Download citation
Download citation
link to html
In the title complex, {[Mn(C4O4)(C10H8N2)(H2O)]·H2O}n, each MnII ion has a distorted octa­hedral coordination formed by two N atoms of a 2,2′-bipyridine ligand, three carboxyl O atoms of three different acetyl­ene­dicarboxyl­ate ligands and one coordinated water mol­ecule. The acetyl­ene­dicarboxyl­ate ligands act in a tridentate mode connecting adjacent MnII ions and constructing a two-dimensional structure which can be regarded as an unusual plywood-like stacked network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106056022/av3056sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106056022/av3056Isup2.hkl
Contains datablock I

CCDC reference: 638307

Comment top

As one of the great challenges encountered in crystal engineering of functional materials, the structural diversity of coordination polymers formed by similar metal–organic building blocks is of intense interest, both as a result of its scientific significance and its intrinsic aesthetic appeal (Carlucci et al., 2003). The deliberate design and control of self-assembly by the selection of ligands and transition metals has become extremely important to chemists (Bu et al., 2001; Reger et al., 2001). A number of metal–organic polymers with one-, two- and three-dimensional infinite frameworks have been generated, in which aliphatic carboxylic acids, such as maleate (Zheng & Xie, 2005), malonate (Zhang & Lu, 2004) or related species, have often been chosen to fabricate the complexes. Recently, our group has been interested in the solid-state coordination chemistry of acetylenedicarboxylic acid. As an aliphatic carboxylic acid, it can be also considered as a good candidate with specific properties for the construction of coordination polymers. However, the reaction of acetylenedicarboxylic acid with transition metal ions remains relatively unexplored (Sieroń & Bukowska-Strzyżewska, 1998; Stein & Ruschewitz, 2005). In these complexes, the acetylenedicarboxylic acid ligand (ace) displays diverse coordination modes, such as bis-monodentate (Billetter et al., 2003, Wang et al., 2006), chelating bis-bidentate (Ruschewitz & Pantenburg, 2002) and bridging bis-bidentate (Pantenburg & Ruschewitz, 2002; Hohn et al., 2002). In order to explore the behaviour of this ligand further, the title novel manganese complex, [Mn(ace2-)(2,2'-bipy)(H2O)]n.nH2O, (I) (2,2'-bipy is 2,2'-bipyridine), has been synthesized and we present its structure here.

Complex (I) crystallizes in a non-centrosymmetric space group Fdd2. The asymmetric unit consists of one MnII ion, one 2,2'-bipy ligand, one ace2- ligand, one coordinated water molecule and one free water molecule (Fig. 1). Each MnII ion displays a slightly distorted octahedral geometry, defined by three carboxylate O atoms of three different ace2- ligands [Mn1—O1 = 2.2581 (12) Å, Mn—O2i = 2.1454 (11) Å and Mn—O3ii 2.1648 (11) Å; symmetry codes: (i) -x - 1, -y - 1/2, z + 1/2; (ii) x - 1/2, y, z + 1/2], the two N atoms of the 2,2'-bipy ligand and one water molecule. The C—O bond distances are similar [C11—O1 = 1.2360 (18) Å, C11—O2 = 1.2615 (18) Å, C14—O3 = 1.260 (2) Å and C14—O4 = 1.229 (2) Å], suggesting delocalization of electrons throughout. The equatorial plane is defined by atoms O1W/O2i/N2/N1 [r.m.s. deviation = 0.02 (2) Å; deviation of atom MnII = 0.19 (1) Å]. Atoms O1 and O3ii occupy the apical sites, with an angle of 165.12 (5)°. There are two long Csp2—Csp1 bonds (C11—C12 and C13—C14), because of the C12C13 triple bond and the double bonds of the carboxylic acid groups.

The unusual feature of (I) is that the ace2- groups act as tridentate bridging ligands to connect the MnII ions into a two-dimensional layer structure. The two carboxyl units of the ace2- ligand adopt two different coordination modes, one monodentate and another bidentate. Firstly, the ace2- ligands connect the MnII ions into one-dimensional chains, which span two directions to give rise to a plywood-like stacking mode. The angle between adjacent chains in the two different directions is 42°. Secondly, the non-coplanar chains are bridged by the bidentate carboxylate into a two-dimensional structure along (010). Free water molecules occupy the hollow regions and form hydrogen bonds with carboxylate O atoms [O2W—H2W1···O4iii = 3.145 (2) Å and O2W—H2W2···O3i = 2.9054 (19) Å; symmetry code: (iii) -x - 1, -y - 1/2, z - 1/2] (Fig. 2). Adjacent layers are stacked in an offset manner through ππ stacking interactions between one of the rings of the 2,2'-bipy ligand (C6–C10/N2) and a symmetry-related ring at (1/4 + x, -3/4 - y, 1/4 + z), with a centroid-to-centroid distance of 3.692 Å, thus forming a three-dimensional supramolecular network (Fig. 3).

Related literature top

For related literature, see: Billetter et al. (2003); Bu et al. (2001); Carlucci et al. (2003); Hohn et al. (2002); Pantenburg & Ruschewitz (2002); Reger et al. (2001); Ruschewitz & Pantenburg (2002); Sieroń & Bukowska-Strzyżewska (1998); Stein & Ruschewitz (2005); Wang et al. (2006); Zhang & Lu (2004); Zheng & Xie (2005).

Experimental top

The title complex was prepared by the addition of stoichiometric amounts of MnCl2·6H2O (0.234 g, 1 mmol) and 2,2'-bipy (0.156 g, 1 mmol) to an ethanol–water (1:1 v/v) solution of acetylenedicarboxylic acid (0.144 g, 1 mmol). The pH of the mixture was adjusted to 7 with 1.0 M NaOH solution. After stirring for 30 min, the mixture was filtered. The filtrate was allowed to stand for several days to give yellow crystals of (I). Analysis, calculated for C14H12N2O6Mn: C 46.81, H 3.37, N 7.80%; found: C 46.75, H 3.34, N 7.76%.

Refinement top

Water H atoms were located in a difference Fourier map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in calculated positions, with C—H = 0.93 (aromatic), and were refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Structure description top

As one of the great challenges encountered in crystal engineering of functional materials, the structural diversity of coordination polymers formed by similar metal–organic building blocks is of intense interest, both as a result of its scientific significance and its intrinsic aesthetic appeal (Carlucci et al., 2003). The deliberate design and control of self-assembly by the selection of ligands and transition metals has become extremely important to chemists (Bu et al., 2001; Reger et al., 2001). A number of metal–organic polymers with one-, two- and three-dimensional infinite frameworks have been generated, in which aliphatic carboxylic acids, such as maleate (Zheng & Xie, 2005), malonate (Zhang & Lu, 2004) or related species, have often been chosen to fabricate the complexes. Recently, our group has been interested in the solid-state coordination chemistry of acetylenedicarboxylic acid. As an aliphatic carboxylic acid, it can be also considered as a good candidate with specific properties for the construction of coordination polymers. However, the reaction of acetylenedicarboxylic acid with transition metal ions remains relatively unexplored (Sieroń & Bukowska-Strzyżewska, 1998; Stein & Ruschewitz, 2005). In these complexes, the acetylenedicarboxylic acid ligand (ace) displays diverse coordination modes, such as bis-monodentate (Billetter et al., 2003, Wang et al., 2006), chelating bis-bidentate (Ruschewitz & Pantenburg, 2002) and bridging bis-bidentate (Pantenburg & Ruschewitz, 2002; Hohn et al., 2002). In order to explore the behaviour of this ligand further, the title novel manganese complex, [Mn(ace2-)(2,2'-bipy)(H2O)]n.nH2O, (I) (2,2'-bipy is 2,2'-bipyridine), has been synthesized and we present its structure here.

Complex (I) crystallizes in a non-centrosymmetric space group Fdd2. The asymmetric unit consists of one MnII ion, one 2,2'-bipy ligand, one ace2- ligand, one coordinated water molecule and one free water molecule (Fig. 1). Each MnII ion displays a slightly distorted octahedral geometry, defined by three carboxylate O atoms of three different ace2- ligands [Mn1—O1 = 2.2581 (12) Å, Mn—O2i = 2.1454 (11) Å and Mn—O3ii 2.1648 (11) Å; symmetry codes: (i) -x - 1, -y - 1/2, z + 1/2; (ii) x - 1/2, y, z + 1/2], the two N atoms of the 2,2'-bipy ligand and one water molecule. The C—O bond distances are similar [C11—O1 = 1.2360 (18) Å, C11—O2 = 1.2615 (18) Å, C14—O3 = 1.260 (2) Å and C14—O4 = 1.229 (2) Å], suggesting delocalization of electrons throughout. The equatorial plane is defined by atoms O1W/O2i/N2/N1 [r.m.s. deviation = 0.02 (2) Å; deviation of atom MnII = 0.19 (1) Å]. Atoms O1 and O3ii occupy the apical sites, with an angle of 165.12 (5)°. There are two long Csp2—Csp1 bonds (C11—C12 and C13—C14), because of the C12C13 triple bond and the double bonds of the carboxylic acid groups.

The unusual feature of (I) is that the ace2- groups act as tridentate bridging ligands to connect the MnII ions into a two-dimensional layer structure. The two carboxyl units of the ace2- ligand adopt two different coordination modes, one monodentate and another bidentate. Firstly, the ace2- ligands connect the MnII ions into one-dimensional chains, which span two directions to give rise to a plywood-like stacking mode. The angle between adjacent chains in the two different directions is 42°. Secondly, the non-coplanar chains are bridged by the bidentate carboxylate into a two-dimensional structure along (010). Free water molecules occupy the hollow regions and form hydrogen bonds with carboxylate O atoms [O2W—H2W1···O4iii = 3.145 (2) Å and O2W—H2W2···O3i = 2.9054 (19) Å; symmetry code: (iii) -x - 1, -y - 1/2, z - 1/2] (Fig. 2). Adjacent layers are stacked in an offset manner through ππ stacking interactions between one of the rings of the 2,2'-bipy ligand (C6–C10/N2) and a symmetry-related ring at (1/4 + x, -3/4 - y, 1/4 + z), with a centroid-to-centroid distance of 3.692 Å, thus forming a three-dimensional supramolecular network (Fig. 3).

For related literature, see: Billetter et al. (2003); Bu et al. (2001); Carlucci et al. (2003); Hohn et al. (2002); Pantenburg & Ruschewitz (2002); Reger et al. (2001); Ruschewitz & Pantenburg (2002); Sieroń & Bukowska-Strzyżewska (1998); Stein & Ruschewitz (2005); Wang et al. (2006); Zhang & Lu (2004); Zheng & Xie (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) -x - 1, -y - 1/2, z + 1/2; (ii) x - 1/2, y, z + 1/2.]
[Figure 2] Fig. 2. The two-dimensional structure of the title complex. Coordinated water and 2,2'-bipy molecules have been omitted. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) -x - 1, -y - 1/2, z + 1/2; (ii) x - 1/2, y, z + 1/2; (iii) -x - 3/2, -y - 1/2, z; (iv) x + 1/2, y, z - 1/2; (v) -x - 2, -y - 1/2, z - 1/2.]
[Figure 3] Fig. 3. The packing of (I), projected along the c axis, showing the ππ stacking interactions.
Poly[[[aqua(2,2'-bipyridine-κ2N,N')manganese(II)]-µ- acetylenedicarboxylato-κ3O,O'O''] monohydrate] top
Crystal data top
[Mn(C4O4)(C10H8N2)(H2O)]·H2OF(000) = 2928
Mr = 359.20Dx = 1.661 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 13207 reflections
a = 18.769 (4) Åθ = 3.1–27.5°
b = 42.406 (9) ŵ = 0.95 mm1
c = 7.2170 (14) ÅT = 295 K
V = 5744 (2) Å3Block, yellow
Z = 160.30 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID area-detector
diffractometer
3284 independent reflections
Radiation source: fine-focus sealed tube3135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 2324
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 5454
Tmin = 0.763, Tmax = 0.870l = 99
13905 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0286P)2 + 1.958P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
3284 reflectionsΔρmax = 0.18 e Å3
220 parametersΔρmin = 0.20 e Å3
7 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (10)
Crystal data top
[Mn(C4O4)(C10H8N2)(H2O)]·H2OV = 5744 (2) Å3
Mr = 359.20Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 18.769 (4) ŵ = 0.95 mm1
b = 42.406 (9) ÅT = 295 K
c = 7.2170 (14) Å0.30 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID area-detector
diffractometer
3284 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3135 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.870Rint = 0.023
13905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049Δρmax = 0.18 e Å3
S = 1.05Δρmin = 0.20 e Å3
3284 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
220 parametersAbsolute structure parameter: 0.007 (10)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.581205 (10)0.287792 (4)0.40061 (3)0.01931 (6)
O1W0.60690 (6)0.25687 (3)0.1688 (2)0.0370 (3)
H1W10.5677 (6)0.2501 (4)0.125 (3)0.055*
H1W20.6383 (7)0.2426 (4)0.156 (4)0.055*
O2W0.71646 (7)0.21393 (3)0.1273 (2)0.0448 (3)
H2W10.7437 (11)0.2150 (6)0.034 (2)0.067*
H2W20.7409 (12)0.2137 (6)0.226 (2)0.067*
O10.47245 (6)0.28901 (3)0.26702 (19)0.0358 (3)
O20.46232 (5)0.24731 (3)0.08228 (17)0.0329 (3)
O30.19451 (5)0.28915 (3)0.04384 (17)0.0313 (3)
O40.19401 (7)0.29557 (4)0.2632 (2)0.0551 (4)
N10.59845 (6)0.33421 (3)0.25783 (17)0.0226 (2)
N20.53787 (6)0.32647 (3)0.58823 (17)0.0237 (2)
C10.63132 (9)0.33631 (4)0.0950 (2)0.0303 (3)
H10.64340.31780.03300.036*
C20.64816 (10)0.36500 (4)0.0144 (3)0.0405 (4)
H20.67220.36580.09820.049*
C30.62851 (10)0.39237 (4)0.1043 (3)0.0408 (4)
H30.63900.41190.05290.049*
C40.59316 (9)0.39039 (4)0.2711 (3)0.0335 (3)
H40.57860.40860.33240.040*
C50.57957 (7)0.36076 (3)0.3467 (2)0.0225 (3)
C60.54466 (7)0.35649 (3)0.5297 (2)0.0227 (3)
C70.51976 (8)0.38165 (3)0.6345 (3)0.0324 (3)
H70.52620.40230.59370.039*
C80.48545 (10)0.37576 (4)0.7993 (3)0.0398 (4)
H80.46800.39230.87050.048*
C90.47719 (10)0.34488 (4)0.8581 (2)0.0405 (4)
H90.45340.34030.96780.049*
C100.50517 (9)0.32118 (4)0.7494 (2)0.0319 (3)
H100.50100.30050.79050.038*
C110.43817 (7)0.27132 (3)0.1642 (2)0.0237 (3)
C120.36280 (8)0.27918 (3)0.1341 (3)0.0286 (3)
C130.30105 (8)0.28522 (3)0.1190 (2)0.0273 (3)
C140.22326 (8)0.29053 (3)0.1138 (2)0.0268 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01604 (9)0.01841 (9)0.02348 (10)0.00006 (8)0.00028 (8)0.00090 (9)
O1W0.0260 (5)0.0402 (6)0.0447 (7)0.0054 (5)0.0052 (5)0.0166 (6)
O2W0.0340 (6)0.0469 (7)0.0537 (9)0.0063 (5)0.0036 (6)0.0092 (7)
O10.0240 (5)0.0326 (6)0.0507 (8)0.0052 (4)0.0136 (5)0.0180 (5)
O20.0226 (5)0.0286 (5)0.0474 (7)0.0033 (4)0.0076 (5)0.0145 (5)
O30.0184 (4)0.0395 (6)0.0359 (7)0.0002 (4)0.0054 (4)0.0059 (5)
O40.0354 (7)0.0867 (11)0.0432 (8)0.0116 (7)0.0026 (6)0.0218 (8)
N10.0229 (5)0.0229 (6)0.0219 (6)0.0022 (5)0.0006 (5)0.0022 (5)
N20.0248 (6)0.0226 (5)0.0236 (6)0.0014 (5)0.0006 (5)0.0003 (5)
C10.0324 (8)0.0331 (8)0.0256 (7)0.0054 (7)0.0043 (6)0.0028 (6)
C20.0459 (9)0.0446 (10)0.0310 (9)0.0007 (8)0.0110 (7)0.0119 (8)
C30.0472 (9)0.0320 (8)0.0431 (10)0.0043 (8)0.0051 (8)0.0172 (7)
C40.0366 (8)0.0228 (7)0.0412 (9)0.0015 (6)0.0019 (7)0.0036 (7)
C50.0215 (6)0.0210 (6)0.0248 (7)0.0007 (5)0.0021 (6)0.0023 (5)
C60.0209 (6)0.0233 (7)0.0240 (7)0.0003 (5)0.0014 (5)0.0005 (5)
C70.0401 (8)0.0240 (6)0.0332 (8)0.0036 (6)0.0019 (7)0.0025 (7)
C80.0508 (10)0.0351 (8)0.0335 (9)0.0089 (8)0.0080 (7)0.0095 (7)
C90.0527 (10)0.0403 (9)0.0285 (9)0.0036 (8)0.0139 (7)0.0023 (7)
C100.0419 (8)0.0268 (7)0.0271 (8)0.0015 (7)0.0086 (7)0.0020 (6)
C110.0203 (6)0.0221 (6)0.0286 (7)0.0004 (5)0.0054 (6)0.0011 (6)
C120.0258 (7)0.0240 (6)0.0360 (8)0.0017 (6)0.0077 (7)0.0087 (7)
C130.0233 (7)0.0270 (7)0.0315 (9)0.0012 (6)0.0065 (6)0.0062 (6)
C140.0200 (6)0.0235 (6)0.0369 (9)0.0020 (5)0.0021 (6)0.0038 (6)
Geometric parameters (Å, º) top
Mn1—O2i2.1454 (11)C1—C21.385 (2)
Mn1—O3ii2.1648 (11)C1—H10.9300
Mn1—O1W2.1796 (12)C2—C31.380 (3)
Mn1—N12.2452 (12)C2—H20.9300
Mn1—O12.2581 (12)C3—C41.377 (2)
Mn1—N22.2772 (12)C3—H30.9300
O1W—H1W10.851 (9)C4—C51.394 (2)
O1W—H1W20.851 (9)C4—H40.9300
O2W—H2W10.847 (9)C5—C61.485 (2)
O2W—H2W20.846 (9)C6—C71.389 (2)
O1—C111.2360 (18)C7—C81.375 (2)
O2—C111.2615 (18)C7—H70.9300
O2—Mn1iii2.1454 (11)C8—C91.385 (2)
O3—C141.260 (2)C8—H80.9300
O3—Mn1iv2.1648 (11)C9—C101.379 (2)
O4—C141.229 (2)C9—H90.9300
N1—C11.3304 (19)C10—H100.9300
N1—C51.3433 (19)C11—C121.4694 (19)
N2—C101.334 (2)C12—C131.192 (2)
N2—C61.3475 (18)C13—C141.478 (2)
O2i—Mn1—O3ii106.22 (4)C1—C2—H2120.7
O2i—Mn1—O1W97.81 (5)C4—C3—C2119.26 (15)
O3ii—Mn1—O1W86.60 (4)C4—C3—H3120.4
O2i—Mn1—N1160.68 (4)C2—C3—H3120.4
O3ii—Mn1—N185.41 (4)C3—C4—C5119.04 (15)
O1W—Mn1—N198.23 (5)C3—C4—H4120.5
O2i—Mn1—O186.14 (5)C5—C4—H4120.5
O3ii—Mn1—O1165.12 (5)N1—C5—C4121.36 (14)
O1W—Mn1—O183.46 (4)N1—C5—C6116.04 (12)
N1—Mn1—O185.08 (4)C4—C5—C6122.60 (13)
O2i—Mn1—N290.02 (5)N2—C6—C7121.53 (14)
O3ii—Mn1—N2102.80 (4)N2—C6—C5115.82 (12)
O1W—Mn1—N2165.64 (5)C7—C6—C5122.65 (13)
N1—Mn1—N272.12 (5)C8—C7—C6119.31 (15)
O1—Mn1—N285.09 (4)C8—C7—H7120.3
Mn1—O1W—H1W1107.2 (14)C6—C7—H7120.3
Mn1—O1W—H1W2131.8 (16)C7—C8—C9119.24 (15)
H1W1—O1W—H1W2108.6 (13)C7—C8—H8120.4
H2W1—O2W—H2W2110.1 (14)C9—C8—H8120.4
C11—O1—Mn1135.48 (9)C10—C9—C8118.20 (15)
C11—O2—Mn1iii135.20 (9)C10—C9—H9120.9
C14—O3—Mn1iv126.09 (10)C8—C9—H9120.9
C1—N1—C5119.21 (13)N2—C10—C9123.26 (15)
C1—N1—Mn1122.08 (11)N2—C10—H10118.4
C5—N1—Mn1118.53 (9)C9—C10—H10118.4
C10—N2—C6118.42 (13)O1—C11—O2125.75 (12)
C10—N2—Mn1124.16 (10)O1—C11—C12116.88 (13)
C6—N2—Mn1117.41 (9)O2—C11—C12117.37 (13)
N1—C1—C2122.40 (16)C13—C12—C11176.70 (19)
N1—C1—H1118.8C12—C13—C14174.69 (17)
C2—C1—H1118.8O4—C14—O3127.49 (14)
C3—C2—C1118.69 (16)O4—C14—C13116.47 (14)
C3—C2—H2120.7O3—C14—C13116.04 (14)
O2i—Mn1—O1—C1173.02 (17)C2—C3—C4—C51.4 (3)
O3ii—Mn1—O1—C1173.7 (2)C1—N1—C5—C40.6 (2)
O1W—Mn1—O1—C1125.31 (17)Mn1—N1—C5—C4175.70 (11)
N1—Mn1—O1—C11124.20 (17)C1—N1—C5—C6178.61 (12)
N2—Mn1—O1—C11163.38 (17)Mn1—N1—C5—C63.47 (16)
O2i—Mn1—N1—C1159.10 (14)C3—C4—C5—N11.9 (2)
O3ii—Mn1—N1—C172.69 (11)C3—C4—C5—C6177.22 (14)
O1W—Mn1—N1—C113.20 (12)C10—N2—C6—C71.3 (2)
O1—Mn1—N1—C195.85 (11)Mn1—N2—C6—C7179.91 (11)
N2—Mn1—N1—C1177.73 (12)C10—N2—C6—C5178.21 (13)
O2i—Mn1—N1—C525.9 (2)Mn1—N2—C6—C50.44 (16)
O3ii—Mn1—N1—C5102.30 (10)N1—C5—C6—N21.96 (18)
O1W—Mn1—N1—C5171.81 (10)C4—C5—C6—N2177.20 (14)
O1—Mn1—N1—C589.16 (10)N1—C5—C6—C7177.51 (14)
N2—Mn1—N1—C52.74 (10)C4—C5—C6—C73.3 (2)
O2i—Mn1—N2—C104.45 (13)N2—C6—C7—C82.0 (2)
O3ii—Mn1—N2—C10102.20 (12)C5—C6—C7—C8177.43 (15)
O1W—Mn1—N2—C10127.80 (19)C6—C7—C8—C90.7 (3)
N1—Mn1—N2—C10176.97 (13)C7—C8—C9—C101.2 (3)
O1—Mn1—N2—C1090.57 (12)C6—N2—C10—C90.8 (2)
O2i—Mn1—N2—C6174.12 (10)Mn1—N2—C10—C9177.76 (14)
O3ii—Mn1—N2—C679.23 (11)C8—C9—C10—N22.0 (3)
O1W—Mn1—N2—C650.8 (2)Mn1—O1—C11—O210.3 (3)
N1—Mn1—N2—C61.60 (10)Mn1—O1—C11—C12170.11 (12)
O1—Mn1—N2—C688.00 (11)Mn1iii—O2—C11—O1179.47 (12)
C5—N1—C1—C21.2 (2)Mn1iii—O2—C11—C120.9 (2)
Mn1—N1—C1—C2173.73 (13)Mn1iv—O3—C14—O410.5 (2)
N1—C1—C2—C31.6 (3)Mn1iv—O3—C14—C13168.96 (9)
C1—C2—C3—C40.2 (3)
Symmetry codes: (i) x1, y1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x1, y1/2, z1/2; (iv) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.85 (2)2.01 (2)2.8139 (16)159 (2)
O1W—H1W2···O2W0.85 (2)1.92 (2)2.7629 (17)174 (2)
O2W—H2W1···O4iii0.85 (2)2.32 (2)3.145 (2)165 (2)
O2W—H2W2···O3i0.85 (2)2.06 (2)2.9054 (19)176 (2)
Symmetry codes: (i) x1, y1/2, z+1/2; (iii) x1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C4O4)(C10H8N2)(H2O)]·H2O
Mr359.20
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)295
a, b, c (Å)18.769 (4), 42.406 (9), 7.2170 (14)
V3)5744 (2)
Z16
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.763, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
13905, 3284, 3135
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.05
No. of reflections3284
No. of parameters220
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.007 (10)

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2001), SHELXL97.

Selected geometric parameters (Å, º) top
Mn1—O2i2.1454 (11)Mn1—N22.2772 (12)
Mn1—O3ii2.1648 (11)O1—C111.2360 (18)
Mn1—O1W2.1796 (12)O2—C111.2615 (18)
Mn1—N12.2452 (12)O3—C141.260 (2)
Mn1—O12.2581 (12)O4—C141.229 (2)
O2i—Mn1—O3ii106.22 (4)O1W—Mn1—O183.46 (4)
O2i—Mn1—O1W97.81 (5)N1—Mn1—O185.08 (4)
O3ii—Mn1—O1W86.60 (4)O2i—Mn1—N290.02 (5)
O2i—Mn1—N1160.68 (4)O3ii—Mn1—N2102.80 (4)
O3ii—Mn1—N185.41 (4)O1W—Mn1—N2165.64 (5)
O1W—Mn1—N198.23 (5)N1—Mn1—N272.12 (5)
O2i—Mn1—O186.14 (5)O1—Mn1—N285.09 (4)
O3ii—Mn1—O1165.12 (5)
Symmetry codes: (i) x1, y1/2, z+1/2; (ii) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.85 (2)2.01 (2)2.8139 (16)159 (2)
O1W—H1W2···O2W0.85 (2)1.92 (2)2.7629 (17)174 (2)
O2W—H2W1···O4iii0.85 (2)2.32 (2)3.145 (2)165 (2)
O2W—H2W2···O3i0.85 (2)2.06 (2)2.9054 (19)176 (2)
Symmetry codes: (i) x1, y1/2, z+1/2; (iii) x1, y1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds