Download citation
Download citation
link to html
In the title compound, [Ni2(C7H5O2)(C27H27N4O2)(H2O)]·2.38H2O, each Ni atom is coordinated by two N atoms and four O atoms from the hepta­dentate Schiff base ligand and one salicylaldehyde or water mol­ecule, forming an asymmetric mol­ecule with three bridges linking the two NiII ions, which are separated by 3.081 (1) Å. Hydrogen-bonded water and C—H...π inter­actions take part in the stabilization of the complex. The complex molecules are connected into a one-dimensional chain along the c axis by O—H...O hydrogen bonds between coordinated and solvent water mol­ecules and by C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107023256/av3086sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107023256/av3086Isup2.hkl
Contains datablock I

CCDC reference: 659117

Comment top

Multinuclear complexes of the heptadentate Schiff base 2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3- enyl]-1,3-imidazolidine (H3L) attract much attention because of their various properties, such as fixing atmospheric carbon dioxide (Fondo et al., 2002) or their magnetic properties (Fondo et al., 2004; Prasant Kumar et al., 2006). The title complex was synthesized in order to study its inhibitory activity on the protein [Enzyme?] tyrosine phosphatase 1B (PTP1B) and we present its crystal structure here.

The molecular structure of (I) is illustrated in Fig. 1. The compound consists of a binuclear phenolic Schiff base complex and three water molecules. In the binuclear complex, each Ni atom is coordinated by two N and four O atoms from the heptadentate Schiff base ligand and by one salicylaldehyde or a water molecule, forming an asymmetric molecule with three bridge links. The Ni—N and Ni—O distances and bond anges around the two metal ions are in the normal ranges (Table 1; Standard reference?). A water molecule acts as a hydrogen-bond bridge between atoms O1 and O2. Additionally, a C—H···π interaction, C20—H···Cg1 (Cg1 is the centroid of the C13–C18 ring), with a C···Cg distance of 3.510 (5) Å, takes part in stabilization of the structure. All these structural characteristics are in good agreement with the compound [Ni2L(o-OC6H3BrCHO)(H2O)]·2.25MeCN·H2O [L is 2-(5-bromo-2-hydroxyphenyl)-1,3-bis[4-(5-bromo-2-hydroxyphenyl)-3-azabut- 3-enyl]-1,3-imidazolidine; Fondo et al., 2006], indicating that the 5-Br atom in [Ni2L(o-OC6H3BrCHO)(H2O)]·2.25MeCN·H2O has little effect on the molecular structure.

Complex molecules of (I) are linked to form a one-dimensional chain along the c axis by an O—H···O hydrogen bond between coordinated and solvent water molecules (Fig. 2). This is similar to what is observed in the compounds [Ni2L(o-OC6H3BrCHO)(H2O)]·2.25MeCN·H2O and [Ni2L(OAc)(H2O)2]·3MeCN·2H2O (Fondo et al., 2006), especially the latter, where the coordinated o-OC6H3BrCHO ligand is replaced by an acetate group, but this hydrogen bond still exists and connects the complexes to form a one-dimensional chain. Thus, this hydrogen bond is very important in the packing of this kind of compound.

In addition to this hydrogen bond, there are a further two C—H···π interactions contributing to the stabilization of the one-dimensional chain, C20···Cg2i and C25···Cg3ii [Cg2 is the centroid of the C1–C6 ring and Cg3 is the centroid of the C29–C34 ring; symmetry codes: (i) x, 1/2 - y, 1/2 + z; (ii) x, 1/2 - y, -1/2 + z], with C···Cg distances of 3.577 (5) and 3.550 (6) Å, respectively (Fig. 2). This can be compared with [Ni2L(o-OC6H3BrCHO)(H2O)]·2.25MeCN·H2O, where the corresponding C20—H···π interaction is retained, but another one is changed, possibly because of the repulsive interaction between the 5-bromo-2-hydroxyphenyl groups. Therefore, although the 5-Br atom of the ligand has little effect on the molecular structure, it can influence crystal packing. Because of these C—H···π interactions, the closest Ni···Ni distance between neighbouring complexes of (I) is 7.248 Å, 0.152 Å longer than that in [Ni2L(o-OC6H3BrCHO)(H2O)]·2.25MeCN·H2O.

Related literature top

For related literature, see: Fondo et al. (2002, 2004, 2006); Prasant Kumar, Guillem & Debashis (2006); Sarma & Bailar (1955).

Experimental top

The heptadentate Schiff base was prepared following a modified literature procedure (Sarma & Bailar, 1955). The ligand was collected by filtration and recrystallized from warm ethanol. The title compound, (I), was synthesized as follows. NiSO4·6H2O (0.1314 g) in water (10 ml) was added to H3L (0.1770 g) in methanol solution (15 ml) with stirring. The solution was refluxed for 1 h and the cooled solution was filtered. Deep-green crystals were obtained from the filtrate on slow evaporation after 10 d. The presence of the salicylaldehyde ligand in the structure of (I) demonstrates that the heptadentate Schiff base is unstable in solution over a long period, undergoing hydrolysis.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions, with Csp2—H = 0.93 Å, Csp3—H = 0.97 Å and Csp3—H = 0.98 Å, and refined with Uiso(H) = 1.2Ueq(C). H atoms attached to O atoms were located from difference Fourier maps and refined as riding in their as-found positions, with Uiso(H) = 1.5Ueq(O). The O—H distances are in the range 0.850–0.851 Å. Atom O8 was found to be disordered; the final occupancies from the refinement were O8A 0.59 and O8B 0.41. Fourier maps also showed that there is only less density for the O9A and O9B sites, which would correspond with oxygen occupancies of 0.125 at O9A and 0.250 at O9B, and with these small occupancies it is not worth refining the positiond anisotropically. The lack of hydrogen-bonding interactions involving these water molecules (O8, O9A and O9B), which are simply occluded in holes in the structure. For these reasons, the water (O8, O9A and O9B) H atoms were not considered.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atom-numbering scehem. Displacement ellipsoids are drawn at the 40% probability level. Dotted lines indicate hydrogen bonds and C—H···π interactions. Cg1 is the centroid of the C13–C18 ring. H atoms not involved in hydrogen bonds and the minor components of the disordered O atoms have been omitted.
[Figure 2] Fig. 2. The one-dimensional chain constructed by O—H···O hydrogen bonds and C—H···π interactions, along the c axis (dotted lines). Cg2 and Cg3 are the centroids of the C1–C6 and C29–C34 rings, respectively. The minor components of the disordered O atoms have been omitted. [Symmetry codes: (i) x, 1/2 - y, 1/2 + z; (ii) x, y, 1 + z; (iii) x, 1/2 - y, 1.5 + z.]
Aqua-1κO-{µ-1,3-bis[2-(2-oxidobenzylideneamino)ethyl]-2-(2- oxidophenyl)imidazolidine-1κ4O,N,N',O';2κ4O',N'',N''',O''}- (µ-2-oxidobenzaldehyde-1:2κ3O2:O2,O1)dinickel(II) 2.38-hydrate top
Crystal data top
[Ni2(C7H5O2)(C25H29N4O2)(H2O)]·2.38H2OF(000) = 1564.2
Mr = 752.13Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3301 reflections
a = 11.4361 (8) Åθ = 2.3–23.4°
b = 21.5977 (16) ŵ = 1.11 mm1
c = 14.7334 (11) ÅT = 298 K
β = 101.466 (1)°Block, deep green
V = 3566.4 (5) Å30.28 × 0.13 × 0.02 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area detector
diffractometer
6165 independent reflections
Radiation source: fine-focus sealed tube4665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1313
Tmin = 0.746, Tmax = 0.978k = 1825
14776 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0971P)2]
where P = (Fo2 + 2Fc2)/3
6165 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni2(C7H5O2)(C25H29N4O2)(H2O)]·2.38H2OV = 3566.4 (5) Å3
Mr = 752.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4361 (8) ŵ = 1.11 mm1
b = 21.5977 (16) ÅT = 298 K
c = 14.7334 (11) Å0.28 × 0.13 × 0.02 mm
β = 101.466 (1)°
Data collection top
Bruker SMART 1K CCD area detector
diffractometer
6165 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4665 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.978Rint = 0.042
14776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.07Δρmax = 0.95 e Å3
6165 reflectionsΔρmin = 0.39 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.24763 (5)0.23788 (3)0.51507 (4)0.03057 (19)
Ni20.15468 (5)0.36943 (3)0.46145 (4)0.0327 (2)
N10.0014 (3)0.41128 (19)0.4052 (3)0.0423 (10)
N20.0625 (3)0.35037 (17)0.5748 (3)0.0335 (9)
N30.1326 (3)0.25225 (17)0.6140 (2)0.0306 (8)
N40.1787 (3)0.15197 (18)0.5092 (3)0.0350 (9)
O10.2271 (3)0.39598 (16)0.3542 (2)0.0438 (8)
O20.1174 (3)0.27985 (14)0.4141 (2)0.0321 (7)
O30.3505 (3)0.21612 (15)0.4255 (2)0.0396 (8)
O40.3085 (2)0.32901 (14)0.5249 (2)0.0342 (7)
O50.2176 (3)0.45240 (15)0.5299 (2)0.0439 (8)
O60.3859 (3)0.20704 (18)0.6287 (2)0.0508 (9)
H6A0.44410.18350.62390.076*
H6B0.37390.20430.68370.076*
C10.1873 (5)0.4390 (2)0.2924 (3)0.0428 (12)
C20.2626 (5)0.4608 (3)0.2341 (4)0.0526 (14)
H20.33880.44430.23960.063*
C30.2247 (7)0.5062 (3)0.1691 (4)0.0701 (19)
H30.27690.52090.13310.084*
C40.1116 (7)0.5300 (3)0.1566 (4)0.073 (2)
H40.08670.55960.11100.087*
C50.0352 (7)0.5100 (3)0.2117 (4)0.0661 (18)
H50.04110.52660.20350.079*
C60.0709 (5)0.4645 (2)0.2805 (4)0.0485 (13)
C70.0153 (5)0.4485 (2)0.3367 (4)0.0472 (13)
H70.08990.46730.32140.057*
C80.0935 (4)0.4029 (2)0.4580 (4)0.0492 (14)
H8A0.13930.36610.43700.059*
H8B0.14690.43820.44890.059*
C90.0359 (4)0.3967 (2)0.5607 (4)0.0459 (13)
H9A0.00460.43660.58430.055*
H9B0.09590.38420.59520.055*
C100.1371 (4)0.3564 (2)0.6693 (3)0.0436 (12)
H10A0.08850.36820.71340.052*
H10B0.19870.38740.67010.052*
C110.1922 (4)0.2930 (2)0.6927 (3)0.0387 (12)
H11A0.27780.29420.69640.046*
H11B0.17630.27820.75120.046*
C120.0198 (4)0.2858 (2)0.5768 (3)0.0316 (10)
H120.03210.28300.62220.038*
C130.0465 (4)0.2607 (2)0.4863 (3)0.0331 (10)
C140.0084 (4)0.2581 (2)0.4097 (3)0.0321 (10)
C150.0565 (5)0.2300 (3)0.3301 (4)0.0557 (15)
H150.02370.22800.27720.067*
C160.1679 (5)0.2052 (3)0.3280 (4)0.072 (2)
H160.20770.18610.27410.087*
C170.2211 (5)0.2078 (3)0.4020 (4)0.0619 (16)
H170.29650.19090.39920.074*
C180.1606 (4)0.2364 (2)0.4825 (4)0.0456 (13)
H180.19620.23930.53380.055*
C190.1102 (4)0.1879 (2)0.6452 (3)0.0391 (11)
H19A0.17840.17440.69120.047*
H19B0.04120.18840.67430.047*
C200.0891 (4)0.1427 (2)0.5667 (3)0.0397 (11)
H20A0.09430.10080.59070.048*
H20B0.00990.14870.52950.048*
C210.2157 (5)0.1062 (2)0.4688 (4)0.0466 (13)
H210.18140.06800.47630.056*
C220.3061 (5)0.1072 (2)0.4117 (4)0.0459 (13)
C230.3330 (6)0.0507 (3)0.3748 (5)0.0718 (19)
H230.29240.01520.38660.086*
C240.4188 (7)0.0466 (3)0.3208 (6)0.086 (2)
H240.43560.00850.29680.104*
C250.4784 (6)0.0980 (3)0.3031 (4)0.0666 (17)
H250.53670.09510.26730.080*
C260.4530 (5)0.1540 (3)0.3375 (4)0.0479 (13)
H260.49350.18880.32300.057*
C270.3675 (4)0.1615 (2)0.3947 (3)0.0378 (11)
C280.3232 (4)0.4629 (2)0.5569 (3)0.0386 (11)
H280.34180.50340.57570.046*
C290.4236 (4)0.4217 (2)0.5639 (3)0.0360 (11)
C300.4114 (4)0.3567 (2)0.5462 (3)0.0321 (10)
C310.5179 (4)0.3228 (2)0.5556 (4)0.0431 (12)
H310.51430.28050.54340.052*
C320.6271 (4)0.3505 (3)0.5823 (4)0.0505 (14)
H320.69570.32650.58850.061*
C330.6380 (4)0.4137 (3)0.6004 (4)0.0488 (13)
H330.71270.43190.61840.059*
C340.5375 (4)0.4481 (2)0.5912 (4)0.0437 (12)
H340.54400.49040.60320.052*
O70.3875 (3)0.31397 (17)0.3162 (2)0.0474 (9)
H7A0.38040.28300.35040.071*
H7B0.34570.34340.33090.071*
O8A0.591 (3)0.381 (2)0.3451 (13)0.126 (10)0.59 (8)
O8B0.626 (2)0.343 (3)0.329 (3)0.108 (16)0.41 (8)
O9A0.639 (2)0.1241 (14)0.586 (2)0.051 (7)*0.13
O9B0.6316 (13)0.1777 (7)0.6373 (11)0.058 (4)*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0319 (3)0.0305 (3)0.0300 (3)0.0033 (2)0.0080 (2)0.0009 (2)
Ni20.0296 (3)0.0303 (4)0.0375 (4)0.0049 (2)0.0048 (3)0.0003 (3)
N10.037 (2)0.033 (2)0.052 (3)0.0074 (18)0.0006 (19)0.003 (2)
N20.032 (2)0.033 (2)0.035 (2)0.0054 (16)0.0048 (17)0.0074 (17)
N30.033 (2)0.033 (2)0.024 (2)0.0029 (16)0.0038 (16)0.0003 (16)
N40.042 (2)0.032 (2)0.031 (2)0.0046 (17)0.0076 (17)0.0023 (17)
O10.0438 (19)0.045 (2)0.043 (2)0.0068 (16)0.0092 (16)0.0069 (16)
O20.0320 (16)0.0365 (18)0.0288 (17)0.0043 (13)0.0082 (13)0.0024 (13)
O30.0436 (19)0.039 (2)0.0383 (19)0.0065 (15)0.0142 (16)0.0034 (15)
O40.0248 (16)0.0322 (17)0.0442 (19)0.0020 (13)0.0032 (14)0.0015 (14)
O50.0363 (19)0.036 (2)0.059 (2)0.0046 (15)0.0103 (17)0.0060 (16)
O60.043 (2)0.067 (3)0.040 (2)0.0168 (17)0.0035 (16)0.0067 (18)
C10.056 (3)0.031 (3)0.036 (3)0.002 (2)0.004 (2)0.006 (2)
C20.060 (3)0.051 (3)0.046 (3)0.005 (3)0.007 (3)0.008 (3)
C30.103 (6)0.051 (4)0.057 (4)0.023 (4)0.018 (4)0.006 (3)
C40.118 (6)0.042 (4)0.051 (4)0.005 (4)0.002 (4)0.012 (3)
C50.101 (5)0.043 (3)0.049 (4)0.014 (3)0.001 (4)0.004 (3)
C60.068 (4)0.032 (3)0.041 (3)0.010 (3)0.001 (3)0.003 (2)
C70.053 (3)0.035 (3)0.046 (3)0.015 (2)0.009 (3)0.001 (2)
C80.032 (3)0.039 (3)0.075 (4)0.012 (2)0.008 (3)0.000 (3)
C90.039 (3)0.044 (3)0.059 (4)0.004 (2)0.020 (3)0.009 (3)
C100.047 (3)0.048 (3)0.035 (3)0.002 (2)0.007 (2)0.017 (2)
C110.035 (3)0.050 (3)0.028 (3)0.005 (2)0.002 (2)0.013 (2)
C120.030 (2)0.035 (3)0.031 (3)0.0018 (19)0.0096 (19)0.003 (2)
C130.027 (2)0.033 (3)0.037 (3)0.0036 (19)0.002 (2)0.002 (2)
C140.036 (3)0.026 (2)0.032 (3)0.0061 (19)0.003 (2)0.0006 (19)
C150.055 (3)0.076 (4)0.033 (3)0.012 (3)0.004 (3)0.013 (3)
C160.066 (4)0.109 (6)0.037 (3)0.029 (4)0.000 (3)0.018 (3)
C170.043 (3)0.079 (5)0.062 (4)0.016 (3)0.004 (3)0.006 (3)
C180.036 (3)0.051 (3)0.051 (3)0.000 (2)0.011 (2)0.002 (3)
C190.043 (3)0.041 (3)0.035 (3)0.004 (2)0.012 (2)0.007 (2)
C200.041 (3)0.034 (3)0.045 (3)0.002 (2)0.010 (2)0.002 (2)
C210.054 (3)0.037 (3)0.048 (3)0.001 (2)0.010 (3)0.002 (2)
C220.052 (3)0.040 (3)0.047 (3)0.011 (2)0.014 (3)0.007 (2)
C230.093 (5)0.048 (4)0.084 (5)0.006 (3)0.040 (4)0.013 (3)
C240.102 (5)0.059 (5)0.112 (6)0.025 (4)0.054 (5)0.023 (4)
C250.074 (4)0.072 (5)0.060 (4)0.020 (4)0.030 (3)0.012 (3)
C260.043 (3)0.059 (4)0.041 (3)0.011 (3)0.008 (2)0.001 (3)
C270.037 (3)0.047 (3)0.027 (3)0.013 (2)0.004 (2)0.004 (2)
C280.042 (3)0.035 (3)0.040 (3)0.001 (2)0.010 (2)0.001 (2)
C290.035 (3)0.037 (3)0.036 (3)0.007 (2)0.007 (2)0.003 (2)
C300.027 (2)0.035 (3)0.032 (3)0.0035 (19)0.0007 (19)0.007 (2)
C310.032 (3)0.044 (3)0.052 (3)0.003 (2)0.007 (2)0.010 (2)
C320.036 (3)0.061 (4)0.055 (3)0.009 (3)0.010 (2)0.004 (3)
C330.032 (3)0.056 (4)0.060 (4)0.012 (2)0.013 (2)0.007 (3)
C340.042 (3)0.038 (3)0.053 (3)0.006 (2)0.013 (2)0.002 (2)
O70.052 (2)0.054 (2)0.039 (2)0.0041 (17)0.0151 (17)0.0009 (17)
O8A0.101 (13)0.11 (2)0.164 (12)0.025 (15)0.015 (9)0.020 (10)
O8B0.060 (10)0.12 (3)0.132 (18)0.009 (12)0.009 (9)0.045 (18)
Geometric parameters (Å, º) top
Ni1—O31.991 (3)C10—H10A0.9700
Ni1—N42.011 (4)C10—H10B0.9700
Ni1—O42.083 (3)C11—H11A0.9700
Ni1—O22.090 (3)C11—H11B0.9700
Ni1—O62.167 (3)C12—C131.498 (6)
Ni1—N32.171 (4)C12—H120.9800
Ni1—Ni23.081 (1)C13—C181.397 (6)
Ni2—N12.000 (4)C13—C141.398 (6)
Ni2—O12.008 (3)C14—C151.396 (7)
Ni2—O42.019 (3)C15—C161.377 (8)
Ni2—O22.072 (3)C15—H150.9300
Ni2—O52.111 (3)C16—C171.351 (8)
Ni2—N22.184 (4)C16—H160.9300
N1—C71.275 (6)C17—C181.392 (8)
N1—C81.466 (7)C17—H170.9300
N2—C121.480 (6)C18—H180.9300
N2—C101.487 (6)C19—C201.496 (7)
N2—C91.489 (6)C19—H19A0.9700
N3—C121.486 (6)C19—H19B0.9700
N3—C191.502 (6)C20—H20A0.9700
N3—C111.506 (6)C20—H20B0.9700
N4—C211.269 (6)C21—C221.456 (7)
N4—C201.466 (6)C21—H210.9300
O1—C11.317 (6)C22—C231.395 (7)
O2—C141.321 (5)C22—C271.414 (7)
O3—C271.293 (6)C23—C241.383 (9)
O4—C301.302 (5)C23—H230.9300
O5—C281.215 (5)C24—C251.355 (9)
O6—H6A0.8510C24—H240.9300
O6—H6B0.8503C25—C261.366 (8)
C1—C21.413 (7)C25—H250.9300
C1—C61.419 (7)C26—C271.421 (7)
C2—C31.379 (8)C26—H260.9300
C2—H20.9300C28—C291.440 (7)
C3—C41.370 (9)C28—H280.9300
C3—H30.9300C29—C341.406 (6)
C4—C51.375 (9)C29—C301.431 (6)
C4—H40.9300C30—C311.404 (6)
C5—C61.412 (8)C31—C321.370 (7)
C5—H50.9300C31—H310.9300
C6—C71.450 (8)C32—C331.391 (8)
C7—H70.9300C32—H320.9300
C8—C91.531 (7)C33—C341.353 (7)
C8—H8A0.9700C33—H330.9300
C8—H8B0.9700C34—H340.9300
C9—H9A0.9700O7—H7A0.8511
C9—H9B0.9700O7—H7B0.8498
C10—C111.518 (7)
O3—Ni1—N491.85 (15)H9A—C9—H9B108.0
O3—Ni1—O492.06 (13)N2—C10—C11105.6 (4)
N4—Ni1—O4175.87 (14)N2—C10—H10A110.6
O3—Ni1—O293.56 (12)C11—C10—H10A110.6
N4—Ni1—O298.74 (14)N2—C10—H10B110.6
O4—Ni1—O279.67 (12)C11—C10—H10B110.6
O3—Ni1—O690.17 (13)H10A—C10—H10B108.8
N4—Ni1—O688.22 (15)N3—C11—C10104.4 (4)
O4—Ni1—O693.12 (13)N3—C11—H11A110.9
O2—Ni1—O6171.98 (13)C10—C11—H11A110.9
O3—Ni1—N3174.56 (14)N3—C11—H11B110.9
N4—Ni1—N382.87 (15)C10—C11—H11B110.9
O4—Ni1—N393.26 (13)H11A—C11—H11B108.9
O2—Ni1—N388.54 (12)N2—C12—N3101.6 (3)
O6—Ni1—N388.38 (13)N2—C12—C13115.7 (4)
N1—Ni2—O190.57 (16)N3—C12—C13113.6 (4)
N1—Ni2—O4176.90 (16)N2—C12—H12108.5
O1—Ni2—O491.73 (13)N3—C12—H12108.5
N1—Ni2—O2100.26 (14)C13—C12—H12108.5
O1—Ni2—O295.23 (13)C18—C13—C14121.3 (4)
O4—Ni2—O281.59 (12)C18—C13—C12118.4 (4)
N1—Ni2—O590.10 (15)C14—C13—C12120.2 (4)
O1—Ni2—O588.80 (14)O2—C14—C15122.3 (4)
O4—Ni2—O587.87 (12)O2—C14—C13121.1 (4)
O2—Ni2—O5168.82 (13)C15—C14—C13116.5 (4)
N1—Ni2—N283.39 (16)C16—C15—C14121.5 (5)
O1—Ni2—N2173.16 (13)C16—C15—H15119.2
O4—Ni2—N294.19 (13)C14—C15—H15119.2
O2—Ni2—N289.03 (13)C17—C16—C15122.0 (5)
O5—Ni2—N288.00 (14)C17—C16—H16119.0
C7—N1—C8119.2 (4)C15—C16—H16119.0
C7—N1—Ni2126.4 (4)C16—C17—C18118.6 (5)
C8—N1—Ni2113.9 (3)C16—C17—H17120.7
C12—N2—C10101.2 (3)C18—C17—H17120.7
C12—N2—C9113.2 (4)C17—C18—C13120.2 (5)
C10—N2—C9110.4 (4)C17—C18—H18119.9
C12—N2—Ni2113.8 (3)C13—C18—H18119.9
C10—N2—Ni2115.1 (3)C20—C19—N3112.1 (4)
C9—N2—Ni2103.4 (3)C20—C19—H19A109.2
C12—N3—C19112.1 (3)N3—C19—H19A109.2
C12—N3—C11103.1 (3)C20—C19—H19B109.2
C19—N3—C11112.5 (3)N3—C19—H19B109.2
C12—N3—Ni1114.8 (3)H19A—C19—H19B107.9
C19—N3—Ni1103.7 (3)N4—C20—C19109.5 (4)
C11—N3—Ni1111.0 (3)N4—C20—H20A109.8
C21—N4—C20120.1 (4)C19—C20—H20A109.8
C21—N4—Ni1125.0 (4)N4—C20—H20B109.8
C20—N4—Ni1114.4 (3)C19—C20—H20B109.8
C1—O1—Ni2127.3 (3)H20A—C20—H20B108.2
C14—O2—Ni2118.5 (3)N4—C21—C22126.9 (5)
C14—O2—Ni1114.4 (3)N4—C21—H21116.5
Ni2—O2—Ni195.51 (12)C22—C21—H21116.5
C27—O3—Ni1126.7 (3)C23—C22—C27120.0 (5)
C30—O4—Ni2125.2 (3)C23—C22—C21116.7 (5)
C30—O4—Ni1136.4 (3)C27—C22—C21123.3 (5)
Ni2—O4—Ni197.36 (12)C24—C23—C22121.2 (6)
C28—O5—Ni2122.5 (3)C24—C23—H23119.4
Ni1—O6—H6A125.6C22—C23—H23119.4
Ni1—O6—H6B121.8C25—C24—C23119.9 (6)
H6A—O6—H6B108.4C25—C24—H24120.0
O1—C1—C2119.1 (5)C23—C24—H24120.0
O1—C1—C6123.1 (5)C24—C25—C26120.1 (6)
C2—C1—C6117.7 (5)C24—C25—H25119.9
C3—C2—C1120.9 (6)C26—C25—H25119.9
C3—C2—H2119.6C25—C26—C27122.9 (6)
C1—C2—H2119.6C25—C26—H26118.6
C4—C3—C2121.3 (6)C27—C26—H26118.6
C4—C3—H3119.3O3—C27—C22125.4 (4)
C2—C3—H3119.3O3—C27—C26118.7 (5)
C3—C4—C5119.7 (6)C22—C27—C26115.9 (5)
C3—C4—H4120.2O5—C28—C29129.4 (5)
C5—C4—H4120.2O5—C28—H28115.3
C4—C5—C6121.0 (6)C29—C28—H28115.3
C4—C5—H5119.5C34—C29—C30120.1 (4)
C6—C5—H5119.5C34—C29—C28116.8 (4)
C5—C6—C1119.3 (6)C30—C29—C28123.1 (4)
C5—C6—C7116.3 (5)O4—C30—C31120.7 (4)
C1—C6—C7124.4 (5)O4—C30—C29123.0 (4)
N1—C7—C6126.2 (5)C31—C30—C29116.3 (4)
N1—C7—H7116.9C32—C31—C30121.5 (5)
C6—C7—H7116.9C32—C31—H31119.2
N1—C8—C9108.5 (4)C30—C31—H31119.2
N1—C8—H8A110.0C31—C32—C33121.8 (5)
C9—C8—H8A110.0C31—C32—H32119.1
N1—C8—H8B110.0C33—C32—H32119.1
C9—C8—H8B110.0C34—C33—C32118.5 (5)
H8A—C8—H8B108.4C34—C33—H33120.7
N2—C9—C8111.2 (4)C32—C33—H33120.7
N2—C9—H9A109.4C33—C34—C29121.8 (5)
C8—C9—H9A109.4C33—C34—H34119.1
N2—C9—H9B109.4C29—C34—H34119.1
C8—C9—H9B109.4H7A—O7—H7B108.3
O1—Ni2—N1—C711.4 (4)C4—C5—C6—C7177.8 (5)
O2—Ni2—N1—C7106.8 (4)O1—C1—C6—C5179.3 (5)
O5—Ni2—N1—C777.4 (4)C2—C1—C6—C50.0 (7)
N2—Ni2—N1—C7165.4 (4)O1—C1—C6—C72.8 (8)
O1—Ni2—N1—C8176.9 (3)C2—C1—C6—C7177.9 (5)
O2—Ni2—N1—C881.5 (3)C8—N1—C7—C6176.6 (5)
O5—Ni2—N1—C894.3 (3)Ni2—N1—C7—C65.3 (8)
N2—Ni2—N1—C86.3 (3)C5—C6—C7—N1176.1 (5)
N1—Ni2—N2—C12103.7 (3)C1—C6—C7—N11.9 (8)
O4—Ni2—N2—C1278.2 (3)C7—N1—C8—C9141.8 (5)
O2—Ni2—N2—C123.3 (3)Ni2—N1—C8—C930.6 (5)
O5—Ni2—N2—C12166.0 (3)C12—N2—C9—C882.0 (5)
N1—Ni2—N2—C10140.1 (3)C10—N2—C9—C8165.4 (4)
O4—Ni2—N2—C1038.0 (3)Ni2—N2—C9—C841.6 (5)
O2—Ni2—N2—C10119.5 (3)N1—C8—C9—N249.4 (6)
O5—Ni2—N2—C1049.7 (3)C12—N2—C10—C1134.0 (4)
N1—Ni2—N2—C919.5 (3)C9—N2—C10—C11154.1 (4)
O4—Ni2—N2—C9158.5 (3)Ni2—N2—C10—C1189.2 (4)
O2—Ni2—N2—C9120.0 (3)C12—N3—C11—C1022.8 (4)
O5—Ni2—N2—C970.8 (3)C19—N3—C11—C10143.7 (4)
N4—Ni1—N3—C12101.6 (3)Ni1—N3—C11—C10100.6 (3)
O4—Ni1—N3—C1276.9 (3)N2—C10—C11—N37.0 (5)
O2—Ni1—N3—C122.6 (3)C10—N2—C12—N348.6 (4)
O6—Ni1—N3—C12170.0 (3)C9—N2—C12—N3166.7 (4)
N4—Ni1—N3—C1920.9 (3)Ni2—N2—C12—N375.6 (3)
O4—Ni1—N3—C19160.5 (3)C10—N2—C12—C13172.1 (4)
O2—Ni1—N3—C19119.9 (3)C9—N2—C12—C1369.8 (5)
O6—Ni1—N3—C1967.5 (3)Ni2—N2—C12—C1348.0 (4)
N4—Ni1—N3—C11142.0 (3)C19—N3—C12—N2165.7 (3)
O4—Ni1—N3—C1139.5 (3)C11—N3—C12—N244.5 (4)
O2—Ni1—N3—C11119.0 (3)Ni1—N3—C12—N276.4 (3)
O6—Ni1—N3—C1153.6 (3)C19—N3—C12—C1369.4 (5)
O3—Ni1—N4—C218.4 (4)C11—N3—C12—C13169.4 (4)
O2—Ni1—N4—C21102.3 (4)Ni1—N3—C12—C1348.6 (4)
O6—Ni1—N4—C2181.7 (4)N2—C12—C13—C18125.1 (5)
N3—Ni1—N4—C21170.3 (4)N3—C12—C13—C18117.9 (5)
O3—Ni1—N4—C20179.2 (3)N2—C12—C13—C1459.0 (6)
O2—Ni1—N4—C2085.3 (3)N3—C12—C13—C1458.0 (6)
O6—Ni1—N4—C2090.7 (3)Ni2—O2—C14—C15129.6 (4)
N3—Ni1—N4—C202.1 (3)Ni1—O2—C14—C15118.9 (4)
N1—Ni2—O1—C116.0 (4)Ni2—O2—C14—C1352.4 (5)
O4—Ni2—O1—C1162.0 (4)Ni1—O2—C14—C1359.1 (5)
O2—Ni2—O1—C1116.3 (4)C18—C13—C14—O2178.4 (4)
O5—Ni2—O1—C174.1 (4)C12—C13—C14—O22.6 (7)
N1—Ni2—O2—C1437.5 (3)C18—C13—C14—C150.2 (7)
O1—Ni2—O2—C14129.0 (3)C12—C13—C14—C15175.5 (5)
O4—Ni2—O2—C14140.0 (3)O2—C14—C15—C16177.1 (5)
O5—Ni2—O2—C14120.2 (6)C13—C14—C15—C161.1 (8)
N2—Ni2—O2—C1445.6 (3)C14—C15—C16—C171.3 (11)
N1—Ni2—O2—Ni1159.14 (15)C15—C16—C17—C180.2 (11)
O1—Ni2—O2—Ni1109.33 (13)C16—C17—C18—C131.1 (9)
O4—Ni2—O2—Ni118.34 (12)C14—C13—C18—C171.3 (8)
O5—Ni2—O2—Ni11.5 (7)C12—C13—C18—C17174.5 (5)
N2—Ni2—O2—Ni176.03 (13)C12—N3—C19—C2083.1 (5)
O3—Ni1—O2—C14126.0 (3)C11—N3—C19—C20161.4 (4)
N4—Ni1—O2—C1433.5 (3)Ni1—N3—C19—C2041.3 (4)
O4—Ni1—O2—C14142.6 (3)C21—N4—C20—C19147.2 (4)
N3—Ni1—O2—C1449.0 (3)Ni1—N4—C20—C1925.5 (5)
O3—Ni1—O2—Ni2109.31 (13)N3—C19—C20—N445.7 (5)
N4—Ni1—O2—Ni2158.27 (14)C20—N4—C21—C22178.2 (5)
O4—Ni1—O2—Ni217.86 (12)Ni1—N4—C21—C226.2 (8)
N3—Ni1—O2—Ni275.72 (13)N4—C21—C22—C23179.5 (5)
N4—Ni1—O3—C278.9 (4)N4—C21—C22—C270.9 (9)
O4—Ni1—O3—C27172.4 (4)C27—C22—C23—C240.3 (10)
O2—Ni1—O3—C27107.8 (4)C21—C22—C23—C24179.0 (6)
O6—Ni1—O3—C2779.3 (4)C22—C23—C24—C250.1 (12)
O1—Ni2—O4—C3056.3 (4)C23—C24—C25—C260.7 (11)
O2—Ni2—O4—C30151.3 (4)C24—C25—C26—C271.8 (9)
O5—Ni2—O4—C3032.5 (4)Ni1—O3—C27—C226.9 (7)
N2—Ni2—O4—C30120.3 (4)Ni1—O3—C27—C26174.2 (3)
O1—Ni2—O4—Ni1113.51 (14)C23—C22—C27—O3179.8 (5)
O2—Ni2—O4—Ni118.48 (12)C21—C22—C27—O31.1 (8)
O5—Ni2—O4—Ni1157.75 (14)C23—C22—C27—C261.3 (7)
N2—Ni2—O4—Ni169.91 (14)C21—C22—C27—C26179.9 (5)
O3—Ni1—O4—C3056.2 (4)C25—C26—C27—O3178.9 (5)
O2—Ni1—O4—C30149.4 (4)C25—C26—C27—C222.1 (7)
O6—Ni1—O4—C3034.1 (4)Ni2—O5—C28—C2911.4 (7)
N3—Ni1—O4—C30122.6 (4)O5—C28—C29—C34175.3 (5)
O3—Ni1—O4—Ni2111.66 (14)O5—C28—C29—C305.9 (8)
O2—Ni1—O4—Ni218.42 (12)Ni2—O4—C30—C31154.8 (4)
O6—Ni1—O4—Ni2158.05 (14)Ni1—O4—C30—C3110.4 (7)
N3—Ni1—O4—Ni269.51 (14)Ni2—O4—C30—C2927.1 (6)
N1—Ni2—O5—C28158.0 (4)Ni1—O4—C30—C29167.7 (3)
O1—Ni2—O5—C2867.4 (4)C34—C29—C30—O4176.7 (4)
O4—Ni2—O5—C2824.4 (4)C28—C29—C30—O42.1 (7)
O2—Ni2—O5—C2844.0 (9)C34—C29—C30—C311.4 (7)
N2—Ni2—O5—C28118.6 (4)C28—C29—C30—C31179.7 (5)
Ni2—O1—C1—C2166.4 (4)O4—C30—C31—C32176.8 (5)
Ni2—O1—C1—C614.3 (7)C29—C30—C31—C321.4 (7)
O1—C1—C2—C3179.4 (5)C30—C31—C32—C330.7 (9)
C6—C1—C2—C31.3 (8)C31—C32—C33—C340.1 (8)
C1—C2—C3—C42.4 (9)C32—C33—C34—C290.1 (8)
C2—C3—C4—C52.1 (10)C30—C29—C34—C330.8 (8)
C3—C4—C5—C60.8 (9)C28—C29—C34—C33179.7 (5)
C4—C5—C6—C10.3 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O9B0.852.122.859 (15)145
O7—H7B···O10.851.852.688 (5)168
O7—H7A···O30.851.892.741 (5)175
O6—H6B···O7i0.851.972.795 (5)164
C20—H20A···Cg2i0.972.683.582 (5)154
C20—H20B···Cg10.972.733.510 (5)138
C25—H25···Cg3ii0.932.873.552 (6)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni2(C7H5O2)(C25H29N4O2)(H2O)]·2.38H2O
Mr752.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.4361 (8), 21.5977 (16), 14.7334 (11)
β (°) 101.466 (1)
V3)3566.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.28 × 0.13 × 0.02
Data collection
DiffractometerBruker SMART 1K CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.746, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
14776, 6165, 4665
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.168, 1.07
No. of reflections6165
No. of parameters451
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.39

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Ni1—O31.991 (3)Ni2—N12.000 (4)
Ni1—N42.011 (4)Ni2—O12.008 (3)
Ni1—O42.083 (3)Ni2—O42.019 (3)
Ni1—O22.090 (3)Ni2—O22.072 (3)
Ni1—O62.167 (3)Ni2—O52.111 (3)
Ni1—N32.171 (4)Ni2—N22.184 (4)
Ni1—Ni23.081 (1)
O3—Ni1—N491.85 (15)N1—Ni2—O190.57 (16)
O3—Ni1—O492.06 (13)N1—Ni2—O4176.90 (16)
N4—Ni1—O4175.87 (14)O1—Ni2—O491.73 (13)
O3—Ni1—O293.56 (12)N1—Ni2—O2100.26 (14)
N4—Ni1—O298.74 (14)O1—Ni2—O295.23 (13)
O4—Ni1—O279.67 (12)O4—Ni2—O281.59 (12)
O3—Ni1—O690.17 (13)N1—Ni2—O590.10 (15)
N4—Ni1—O688.22 (15)O1—Ni2—O588.80 (14)
O4—Ni1—O693.12 (13)O4—Ni2—O587.87 (12)
O2—Ni1—O6171.98 (13)O2—Ni2—O5168.82 (13)
O3—Ni1—N3174.56 (14)N1—Ni2—N283.39 (16)
N4—Ni1—N382.87 (15)O1—Ni2—N2173.16 (13)
O4—Ni1—N393.26 (13)O4—Ni2—N294.19 (13)
O2—Ni1—N388.54 (12)O2—Ni2—N289.03 (13)
O6—Ni1—N388.38 (13)O5—Ni2—N288.00 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O9B0.852.122.859 (15)145.3
O7—H7B···O10.851.852.688 (5)167.5
O7—H7A···O30.851.892.741 (5)175.0
O6—H6B···O7i0.851.972.795 (5)164.4
C20—H20A···Cg2i0.972.683.582 (5)154
C20—H20B···Cg10.972.733.510 (5)138
C25—H25···Cg3ii0.932.873.552 (6)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds