Download citation
Download citation
link to html
In the title compounds, C6H7N2O+·ClO4, (I), and C6H7N2O+·C2HO4, (II), the carboxamide plane is twisted from the plane of the protonated pyridine ring. Lamellar or sheet-like structural features are observed through N—H...O and O—H...O hydrogen-bonded motifs of cations and anions in (I) and (II), respectively. These sheets are aggregated through C(4) and C(5) chain motifs in (I) and (II), respectively. R12(4) ring motifs in (I) and R12(5) motifs in (II) are formed via pyridine–anion bifurcated N—H...O inter­actions. In (II), carboxamide groups form N—H...O dimers around the inversion centres of the unit cell, with R22(8) ring motifs. A 21 screw-related helical or ribbon-like structure along the b axis is formed in (II) through carboxamide and pyridinium N—H...O hydrogen bonds with the oxalate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107010098/av3074sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107010098/av3074Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107010098/av3074IIsup3.hkl
Contains datablock II

CCDC references: 645587; 645588

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC; molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Version 1.4.1; Macrae et al., 2006 ) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL/PC.

(I) 3-(aminocarbonyl)pyridinium perchlorate top
Crystal data top
C6H7N2O+·ClO4F(000) = 456
Mr = 222.59Dx = 1.670 Mg m3
Dm = 1.66 (1) Mg m3
Dm measured by Flotation technique using a liquid-mixture of xylene and bromoform
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.273 (5) Åθ = 9.6–15.7°
b = 9.858 (4) ŵ = 0.43 mm1
c = 8.077 (5) ÅT = 293 K
β = 99.43 (3)°Needle, colourless
V = 885.5 (8) Å30.21 × 0.17 × 0.15 mm
Z = 4
Data collection top
Nonius MACH3
diffractometer
1038 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.0°, θmin = 2.8°
ω–2θ scansh = 1313
Absorption correction: ψ scan
(North et al., 1968)
k = 111
Tmin = 0.929, Tmax = 0.946l = 09
1895 measured reflections3 standard reflections every 60 min
1562 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1515P)2]
where P = (Fo2 + 2Fc2)/3
1562 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2316 (4)0.5216 (4)0.4476 (5)0.0460 (11)
H10.22560.60350.41040.055*
C20.3285 (4)0.4901 (5)0.5555 (6)0.0393 (12)
H20.38650.55550.59160.047*
C30.3429 (4)0.3570 (4)0.6147 (6)0.0336 (11)
C310.4487 (5)0.3117 (5)0.7359 (7)0.0423 (12)
N310.5251 (4)0.4023 (4)0.8059 (7)0.0647 (16)
H31A0.58540.37800.87940.078*
H31B0.51530.48640.77860.078*
O310.4599 (4)0.1912 (3)0.7716 (6)0.0579 (12)
C40.2536 (5)0.2651 (5)0.5532 (7)0.0427 (13)
H40.26150.17500.58720.051*
C50.1540 (5)0.3041 (6)0.4438 (7)0.0502 (14)
H50.09440.24130.40460.060*
C60.1426 (5)0.4371 (6)0.3920 (6)0.0489 (14)
H60.07450.46680.32010.059*
Cl10.16676 (11)0.87741 (12)0.41190 (15)0.0409 (5)
O10.0763 (4)0.7770 (4)0.3895 (7)0.0714 (14)
O20.1376 (4)0.9833 (4)0.2913 (5)0.0678 (13)
O30.2785 (4)0.8133 (4)0.3921 (7)0.0729 (14)
O40.1815 (5)0.9324 (5)0.5750 (6)0.0867 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.061 (3)0.021 (2)0.050 (2)0.003 (2)0.008 (2)0.0024 (18)
C20.045 (3)0.017 (2)0.052 (3)0.001 (2)0.002 (2)0.002 (2)
C30.042 (3)0.015 (2)0.045 (3)0.0025 (19)0.010 (2)0.0041 (19)
C310.043 (3)0.021 (3)0.060 (3)0.004 (2)0.001 (2)0.002 (2)
N310.059 (3)0.025 (2)0.095 (4)0.003 (2)0.033 (3)0.005 (2)
O310.061 (3)0.0175 (19)0.089 (3)0.0077 (16)0.005 (2)0.0101 (18)
C40.050 (3)0.020 (2)0.059 (3)0.008 (2)0.008 (2)0.001 (2)
C50.048 (3)0.043 (3)0.057 (3)0.016 (2)0.001 (3)0.006 (3)
C60.046 (3)0.050 (3)0.046 (3)0.006 (3)0.005 (2)0.005 (3)
Cl10.0473 (8)0.0255 (7)0.0470 (8)0.0008 (5)0.0010 (5)0.0013 (5)
O10.062 (3)0.040 (2)0.107 (4)0.017 (2)0.000 (2)0.006 (2)
O20.080 (3)0.045 (2)0.076 (3)0.007 (2)0.005 (2)0.030 (2)
O30.051 (2)0.057 (3)0.108 (4)0.010 (2)0.002 (2)0.001 (3)
O40.125 (4)0.078 (4)0.053 (3)0.001 (3)0.004 (3)0.009 (3)
Geometric parameters (Å, º) top
N1—C21.319 (6)N31—H31B0.8600
N1—C61.324 (7)C4—C51.365 (8)
N1—H10.8600C4—H40.9300
C2—C31.397 (6)C5—C61.377 (8)
C2—H20.9300C5—H50.9300
C3—C41.385 (7)C6—H60.9300
C3—C311.482 (7)Cl1—O41.409 (5)
C31—O311.224 (5)Cl1—O11.412 (4)
C31—N311.304 (7)Cl1—O21.429 (4)
N31—H31A0.8600Cl1—O31.441 (4)
C2—N1—C6125.2 (4)C5—C4—C3121.4 (5)
C2—N1—H1117.4C5—C4—H4119.3
C6—N1—H1117.4C3—C4—H4119.3
N1—C2—C3119.0 (4)C4—C5—C6119.4 (5)
N1—C2—H2120.5C4—C5—H5120.3
C3—C2—H2120.5C6—C5—H5120.3
C4—C3—C2117.0 (4)N1—C6—C5117.9 (5)
C4—C3—C31120.0 (4)N1—C6—H6121.0
C2—C3—C31123.0 (4)C5—C6—H6121.0
O31—C31—N31121.8 (5)O4—Cl1—O1111.2 (3)
O31—C31—C3119.2 (5)O4—Cl1—O2109.6 (3)
N31—C31—C3118.9 (4)O1—Cl1—O2110.1 (3)
C31—N31—H31A120.0O4—Cl1—O3107.5 (3)
C31—N31—H31B120.0O1—Cl1—O3107.7 (3)
H31A—N31—H31B120.0O2—Cl1—O3110.7 (3)
C6—N1—C2—C31.9 (8)C2—C3—C31—N318.3 (8)
N1—C2—C3—C40.8 (7)C2—C3—C4—C52.0 (8)
N1—C2—C3—C31179.9 (5)C31—C3—C4—C5178.8 (5)
C4—C3—C31—O315.0 (8)C3—C4—C5—C60.7 (8)
C2—C3—C31—O31174.1 (5)C2—N1—C6—C53.3 (9)
C4—C3—C31—N31172.7 (5)C4—C5—C6—N11.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.393.058 (6)135
N1—H1···O30.862.162.971 (6)156
N31—H31A···O3i0.862.293.138 (7)170
N31—H31A···O4i0.862.653.302 (8)134
N31—H31B···O31ii0.862.092.927 (6)165
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
(II) 3-(aminocarbonyl)pyridinium oxalate top
Crystal data top
C6H7N2O+·C2HO4F(000) = 440
Mr = 212.16Dx = 1.609 Mg m3
Dm = 1.59 (1) Mg m3
Dm measured by flotation technique using a liqiud-mixture of xylene and carbon tetrachloride
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.8295 (7) Åθ = 9.8–14.4°
b = 6.3148 (5) ŵ = 0.14 mm1
c = 11.1883 (9) ÅT = 293 K
β = 104.950 (12)°Block, colourless
V = 875.75 (11) Å30.22 × 0.19 × 0.14 mm
Z = 4
Data collection top
Nonius MACH3
diffractometer
1457 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.0°, θmin = 3.3°
ω–2θ scansh = 1615
Absorption correction: ψ scan
(North et al., 1968)
k = 18
Tmin = 0.962, Tmax = 0.983l = 014
2383 measured reflections3 standard reflections every 60 min
1916 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.2614P]
where P = (Fo2 + 2Fc2)/3
1916 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.39687 (9)0.1942 (2)0.11029 (9)0.0326 (3)
O1B0.56161 (8)0.2088 (2)0.23860 (10)0.0363 (3)
C110.46189 (12)0.2062 (2)0.21507 (13)0.0245 (3)
C120.40854 (12)0.2259 (2)0.32440 (13)0.0240 (3)
O2A0.31123 (9)0.2332 (2)0.30730 (10)0.0350 (3)
O2B0.47857 (9)0.2395 (2)0.43052 (9)0.0353 (3)
H2B0.44720.25500.48510.053*
N10.29190 (11)0.7071 (2)0.04181 (13)0.0348 (3)
H10.34750.74550.09880.042*
C20.23827 (12)0.5350 (3)0.06054 (14)0.0282 (3)
H20.26110.45940.13400.034*
C30.14893 (11)0.4690 (3)0.02910 (14)0.0270 (3)
C310.08789 (13)0.2723 (3)0.01437 (14)0.0310 (4)
O310.00342 (10)0.2321 (2)0.09238 (12)0.0435 (3)
N310.12673 (12)0.1502 (3)0.08305 (14)0.0445 (4)
H31A0.09260.03760.09380.053*
H31B0.18610.18360.13560.053*
C40.11628 (13)0.5894 (3)0.13537 (15)0.0344 (4)
H40.05530.55030.19650.041*
C50.17344 (15)0.7666 (3)0.15131 (16)0.0418 (4)
H50.15120.84780.22270.050*
C60.26343 (15)0.8226 (3)0.06110 (17)0.0427 (5)
H60.30410.93970.07160.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0272 (6)0.0509 (7)0.0173 (5)0.0020 (5)0.0017 (4)0.0028 (5)
O1B0.0217 (6)0.0619 (8)0.0242 (6)0.0044 (5)0.0041 (4)0.0038 (5)
C110.0250 (7)0.0293 (8)0.0188 (7)0.0036 (6)0.0049 (5)0.0005 (6)
C120.0238 (7)0.0282 (7)0.0191 (7)0.0000 (6)0.0036 (5)0.0023 (6)
O2A0.0227 (6)0.0563 (8)0.0254 (6)0.0021 (5)0.0050 (4)0.0007 (5)
O2B0.0248 (6)0.0635 (8)0.0163 (5)0.0024 (5)0.0029 (4)0.0001 (5)
N10.0234 (6)0.0442 (9)0.0315 (7)0.0062 (6)0.0025 (5)0.0014 (6)
C20.0219 (7)0.0356 (9)0.0244 (7)0.0026 (6)0.0010 (6)0.0006 (6)
C30.0204 (6)0.0351 (8)0.0245 (7)0.0011 (6)0.0040 (6)0.0019 (6)
C310.0244 (7)0.0387 (9)0.0276 (8)0.0024 (7)0.0027 (6)0.0014 (7)
O310.0339 (6)0.0521 (8)0.0356 (7)0.0140 (6)0.0072 (5)0.0041 (6)
N310.0372 (8)0.0463 (9)0.0412 (9)0.0139 (7)0.0058 (7)0.0105 (7)
C40.0265 (8)0.0478 (10)0.0249 (8)0.0035 (7)0.0009 (6)0.0011 (7)
C50.0412 (10)0.0511 (11)0.0284 (9)0.0084 (9)0.0005 (7)0.0096 (8)
C60.0386 (10)0.0491 (11)0.0378 (10)0.0136 (8)0.0049 (8)0.0051 (8)
Geometric parameters (Å, º) top
O1A—C111.2535 (17)C3—C41.382 (2)
O1B—C111.2380 (18)C3—C311.500 (2)
C11—C121.553 (2)C31—O311.2299 (18)
C12—O2A1.2142 (18)C31—N311.323 (2)
C12—O2B1.2938 (17)N31—H31A0.8600
O2B—H2B0.8200N31—H31B0.8600
N1—C21.331 (2)C4—C51.375 (3)
N1—C61.332 (2)C4—H40.9300
N1—H10.8600C5—C61.369 (2)
C2—C31.379 (2)C5—H50.9300
C2—H20.9300C6—H60.9300
O1B—C11—O1A126.98 (14)O31—C31—N31122.71 (16)
O1B—C11—C12118.20 (13)O31—C31—C3118.83 (14)
O1A—C11—C12114.79 (13)N31—C31—C3118.46 (14)
O2A—C12—O2B125.76 (14)C31—N31—H31A120.0
O2A—C12—C11121.54 (13)C31—N31—H31B120.0
O2B—C12—C11112.67 (12)H31A—N31—H31B120.0
C12—O2B—H2B109.5C5—C4—C3120.40 (15)
C2—N1—C6123.05 (14)C5—C4—H4119.8
C2—N1—H1118.5C3—C4—H4119.8
C6—N1—H1118.5C6—C5—C4119.41 (16)
N1—C2—C3119.92 (14)C6—C5—H5120.3
N1—C2—H2120.0C4—C5—H5120.3
C3—C2—H2120.0N1—C6—C5119.14 (17)
C2—C3—C4118.05 (15)N1—C6—H6120.4
C2—C3—C31122.01 (14)C5—C6—H6120.4
C4—C3—C31119.94 (13)
O1B—C11—C12—O2A176.94 (15)C4—C3—C31—O316.8 (2)
O1A—C11—C12—O2A1.4 (2)C2—C3—C31—N315.7 (2)
O1B—C11—C12—O2B1.1 (2)C4—C3—C31—N31173.95 (17)
O1A—C11—C12—O2B179.48 (14)C2—C3—C4—C51.5 (3)
C6—N1—C2—C30.1 (3)C31—C3—C4—C5178.16 (16)
N1—C2—C3—C41.7 (2)C3—C4—C5—C60.3 (3)
N1—C2—C3—C31177.93 (14)C2—N1—C6—C51.7 (3)
C2—C3—C31—O31173.55 (16)C4—C5—C6—N11.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···O1Ai0.821.722.531 (2)172
N1—H1···O1Bii0.861.902.681 (2)149
N31—H31A···O31iii0.862.102.953 (2)172
N31—H31B···O2A0.862.183.018 (2)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds