactions (dashed lines). The outlined area shows the (001) framework linked by N2—H···O2/O6 hydrogen bonds.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of the three-dimensional network. Hydrogen bonds and ππ interactions are shown as dashed lines. The outlined area shows the (100) network.
(I) 3-aminopyrimidinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate top
Crystal data top
C5H7N2+·C7H5O6S·H2OZ = 2
Mr = 330.31F(000) = 344
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1447 (4) ÅCell parameters from 1046 reflections
b = 8.4120 (5) Åθ = 3.9–25.7°
c = 12.3958 (7) ŵ = 0.27 mm1
α = 80.285 (1)°T = 299 K
β = 74.434 (1)°Block, brown
γ = 82.718 (1)°0.25 × 0.20 × 0.20 mm
V = 704.78 (7) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2773 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
0.3° wide ω exposures scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.924, Tmax = 0.969k = 1010
7356 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1099P)2 + 0.0665P]
where P = (Fo2 + 2Fc2)/3
2773 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C5H7N2+·C7H5O6S·H2Oγ = 82.718 (1)°
Mr = 330.31V = 704.78 (7) Å3
Triclinic, P1Z = 2
a = 7.1447 (4) ÅMo Kα radiation
b = 8.4120 (5) ŵ = 0.27 mm1
c = 12.3958 (7) ÅT = 299 K
α = 80.285 (1)°0.25 × 0.20 × 0.20 mm
β = 74.434 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2773 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2507 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.969Rint = 0.022
7356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.66 e Å3
2773 reflectionsΔρmin = 0.35 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2448 (2)0.98886 (19)0.53399 (14)0.0315 (4)
C20.2775 (3)0.9500 (2)0.42432 (14)0.0354 (4)
C30.2592 (3)0.7920 (2)0.40978 (16)0.0434 (5)
H30.28300.76570.33710.052*
C40.2068 (3)0.6758 (2)0.50073 (16)0.0413 (4)
H40.19380.57130.49010.050*
C50.1726 (2)0.71503 (19)0.61007 (14)0.0326 (4)
C60.1928 (2)0.86956 (19)0.62590 (14)0.0321 (4)
H60.17140.89410.69890.038*
C70.2635 (2)1.1550 (2)0.55092 (15)0.0348 (4)
O10.3025 (2)1.26501 (16)0.47363 (11)0.0469 (4)
O20.2351 (2)1.17286 (16)0.65802 (11)0.0466 (4)
H20.251 (4)1.268 (4)0.661 (2)0.070*
O30.3280 (2)1.05943 (18)0.33133 (11)0.0485 (4)
H3A0.320 (4)1.145 (4)0.360 (2)0.073*
O40.27461 (19)0.44732 (14)0.72302 (11)0.0397 (3)
O50.0591 (2)0.49434 (17)0.71349 (13)0.0517 (4)
O60.0638 (2)0.64582 (17)0.82749 (12)0.0545 (4)
S10.10454 (6)0.56641 (5)0.72792 (3)0.0348 (2)
C80.2482 (3)1.0899 (2)0.98365 (15)0.0400 (4)
C90.1702 (3)1.0052 (3)1.09030 (16)0.0447 (5)
H90.10611.06171.15000.054*
C100.1876 (3)0.8393 (3)1.10751 (19)0.0537 (5)
H100.13230.78371.17820.064*
C110.2862 (4)0.7553 (3)1.0209 (2)0.0573 (6)
H110.30010.64271.03220.069*
C120.3448 (3)0.9978 (3)0.89877 (16)0.0471 (5)
H120.39821.04890.82630.056*
N10.3614 (3)0.8368 (3)0.92065 (16)0.0527 (5)
H10.430 (4)0.780 (3)0.866 (2)0.063*
N20.2321 (3)1.2542 (3)0.96639 (19)0.0572 (5)
H2A0.267 (4)1.293 (3)0.899 (2)0.069*
H2B0.159 (4)1.301 (3)1.019 (2)0.069*
O70.5517 (2)0.6030 (2)0.79363 (15)0.0587 (4)
H7A0.489 (5)0.556 (4)0.760 (3)0.088*
H7B0.674 (5)0.590 (4)0.754 (3)0.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0325 (8)0.0271 (8)0.0334 (9)0.0009 (6)0.0054 (6)0.0064 (6)
C20.0400 (9)0.0334 (9)0.0299 (8)0.0018 (7)0.0044 (7)0.0045 (7)
C30.0611 (12)0.0382 (10)0.0323 (9)0.0056 (8)0.0094 (8)0.0119 (7)
C40.0549 (11)0.0307 (9)0.0402 (10)0.0068 (8)0.0099 (8)0.0112 (7)
C50.0370 (9)0.0254 (8)0.0330 (9)0.0031 (6)0.0040 (7)0.0054 (6)
C60.0373 (9)0.0264 (8)0.0306 (8)0.0011 (6)0.0041 (6)0.0073 (6)
C70.0378 (9)0.0270 (8)0.0369 (9)0.0003 (7)0.0059 (7)0.0050 (7)
O10.0666 (9)0.0282 (7)0.0409 (7)0.0063 (6)0.0073 (6)0.0006 (6)
O20.0763 (10)0.0248 (6)0.0376 (7)0.0069 (6)0.0090 (6)0.0079 (5)
O30.0718 (10)0.0386 (8)0.0298 (7)0.0065 (7)0.0047 (6)0.0019 (6)
O40.0482 (7)0.0272 (6)0.0439 (7)0.0019 (5)0.0115 (6)0.0062 (5)
O50.0443 (8)0.0421 (8)0.0651 (9)0.0129 (6)0.0088 (6)0.0013 (7)
O60.0838 (10)0.0334 (7)0.0361 (7)0.0036 (7)0.0040 (7)0.0090 (6)
S10.0426 (3)0.0236 (3)0.0344 (3)0.00434 (18)0.00187 (19)0.00503 (18)
C80.0359 (9)0.0499 (11)0.0343 (9)0.0030 (8)0.0104 (7)0.0044 (8)
C90.0446 (10)0.0551 (12)0.0319 (9)0.0043 (8)0.0037 (7)0.0087 (8)
C100.0591 (13)0.0571 (13)0.0438 (11)0.0141 (10)0.0133 (9)0.0028 (9)
C110.0642 (14)0.0476 (12)0.0658 (14)0.0045 (10)0.0256 (11)0.0089 (11)
C120.0415 (10)0.0657 (14)0.0324 (9)0.0018 (9)0.0077 (8)0.0074 (9)
N10.0485 (10)0.0630 (12)0.0516 (10)0.0052 (8)0.0150 (8)0.0253 (9)
N20.0662 (12)0.0499 (11)0.0480 (10)0.0006 (9)0.0065 (9)0.0021 (9)
O70.0474 (9)0.0621 (10)0.0697 (11)0.0024 (7)0.0097 (8)0.0277 (8)
Geometric parameters (Å, º) top
C1—C61.387 (2)O6—S11.4457 (14)
C1—C21.404 (2)C8—N21.357 (3)
C1—C71.475 (2)C8—C121.390 (3)
C2—O31.345 (2)C8—C91.398 (3)
C2—C31.398 (3)C9—C101.370 (3)
C3—C41.364 (3)C9—H90.9300
C3—H30.9300C10—C111.368 (3)
C4—C51.399 (2)C10—H100.9300
C4—H40.9300C11—N11.323 (3)
C5—C61.378 (2)C11—H110.9300
C5—S11.7579 (17)C12—N11.332 (3)
C6—H60.9300C12—H120.9300
C7—O11.215 (2)N1—H10.89 (3)
C7—O21.320 (2)N2—H2A0.83 (3)
O2—H20.83 (3)N2—H2B0.84 (3)
O3—H3A0.84 (3)O7—H7A0.86 (3)
O4—S11.4684 (13)O7—H7B0.88 (4)
O5—S11.4473 (15)
C6—C1—C2119.10 (15)O6—S1—C5107.01 (8)
C6—C1—C7120.64 (15)O5—S1—C5106.94 (8)
C2—C1—C7120.26 (15)O4—S1—C5105.55 (7)
O3—C2—C3118.10 (15)N2—C8—C12122.62 (19)
O3—C2—C1122.37 (16)N2—C8—C9120.60 (19)
C3—C2—C1119.53 (16)C12—C8—C9116.77 (19)
C4—C3—C2120.90 (16)C10—C9—C8120.43 (19)
C4—C3—H3119.5C10—C9—H9119.8
C2—C3—H3119.5C8—C9—H9119.8
C3—C4—C5119.54 (16)C11—C10—C9120.1 (2)
C3—C4—H4120.2C11—C10—H10120.0
C5—C4—H4120.2C9—C10—H10120.0
C6—C5—C4120.32 (16)N1—C11—C10118.9 (2)
C6—C5—S1119.75 (13)N1—C11—H11120.5
C4—C5—S1119.93 (13)C10—C11—H11120.5
C5—C6—C1120.60 (15)N1—C12—C8120.39 (19)
C5—C6—H6119.7N1—C12—H12119.8
C1—C6—H6119.7C8—C12—H12119.8
O1—C7—O2122.99 (16)C11—N1—C12123.37 (19)
O1—C7—C1123.28 (16)C11—N1—H1117.8 (17)
O2—C7—C1113.73 (15)C12—N1—H1118.8 (17)
C7—O2—H2108.8 (19)C8—N2—H2A113 (2)
C2—O3—H3A101.2 (19)C8—N2—H2B117.0 (19)
O6—S1—O5114.92 (9)H2A—N2—H2B127 (3)
O6—S1—O4111.16 (9)H7A—O7—H7B104 (3)
O5—S1—O4110.67 (8)
C6—C1—C2—O3179.91 (15)C2—C1—C7—O2177.87 (16)
C7—C1—C2—O30.6 (3)C6—C5—S1—O65.06 (17)
C6—C1—C2—C30.7 (3)C4—C5—S1—O6175.19 (14)
C7—C1—C2—C3179.98 (16)C6—C5—S1—O5128.70 (15)
O3—C2—C3—C4179.46 (18)C4—C5—S1—O551.56 (16)
C1—C2—C3—C41.1 (3)C6—C5—S1—O4113.42 (15)
C2—C3—C4—C50.6 (3)C4—C5—S1—O466.33 (16)
C3—C4—C5—C60.4 (3)N2—C8—C9—C10179.7 (2)
C3—C4—C5—S1179.87 (15)C12—C8—C9—C101.0 (3)
C4—C5—C6—C10.8 (3)C8—C9—C10—C111.7 (3)
S1—C5—C6—C1179.45 (12)C9—C10—C11—N10.9 (3)
C2—C1—C6—C50.2 (3)N2—C8—C12—N1178.16 (19)
C7—C1—C6—C5179.02 (15)C9—C8—C12—N10.5 (3)
C6—C1—C7—O1177.59 (17)C10—C11—N1—C120.6 (3)
C2—C1—C7—O11.7 (3)C8—C12—N1—C111.4 (3)
C6—C1—C7—O22.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O40.86 (3)2.06 (3)2.894 (2)163 (3)
O3—H3A···O10.84 (3)1.83 (3)2.629 (2)156 (3)
N1—H1···O70.89 (3)1.87 (3)2.723 (2)160 (2)
C12—H12···O3i0.932.563.230 (2)129
C10—H10···O5ii0.932.533.332 (3)144
O7—H7B···O5iii0.88 (4)1.94 (4)2.781 (2)158 (3)
N2—H2B···O6iv0.84 (3)2.20 (3)3.014 (3)163 (3)
N2—H2A···O4v0.83 (3)2.33 (3)3.132 (3)163 (3)
O2—H2···O4v0.83 (3)1.84 (3)2.6409 (18)159 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+2; (iii) x+1, y, z; (iv) x, y+2, z+2; (v) x, y+1, z.
(II) 3-aminopyrimidinium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C5H7N2+·C7H5O6SF(000) = 1296
Mr = 312.30Dx = 1.618 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2715 reflections
a = 13.9642 (10) Åθ = 2.3–22.0°
b = 12.8331 (9) ŵ = 0.28 mm1
c = 15.7831 (11) ÅT = 299 K
β = 114.957 (2)°Plate, light yellow
V = 2564.3 (3) Å30.10 × 0.04 × 0.02 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6096 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
0.3° wide ω exposures scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.972, Tmax = 0.990k = 1616
29389 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
6096 reflections(Δ/σ)max = 0.001
412 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C5H7N2+·C7H5O6SV = 2564.3 (3) Å3
Mr = 312.30Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.9642 (10) ŵ = 0.28 mm1
b = 12.8331 (9) ÅT = 299 K
c = 15.7831 (11) Å0.10 × 0.04 × 0.02 mm
β = 114.957 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3596 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.990Rint = 0.062
29389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.36 e Å3
6096 reflectionsΔρmin = 0.27 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12473 (19)0.56335 (18)0.02483 (17)0.0325 (6)
C20.1270 (2)0.66889 (19)0.00080 (18)0.0369 (6)
C30.1424 (2)0.6939 (2)0.09119 (18)0.0414 (6)
H30.14160.76340.10760.050*
C40.1591 (2)0.6170 (2)0.15732 (18)0.0402 (6)
H40.17010.63460.21790.048*
C50.15917 (19)0.51282 (19)0.13252 (17)0.0346 (6)
C60.14154 (18)0.48723 (19)0.04229 (16)0.0333 (6)
H60.14090.41750.02610.040*
C70.1084 (2)0.5366 (2)0.12039 (18)0.0381 (6)
O10.10906 (17)0.43634 (15)0.13605 (13)0.0495 (5)
H1A0.111 (2)0.421 (2)0.189 (2)0.074*
O20.09669 (17)0.60227 (15)0.18020 (13)0.0560 (6)
O30.11632 (16)0.74808 (14)0.05887 (13)0.0506 (5)
H3B0.104 (2)0.720 (3)0.113 (2)0.076*
O40.15719 (16)0.44821 (14)0.28701 (13)0.0529 (5)
O50.30865 (15)0.40955 (15)0.25940 (12)0.0487 (5)
O60.14537 (18)0.31940 (14)0.17054 (13)0.0597 (6)
S10.19339 (6)0.41441 (5)0.21845 (4)0.0412 (2)
C80.36627 (18)0.22496 (18)1.01963 (16)0.0315 (5)
C90.37872 (19)0.12097 (18)0.99747 (17)0.0340 (6)
C100.3660 (2)0.0964 (2)0.90794 (17)0.0394 (6)
H100.37580.02800.89370.047*
C110.3390 (2)0.17151 (19)0.83968 (18)0.0385 (6)
H110.32980.15360.77960.046*
C120.32526 (18)0.27473 (19)0.86048 (16)0.0336 (6)
C130.33878 (18)0.30011 (19)0.94969 (15)0.0334 (6)
H130.32940.36880.96340.040*
C140.3803 (2)0.2524 (2)1.11419 (17)0.0364 (6)
O70.36474 (16)0.35178 (15)1.12581 (12)0.0496 (5)
H7A0.357 (2)0.359 (2)1.178 (2)0.074*
O80.40380 (16)0.18901 (15)1.17709 (12)0.0532 (5)
O90.40249 (17)0.04371 (14)1.06086 (13)0.0511 (5)
H9A0.410 (3)0.069 (3)1.110 (2)0.077*
O100.32663 (16)0.46926 (14)0.81956 (13)0.0541 (5)
O110.16947 (14)0.36940 (15)0.73050 (12)0.0486 (5)
O120.32585 (16)0.34190 (14)0.70578 (12)0.0504 (5)
S20.28474 (6)0.37187 (5)0.77284 (4)0.0394 (2)
C150.3660 (2)0.4980 (2)0.5163 (2)0.0499 (7)
H150.34760.43860.47920.060*
C160.3835 (2)0.5907 (2)0.4804 (2)0.0434 (7)
C170.4112 (2)0.6763 (2)0.5399 (2)0.0492 (7)
H170.42330.74040.51860.059*
C180.4209 (2)0.6672 (2)0.6296 (2)0.0587 (8)
H180.44020.72480.66900.070*
C190.4024 (2)0.5738 (3)0.6612 (2)0.0579 (8)
H190.40880.56670.72200.070*
N10.3752 (2)0.4934 (2)0.6031 (2)0.0558 (7)
H10.370 (2)0.434 (2)0.627 (2)0.067*
N20.3782 (2)0.5973 (2)0.39265 (19)0.0647 (8)
H2A0.350 (3)0.545 (3)0.355 (2)0.078*
H2B0.368 (3)0.658 (3)0.364 (2)0.078*
C200.1119 (2)0.2879 (2)0.4766 (2)0.0506 (7)
H200.12150.34750.51280.061*
C210.1094 (2)0.1909 (2)0.5135 (2)0.0446 (7)
C220.0958 (2)0.1055 (2)0.4549 (2)0.0519 (8)
H220.09490.03880.47740.062*
C230.0838 (3)0.1180 (3)0.3658 (2)0.0613 (9)
H230.076 (2)0.063 (2)0.325 (2)0.074*
C240.0867 (2)0.2153 (3)0.3323 (2)0.0624 (9)
H240.07910.22490.27140.075*
N30.1003 (2)0.2956 (2)0.3886 (2)0.0597 (7)
H3A0.105 (2)0.358 (2)0.364 (2)0.072*
N40.1167 (2)0.1797 (2)0.6013 (2)0.0646 (8)
H4A0.131 (3)0.118 (3)0.627 (2)0.078*
H4B0.134 (3)0.239 (3)0.634 (2)0.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0390 (14)0.0284 (13)0.0335 (13)0.0002 (10)0.0185 (11)0.0014 (10)
C20.0437 (15)0.0297 (14)0.0417 (15)0.0027 (11)0.0224 (12)0.0033 (11)
C30.0552 (17)0.0273 (14)0.0432 (16)0.0028 (12)0.0222 (13)0.0048 (12)
C40.0527 (17)0.0378 (15)0.0354 (14)0.0034 (12)0.0237 (13)0.0056 (12)
C50.0438 (15)0.0331 (14)0.0317 (14)0.0005 (11)0.0205 (12)0.0004 (11)
C60.0431 (15)0.0253 (13)0.0347 (14)0.0008 (11)0.0196 (12)0.0013 (10)
C70.0470 (16)0.0315 (15)0.0384 (15)0.0029 (12)0.0205 (12)0.0038 (12)
O10.0841 (15)0.0361 (11)0.0359 (11)0.0021 (9)0.0329 (11)0.0035 (9)
O20.0968 (16)0.0389 (11)0.0427 (11)0.0057 (11)0.0396 (11)0.0089 (9)
O30.0823 (15)0.0280 (10)0.0450 (12)0.0044 (9)0.0303 (11)0.0068 (9)
O40.0917 (15)0.0387 (11)0.0469 (11)0.0013 (10)0.0473 (11)0.0006 (9)
O50.0654 (13)0.0482 (12)0.0336 (10)0.0141 (10)0.0220 (9)0.0050 (9)
O60.1071 (17)0.0308 (11)0.0474 (12)0.0098 (10)0.0385 (12)0.0025 (9)
S10.0707 (5)0.0285 (4)0.0324 (4)0.0003 (3)0.0297 (3)0.0003 (3)
C80.0367 (14)0.0302 (14)0.0292 (13)0.0017 (10)0.0157 (11)0.0013 (10)
C90.0382 (15)0.0285 (14)0.0350 (14)0.0003 (11)0.0151 (11)0.0047 (11)
C100.0564 (17)0.0266 (13)0.0386 (15)0.0017 (12)0.0232 (13)0.0023 (12)
C110.0532 (17)0.0334 (14)0.0314 (14)0.0013 (12)0.0202 (12)0.0057 (11)
C120.0409 (15)0.0324 (14)0.0301 (13)0.0018 (11)0.0174 (11)0.0016 (10)
C130.0448 (15)0.0280 (13)0.0286 (13)0.0010 (11)0.0166 (11)0.0001 (10)
C140.0469 (16)0.0334 (15)0.0333 (14)0.0002 (12)0.0213 (12)0.0006 (12)
O70.0880 (15)0.0365 (11)0.0331 (10)0.0097 (10)0.0342 (10)0.0007 (8)
O80.0923 (15)0.0402 (11)0.0315 (10)0.0054 (10)0.0303 (10)0.0075 (9)
O90.0856 (15)0.0293 (11)0.0385 (11)0.0092 (10)0.0262 (11)0.0063 (9)
O100.0943 (15)0.0277 (10)0.0426 (11)0.0047 (10)0.0311 (11)0.0023 (8)
O110.0586 (13)0.0522 (12)0.0345 (10)0.0121 (9)0.0190 (9)0.0045 (9)
O120.0838 (14)0.0410 (11)0.0415 (11)0.0024 (10)0.0411 (10)0.0048 (9)
S20.0648 (5)0.0293 (4)0.0294 (3)0.0026 (3)0.0250 (3)0.0024 (3)
C150.0612 (19)0.0277 (15)0.0589 (19)0.0022 (13)0.0235 (15)0.0062 (13)
C160.0422 (16)0.0351 (15)0.0482 (17)0.0014 (12)0.0145 (13)0.0059 (13)
C170.0498 (17)0.0332 (16)0.0583 (19)0.0039 (13)0.0165 (14)0.0061 (13)
C180.061 (2)0.050 (2)0.059 (2)0.0002 (15)0.0201 (16)0.0051 (16)
C190.064 (2)0.061 (2)0.0504 (19)0.0078 (16)0.0256 (16)0.0061 (17)
N10.0618 (17)0.0417 (16)0.0689 (19)0.0025 (12)0.0323 (14)0.0200 (14)
N20.095 (2)0.0482 (17)0.0455 (17)0.0111 (16)0.0239 (15)0.0023 (13)
C200.0490 (18)0.0354 (16)0.064 (2)0.0000 (13)0.0207 (15)0.0050 (14)
C210.0454 (16)0.0370 (16)0.0475 (17)0.0011 (12)0.0159 (13)0.0054 (13)
C220.0574 (19)0.0309 (16)0.065 (2)0.0001 (13)0.0231 (16)0.0107 (14)
C230.065 (2)0.059 (2)0.062 (2)0.0011 (17)0.0288 (18)0.0042 (17)
C240.067 (2)0.068 (2)0.063 (2)0.0045 (18)0.0369 (18)0.0166 (19)
N30.0620 (17)0.0455 (16)0.077 (2)0.0069 (13)0.0350 (15)0.0263 (15)
N40.078 (2)0.0472 (17)0.0576 (19)0.0012 (15)0.0174 (15)0.0068 (14)
Geometric parameters (Å, º) top
C1—C61.386 (3)O7—H7A0.88 (3)
C1—C21.410 (3)O9—H9A0.81 (3)
C1—C71.468 (3)O10—S21.4435 (19)
C2—O31.350 (3)O11—S21.4597 (19)
C2—C31.387 (3)O12—S21.4527 (18)
C3—C41.384 (3)C15—N11.322 (4)
C3—H30.9300C15—C161.383 (4)
C4—C51.393 (3)C15—H150.9300
C4—H40.9300C16—N21.358 (4)
C5—C61.379 (3)C16—C171.391 (4)
C5—S11.765 (2)C17—C181.368 (4)
C6—H60.9300C17—H170.9300
C7—O21.224 (3)C18—C191.365 (4)
C7—O11.311 (3)C18—H180.9300
O1—H1A0.88 (3)C19—N11.324 (4)
O3—H3B0.88 (3)C19—H190.9300
O4—S11.4407 (18)N1—H10.86 (3)
O5—S11.4610 (19)N2—H2A0.88 (3)
O6—S11.4424 (19)N2—H2B0.89 (3)
C8—C131.392 (3)C20—N31.331 (4)
C8—C91.409 (3)C20—C211.381 (4)
C8—C141.464 (3)C20—H200.9300
C9—O91.347 (3)C21—N41.353 (4)
C9—C101.384 (3)C21—C221.395 (4)
C10—C111.375 (3)C22—C231.353 (4)
C10—H100.9300C22—H220.9300
C11—C121.397 (3)C23—C241.363 (4)
C11—H110.9300C23—H230.93 (3)
C12—C131.378 (3)C24—N31.321 (4)
C12—S21.768 (2)C24—H240.9300
C13—H130.9300N3—H3A0.90 (3)
C14—O81.217 (3)N4—H4A0.88 (3)
C14—O71.319 (3)N4—H4B0.89 (3)
C6—C1—C2118.8 (2)C14—O7—H7A109 (2)
C6—C1—C7121.5 (2)C9—O9—H9A108 (2)
C2—C1—C7119.6 (2)O10—S2—O12113.70 (12)
O3—C2—C3117.8 (2)O10—S2—O11112.55 (12)
O3—C2—C1122.7 (2)O12—S2—O11111.04 (11)
C3—C2—C1119.5 (2)O10—S2—C12106.49 (11)
C4—C3—C2120.9 (2)O12—S2—C12106.79 (11)
C4—C3—H3119.5O11—S2—C12105.66 (11)
C2—C3—H3119.5N1—C15—C16120.4 (3)
C3—C4—C5119.5 (2)N1—C15—H15119.8
C3—C4—H4120.2C16—C15—H15119.8
C5—C4—H4120.2N2—C16—C15121.9 (3)
C6—C5—C4119.9 (2)N2—C16—C17121.3 (3)
C6—C5—S1119.72 (19)C15—C16—C17116.7 (3)
C4—C5—S1120.17 (19)C18—C17—C16120.6 (3)
C5—C6—C1121.4 (2)C18—C17—H17119.7
C5—C6—H6119.3C16—C17—H17119.7
C1—C6—H6119.3C19—C18—C17120.1 (3)
O2—C7—O1122.7 (2)C19—C18—H18119.9
O2—C7—C1122.9 (2)C17—C18—H18119.9
O1—C7—C1114.4 (2)N1—C19—C18118.3 (3)
C7—O1—H1A114 (2)N1—C19—H19120.8
C2—O3—H3B107 (2)C18—C19—H19120.8
O4—S1—O6114.54 (12)C15—N1—C19123.8 (3)
O4—S1—O5110.54 (11)C15—N1—H1120 (2)
O6—S1—O5112.18 (12)C19—N1—H1116 (2)
O4—S1—C5107.14 (11)C16—N2—H2A118 (2)
O6—S1—C5106.66 (12)C16—N2—H2B121 (2)
O5—S1—C5105.13 (11)H2A—N2—H2B113 (3)
C13—C8—C9118.7 (2)N3—C20—C21119.6 (3)
C13—C8—C14121.0 (2)N3—C20—H20120.2
C9—C8—C14120.3 (2)C21—C20—H20120.2
O9—C9—C10118.4 (2)N4—C21—C20121.6 (3)
O9—C9—C8122.0 (2)N4—C21—C22121.7 (3)
C10—C9—C8119.6 (2)C20—C21—C22116.6 (3)
C11—C10—C9121.0 (2)C23—C22—C21121.3 (3)
C11—C10—H10119.5C23—C22—H22119.4
C9—C10—H10119.5C21—C22—H22119.4
C10—C11—C12120.0 (2)C22—C23—C24120.0 (3)
C10—C11—H11120.0C22—C23—H23124 (2)
C12—C11—H11120.0C24—C23—H23116 (2)
C13—C12—C11119.4 (2)N3—C24—C23118.3 (3)
C13—C12—S2119.55 (19)N3—C24—H24120.9
C11—C12—S2120.99 (18)C23—C24—H24120.9
C12—C13—C8121.3 (2)C24—N3—C20124.3 (3)
C12—C13—H13119.4C24—N3—H3A115 (2)
C8—C13—H13119.4C20—N3—H3A121 (2)
O8—C14—O7122.5 (2)C21—N4—H4A118 (2)
O8—C14—C8123.0 (2)C21—N4—H4B113 (2)
O7—C14—C8114.6 (2)H4A—N4—H4B124 (3)
C6—C1—C2—O3176.8 (2)C10—C11—C12—S2177.12 (19)
C7—C1—C2—O31.1 (4)C11—C12—C13—C80.3 (4)
C6—C1—C2—C32.0 (4)S2—C12—C13—C8177.26 (18)
C7—C1—C2—C3180.0 (2)C9—C8—C13—C121.0 (4)
O3—C2—C3—C4176.8 (2)C14—C8—C13—C12179.9 (2)
C1—C2—C3—C42.1 (4)C13—C8—C14—O8179.6 (2)
C2—C3—C4—C50.7 (4)C9—C8—C14—O80.7 (4)
C3—C4—C5—C60.7 (4)C13—C8—C14—O70.1 (3)
C3—C4—C5—S1173.6 (2)C9—C8—C14—O7178.9 (2)
C4—C5—C6—C10.8 (4)C13—C12—S2—O1030.6 (2)
S1—C5—C6—C1173.61 (19)C11—C12—S2—O10152.4 (2)
C2—C1—C6—C50.6 (4)C13—C12—S2—O12152.45 (19)
C7—C1—C6—C5178.5 (2)C11—C12—S2—O1230.6 (2)
C6—C1—C7—O2177.6 (2)C13—C12—S2—O1189.2 (2)
C2—C1—C7—O20.2 (4)C11—C12—S2—O1187.7 (2)
C6—C1—C7—O11.3 (4)N1—C15—C16—N2177.7 (3)
C2—C1—C7—O1179.2 (2)N1—C15—C16—C170.3 (4)
C6—C5—S1—O4152.33 (19)N2—C16—C17—C18176.9 (3)
C4—C5—S1—O433.3 (2)C15—C16—C17—C180.4 (4)
C6—C5—S1—O629.2 (2)C16—C17—C18—C190.6 (5)
C4—C5—S1—O6156.4 (2)C17—C18—C19—N10.0 (5)
C6—C5—S1—O590.0 (2)C16—C15—N1—C190.9 (5)
C4—C5—S1—O584.3 (2)C18—C19—N1—C150.7 (5)
C13—C8—C9—O9178.2 (2)N3—C20—C21—N4177.4 (3)
C14—C8—C9—O90.7 (4)N3—C20—C21—C220.7 (4)
C13—C8—C9—C101.5 (4)N4—C21—C22—C23177.0 (3)
C14—C8—C9—C10179.5 (2)C20—C21—C22—C231.1 (4)
O9—C9—C10—C11178.3 (2)C21—C22—C23—C241.0 (5)
C8—C9—C10—C111.5 (4)C22—C23—C24—N30.6 (5)
C9—C10—C11—C120.8 (4)C23—C24—N3—C200.2 (5)
C10—C11—C12—C130.2 (4)C21—C20—N3—C240.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O120.86 (3)2.00 (3)2.797 (3)154 (3)
N3—H3A···O40.90 (3)2.03 (3)2.849 (3)151 (3)
N2—H2A···O50.88 (3)2.21 (4)3.074 (4)170 (3)
N2—H2B···O6i0.89 (3)2.13 (3)2.992 (3)165 (3)
N4—H4B···O110.89 (3)2.18 (4)3.060 (4)170 (3)
N4—H4A···O10ii0.88 (3)2.07 (3)2.940 (3)175 (3)
O1—H1A···O11iii0.88 (3)1.89 (3)2.717 (3)157 (3)
O7—H7A···O5iv0.88 (3)1.81 (3)2.646 (2)159 (3)
O3—H3B···O20.88 (3)1.82 (3)2.608 (3)148 (3)
O9—H9A···O80.81 (3)1.89 (3)2.610 (3)148 (3)
C4—H4···O8v0.932.403.224 (3)148
C11—H11···O2vi0.932.303.137 (3)149
C19—H19···O100.932.603.376 (4)142
C24—H24···O60.932.473.278 (4)145
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x, y, z1; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+3/2; (vi) x+1/2, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC5H7N2+·C7H5O6S·H2OC5H7N2+·C7H5O6S
Mr330.31312.30
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)299299
a, b, c (Å)7.1447 (4), 8.4120 (5), 12.3958 (7)13.9642 (10), 12.8331 (9), 15.7831 (11)
α, β, γ (°)80.285 (1), 74.434 (1), 82.718 (1)90, 114.957 (2), 90
V3)704.78 (7)2564.3 (3)
Z28
Radiation typeMo KαMo Kα
µ (mm1)0.270.28
Crystal size (mm)0.25 × 0.20 × 0.200.10 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.924, 0.9690.972, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7356, 2773, 2507 29389, 6096, 3596
Rint0.0220.062
(sin θ/λ)max1)0.6170.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.146, 1.09 0.055, 0.151, 1.01
No. of reflections27736096
No. of parameters220412
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.350.36, 0.27

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O40.86 (3)2.06 (3)2.894 (2)163 (3)
O3—H3A···O10.84 (3)1.83 (3)2.629 (2)156 (3)
N1—H1···O70.89 (3)1.87 (3)2.723 (2)160 (2)
C12—H12···O3i0.932.563.230 (2)129
C10—H10···O5ii0.932.533.332 (3)144
O7—H7B···O5iii0.88 (4)1.94 (4)2.781 (2)158 (3)
N2—H2B···O6iv0.84 (3)2.20 (3)3.014 (3)163 (3)
N2—H2A···O4v0.83 (3)2.33 (3)3.132 (3)163 (3)
O2—H2···O4v0.83 (3)1.84 (3)2.6409 (18)159 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+2; (iii) x+1, y, z; (iv) x, y+2, z+2; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O120.86 (3)2.00 (3)2.797 (3)154 (3)
N3—H3A···O40.90 (3)2.03 (3)2.849 (3)151 (3)
N2—H2A···O50.88 (3)2.21 (4)3.074 (4)170 (3)
N2—H2B···O6i0.89 (3)2.13 (3)2.992 (3)165 (3)
N4—H4B···O110.89 (3)2.18 (4)3.060 (4)170 (3)
N4—H4A···O10ii0.88 (3)2.07 (3)2.940 (3)175 (3)
O1—H1A···O11iii0.88 (3)1.89 (3)2.717 (3)157 (3)
O7—H7A···O5iv0.88 (3)1.81 (3)2.646 (2)159 (3)
O3—H3B···O20.88 (3)1.82 (3)2.608 (3)148 (3)
O9—H9A···O80.81 (3)1.89 (3)2.610 (3)148 (3)
C4—H4···O8v0.932.403.224 (3)148
C11—H11···O2vi0.932.303.137 (3)149
C19—H19···O100.932.603.376 (4)142
C24—H24···O60.932.473.278 (4)145
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x, y, z1; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+3/2; (vi) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds