Download citation
Download citation
link to html
The title compound, [La2(C8H3NO6)2(C8H4NO6)2(H2O)6]·2H2O, consists of dimeric units related by an inversion center. The two LaIII atoms are linked by two bridging bidentate carboxyl­ate groups and two monodentate carboxyl­ate groups. Each LaIII atom is nine-coordinated by six O atoms from five different carboxyl­ate groups and three from water mol­ecules. Hydrogen bonds between the water mol­ecules and between the solvent water and a carboxyl­ate O atom are observed in the structure. In the crystal packing, there are slipped π–π stacking inter­actions between the parallel benzene rings. Both hydrogen-bonding and π–π inter­actions combine to stabilize the three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106047822/av3048sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106047822/av3048Isup2.hkl
Contains datablock I

CCDC reference: 279505

Comment top

Rare-earth carboxylates show an intriguing variety of crystal structures as a result of the usually high coordination number of the metal ions and the many types of coordination displayed by carboxylate ligands in such complexes. Dimeric and polymeric forms are most frequently observed for these compounds (Quchi et al., 1988). Such complexes can be used as starting materials in a wide range of applications in materials science including superconductors, magnetic materials, catalysts and luminescent probes (Seo et al., 2000). There are some reports on the complexes of lanthanides with 3-nitro-1,2-benzenedicarboxylic acid (Brzyska & Kloc, 1992a,b; Makushova et al., 1989). We report here the preparation and crystal structure of the title compound: [La2(HL)2(L)2(H2O)6]·2H2O, (I), where L is (C8H3NO6).

The asymmetric unit of complex (I) consists of two La atoms, two L ligands, two HL ligands, six coordinated water molecules and two solvent water molecules (Fig. 1). Each La atom is coordinated by six O atoms of five different carboxylate groups and by three O atoms of water molecules. They adopt a distorted tricapped trigonal–prismatic arrangement, with atoms O3, O9, O2A, O13, O14 and O15 filling the vertexes and atoms O1A, O2 and O8 capping the rectangular faces (Fig. 2). A similar coordination environment was observed previously for lanthanoid(III) complexes, such as [La2(pyridine-3,4-dicarboxylic acid)2(NO3)2(H2O)3] (Qin et al., 2006) and [Ln2(4,5-imidazoledicarboxylate)2(H2O)3]·1.5H2O (Ln = Sm and Eu; Qin et al., 2005). The La—Ocarboxylate bond distances range from 2.491 (2) to 2.622 (2) Å (mean 2.549 Å), and those of the La—Oaqua bonds from 2.466 (2) to 2.615 (2) Å (mean 2.541 Å), all of which are within the range of those observed for other nine-coordinate LaIII complexes with oxygen donor ligands (Kiritsis et al., 1998; Pan et al., 2000; Qin et al., 2006). The resulting La···La intradimer separation is 4.289 (s.u.?) Å. It is noteworthy that complex (I) contains both protonated (HL) and deprotonated (L) groups. The HL ligand adopts a bis(monodentate) coordination mode, in which the distances within the acid group are significantly different [C9—O7 = 1.300 (4) and C9—O8 = 1.216 (4) Å, and C16—O9 = 1.264 (4) and C16—O10 = 1.242 (4) Å], despite the fact that one is an acid group and the other is a carboxylate group. The L ligand adopts a bidentate chelating–monodentate coordination mode, which acts as a µ2-bridge through one µ3-bridging O atom [O2(1 − x, 2 − y, 1 − z)] and two monodentate O atoms (O1 and O3) to link two LaIII atoms. The coordination mode contrasts with that in the [La2(pyridine-3,4-dicarboxylic acid)2(NO3)2(H2O)3] complex, in which the carboxylate groups adopt two kinds of coordination modes: one is monodentate–bidentate, and the other is chelating–bidentate (Qin et al., 2006).

In the HL ligand, one carboxylate group shows a distortion from the molecular plane; the dihedral angle between the planes of the benzene ring (C2–C7; plane I) and the carboxylate group atoms (O1/C1/O2; plane II) is 30.49°. The other carboxylate group is almost perpendicular to the molecular plane; the dihedral angle between plane I and the plane formed by the carboxylate group atoms O3, C8 and O4 is 87.38°. These features are similar to those in the L ligand, in which the dihedral angle between the C10–C15 (plane IV) and O8/C9/O7 planes is 21.10°, and that between plane IV and the O10/C16/O9 plane is 89.21°. Within each ligand, the nitro groups are almost coplanar with the benzene ring; the dihedral angle between plane I and the N1/O5/O6 plane is 6.36°, and that between plane IV and the N2/O11/O12 plane is 2.72°. Finally, the dihedral angle between the two benzene rings (planes I and IV) is 12.38°.

Intermolecular hydrogen bonds [O3carboxylate···O14aqua, O4carboxylate···O13aqua, O7carboxylate···O16water and O13aqua···O16water; Table 2] bridge the molecules, forming an infinite chain along the a axis, and intermolecular hydrogen bonds between O15aqua and O1carboxylate and between O16water and O4carboxylate generate an infinite chain along the b axis. The solvent water molecule O16 in the structure is in a tetrahedral environment with one water–water interaction, two water–caboxylate interactions involving O atoms of the HL ligand and one water–carboxylate interaction with an O atom of the L ligand. There are slipped ππ stacking interactions between the parallel benzene rings of the HL lignds with a distance of C13···C14 = 3.404 Å (Fig. 3), which interlink molecules into an infinite one-dimensional chain along the c axis and further interconnect a two-dimensional structure into a three-dimensional supramolecular network (Fig.4).

Experimental top

A solution of LaCl3 (0.0245 g, 0.10 mmol) in water (5 ml) was added dropwise with constant stirring to an aqueous solution (5 ml) of 3-nitro-1,2-benzenedicarboxylic acid (0.0211 g, 0.1 mmol). The pH of the mixture was adjusted to 3–4 with 0.1 M NaOH solution; the resulting mixture was then transferred into a Teflon-lined stainless steel vessel, which was sealed and heated to 423 K for 72 h, then cooled to room temperature. The reaction mixture was then filtered and single crystals were obtained from the filtrate at room temperature after a few days.

Refinement top

H atoms attached to C atoms were placed at calculated positions (C—H = 0.93 Å) and allowed to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)]. Water and hydroxy H atoms were located in a difference map and refined with O—H distances restrained to 0.85 (3) Å and with Uiso(H) = 1.2Ueq(O). [Should the O-atom positional parameters have s.u. values if they were restrained, or were they constrained?]

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity. [Symmetry code: (A) 1 − x, 2 − y, 1 − z.]
[Figure 2] Fig. 2. A schematic representation of the coordination geometry of the LaIII atom. [Symmetry code: (A) 1 − x, 2 − y, 1 − z.]
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing ππ interactions as dashed lines. Symmetry codes: (I) 1 − x, 2 − y, 1 − z; (V) x, y, z + 1; (B) 1 − x, 2 − y, 1 − z; (C) x, y, z + 1; (D) 1 − x, 2 − y, 2 − z.
[Figure 4] Fig. 4. The crystal packing of (I), viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms have been omitted.
Bis(µ-3-nitro-1,2-benzenedicarboxylato) -κ8O1,O2:O2,O3;O3,O2:O2,O1 -bis[triaqua(3-nitro-2-carboxybenzoato-κ2O,O')lanthanum(III)] dihydrate top
Crystal data top
C32H26La2N4O30·2H2OZ = 1
Mr = 1260.42F(000) = 620
Triclinic, P1Dx = 1.986 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1700 (12) ÅCell parameters from 3775 reflections
b = 8.9036 (13) Åθ = 2.6–26.4°
c = 15.279 (2) ŵ = 2.12 mm1
α = 100.828 (2)°T = 294 K
β = 90.935 (2)°Block, colourless
γ = 104.581 (2)°0.24 × 0.22 × 0.18 mm
V = 1054.1 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3711 independent reflections
Radiation source: fine-focus sealed tube3350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.4°
ϕ and ω scansh = 98
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 710
Tmin = 0.593, Tmax = 0.683l = 1817
5399 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.3043P]
where P = (Fo2 + 2Fc2)/3
3711 reflections(Δ/σ)max = 0.002
316 parametersΔρmax = 0.89 e Å3
10 restraintsΔρmin = 0.90 e Å3
Crystal data top
C32H26La2N4O30·2H2Oγ = 104.581 (2)°
Mr = 1260.42V = 1054.1 (3) Å3
Triclinic, P1Z = 1
a = 8.1700 (12) ÅMo Kα radiation
b = 8.9036 (13) ŵ = 2.12 mm1
c = 15.279 (2) ÅT = 294 K
α = 100.828 (2)°0.24 × 0.22 × 0.18 mm
β = 90.935 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3711 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3350 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.683Rint = 0.020
5399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02410 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.06Δρmax = 0.89 e Å3
3711 reflectionsΔρmin = 0.90 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.34827 (2)1.11284 (2)0.432118 (11)0.01815 (7)
O10.5449 (3)0.6661 (3)0.42591 (15)0.0306 (6)
O20.4094 (3)0.8523 (2)0.44534 (14)0.0223 (5)
O30.1013 (3)0.8889 (3)0.36665 (15)0.0275 (5)
O40.0006 (3)0.6439 (3)0.39096 (16)0.0355 (6)
O50.1211 (4)0.6744 (5)0.2175 (2)0.0733 (11)
O60.1027 (4)0.5290 (4)0.0935 (2)0.0689 (10)
O70.0699 (3)1.1806 (3)0.18173 (17)0.0399 (6)
H70.04131.23820.22680.048*
O80.2526 (3)1.1769 (3)0.28850 (15)0.0318 (6)
O90.5234 (3)1.0325 (3)0.30701 (14)0.0251 (5)
O100.6224 (3)1.2202 (3)0.22793 (16)0.0325 (6)
O110.7250 (4)0.9261 (4)0.1595 (2)0.0529 (8)
O120.6708 (4)0.7706 (4)0.0315 (2)0.0628 (9)
O130.1303 (3)1.2612 (3)0.45670 (16)0.0362 (6)
H13A0.06641.26770.41360.043*
H13B0.09541.28420.50880.043*
O140.2093 (3)1.0307 (3)0.57479 (16)0.0368 (6)
H14A0.27481.01210.61310.044*
H14B0.12241.05830.59510.044*
O150.5579 (3)1.3571 (3)0.39953 (17)0.0362 (6)
H15A0.58021.32660.34260.043*
H15B0.55721.45520.41570.043*
N10.0437 (4)0.6025 (4)0.1666 (2)0.0344 (7)
N20.6315 (4)0.8588 (4)0.0936 (2)0.0367 (8)
C10.4406 (4)0.7302 (3)0.3973 (2)0.0210 (7)
C20.3578 (4)0.6653 (4)0.3053 (2)0.0218 (7)
C30.4488 (4)0.5905 (4)0.2421 (2)0.0286 (8)
H30.55690.58490.25850.034*
C40.3813 (5)0.5249 (4)0.1561 (2)0.0333 (8)
H40.44400.47690.11470.040*
C50.2212 (5)0.5309 (4)0.1318 (2)0.0323 (8)
H50.17390.48600.07410.039*
C60.1308 (4)0.6043 (4)0.1941 (2)0.0253 (7)
C70.1957 (4)0.6740 (3)0.2816 (2)0.0200 (7)
C80.0885 (4)0.7411 (4)0.3522 (2)0.0233 (7)
C90.1923 (4)1.1311 (4)0.2119 (2)0.0242 (7)
C100.2529 (4)1.0165 (4)0.1444 (2)0.0262 (7)
C110.1452 (5)0.9338 (4)0.0698 (2)0.0347 (9)
H110.03730.94890.06410.042*
C120.1969 (6)0.8303 (4)0.0047 (3)0.0419 (10)
H120.12420.77540.04480.050*
C130.3567 (5)0.8079 (4)0.0130 (2)0.0383 (9)
H130.39370.74000.03160.046*
C140.4622 (5)0.8876 (4)0.0886 (2)0.0290 (8)
C150.4149 (4)0.9938 (4)0.1558 (2)0.0247 (7)
C160.5329 (4)1.0895 (4)0.2369 (2)0.0222 (7)
O160.9405 (3)0.3283 (3)0.31491 (17)0.0379 (6)
H16A0.83470.28340.31210.046*
H16B0.96850.42840.33310.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02274 (11)0.01593 (10)0.01637 (11)0.00892 (7)0.00133 (7)0.00043 (7)
O10.0374 (14)0.0262 (12)0.0292 (13)0.0191 (11)0.0094 (11)0.0052 (10)
O20.0301 (12)0.0174 (11)0.0202 (11)0.0116 (9)0.0005 (9)0.0016 (9)
O30.0244 (12)0.0203 (12)0.0352 (14)0.0084 (10)0.0034 (10)0.0041 (10)
O40.0453 (16)0.0251 (13)0.0365 (14)0.0112 (12)0.0204 (12)0.0030 (11)
O50.049 (2)0.117 (3)0.051 (2)0.046 (2)0.0153 (16)0.023 (2)
O60.066 (2)0.084 (2)0.0435 (19)0.0270 (19)0.0302 (16)0.0271 (17)
O70.0416 (16)0.0495 (16)0.0328 (14)0.0261 (13)0.0090 (12)0.0001 (12)
O80.0393 (14)0.0432 (15)0.0185 (13)0.0229 (12)0.0011 (11)0.0033 (11)
O90.0301 (13)0.0275 (12)0.0207 (12)0.0135 (10)0.0042 (10)0.0038 (10)
O100.0351 (14)0.0272 (13)0.0312 (14)0.0003 (11)0.0032 (11)0.0065 (11)
O110.0406 (17)0.067 (2)0.0507 (19)0.0276 (15)0.0028 (14)0.0082 (16)
O120.065 (2)0.071 (2)0.0522 (19)0.0370 (18)0.0161 (16)0.0141 (17)
O130.0448 (15)0.0524 (16)0.0211 (13)0.0326 (13)0.0046 (11)0.0042 (11)
O140.0363 (14)0.0479 (16)0.0314 (14)0.0182 (12)0.0088 (11)0.0104 (12)
O150.0503 (16)0.0185 (12)0.0386 (15)0.0109 (11)0.0113 (12)0.0003 (11)
N10.0394 (18)0.0333 (17)0.0266 (17)0.0093 (14)0.0092 (14)0.0028 (14)
N20.049 (2)0.0325 (17)0.0320 (18)0.0180 (16)0.0131 (16)0.0041 (15)
C10.0243 (17)0.0170 (15)0.0213 (17)0.0063 (13)0.0005 (13)0.0017 (13)
C20.0293 (18)0.0177 (15)0.0163 (16)0.0061 (13)0.0005 (13)0.0013 (13)
C30.0284 (19)0.0274 (18)0.030 (2)0.0113 (15)0.0034 (15)0.0003 (15)
C40.044 (2)0.034 (2)0.0213 (18)0.0159 (17)0.0082 (16)0.0028 (15)
C50.048 (2)0.0279 (19)0.0159 (17)0.0074 (17)0.0003 (16)0.0034 (14)
C60.0307 (18)0.0205 (16)0.0220 (17)0.0039 (14)0.0030 (14)0.0015 (14)
C70.0232 (17)0.0173 (15)0.0186 (16)0.0047 (13)0.0009 (13)0.0021 (13)
C80.0206 (17)0.0251 (18)0.0218 (17)0.0084 (14)0.0047 (14)0.0045 (14)
C90.0237 (17)0.0274 (17)0.0236 (19)0.0081 (14)0.0006 (14)0.0091 (14)
C100.0337 (19)0.0264 (18)0.0200 (17)0.0093 (15)0.0021 (14)0.0060 (14)
C110.040 (2)0.035 (2)0.030 (2)0.0098 (17)0.0089 (17)0.0079 (17)
C120.058 (3)0.032 (2)0.029 (2)0.0080 (19)0.0128 (19)0.0035 (17)
C130.057 (3)0.033 (2)0.0223 (19)0.0111 (19)0.0024 (18)0.0000 (16)
C140.038 (2)0.0265 (18)0.0219 (18)0.0086 (16)0.0048 (15)0.0036 (14)
C150.0310 (19)0.0231 (17)0.0195 (17)0.0041 (14)0.0031 (14)0.0067 (14)
C160.0197 (16)0.0266 (18)0.0218 (18)0.0109 (14)0.0056 (13)0.0011 (14)
O160.0327 (14)0.0293 (13)0.0505 (16)0.0120 (11)0.0011 (12)0.0003 (12)
Geometric parameters (Å, º) top
La1—O132.466 (2)O15—H15A0.90
La1—O32.491 (2)O15—H15B0.86
La1—O92.511 (2)N1—C61.475 (4)
La1—O82.528 (2)N2—C141.473 (5)
La1—O22.535 (2)C1—C21.495 (4)
La1—O152.543 (2)C1—La1i2.998 (3)
La1—O1i2.610 (2)C2—C71.392 (4)
La1—O142.615 (2)C2—C31.400 (4)
La1—O2i2.622 (2)C3—C41.378 (5)
La1—C1i2.998 (3)C3—H30.9300
O1—C11.253 (4)C4—C51.370 (5)
O1—La1i2.610 (2)C4—H40.9300
O2—C11.277 (4)C5—C61.382 (5)
O2—La1i2.622 (2)C5—H50.9300
O3—C81.270 (4)C6—C71.398 (4)
O4—C81.228 (4)C7—C81.529 (4)
O5—N11.203 (4)C9—C101.491 (5)
O6—N11.207 (4)C10—C111.393 (5)
O7—C91.300 (4)C10—C151.401 (5)
O7—H70.85C11—C121.372 (5)
O8—C91.216 (4)C11—H110.9300
O9—C161.264 (4)C12—C131.376 (6)
O10—C161.242 (4)C12—H120.9300
O11—N21.214 (4)C13—C141.389 (5)
O12—N21.215 (4)C13—H130.9300
O13—H13A0.85C14—C151.390 (5)
O13—H13B0.85C15—C161.530 (5)
O14—H14A0.85O16—H16A0.85
O14—H14B0.85O16—H16B0.85
O13—La1—O383.15 (8)La1—O15—H15B128.5
O13—La1—O9137.27 (7)H15A—O15—H15B115.9
O3—La1—O990.76 (7)O5—N1—O6122.7 (3)
O13—La1—O868.51 (8)O5—N1—C6118.9 (3)
O3—La1—O874.03 (8)O6—N1—C6118.4 (3)
O9—La1—O869.16 (7)O11—N2—O12123.6 (3)
O13—La1—O2142.64 (8)O11—N2—C14118.0 (3)
O3—La1—O270.17 (7)O12—N2—C14118.5 (3)
O9—La1—O270.57 (7)O1—C1—O2120.3 (3)
O8—La1—O2124.64 (7)O1—C1—C2119.2 (3)
O13—La1—O1590.13 (8)O2—C1—C2120.5 (3)
O3—La1—O15143.53 (8)O1—C1—La1i60.06 (16)
O9—La1—O1570.31 (7)O2—C1—La1i60.70 (16)
O8—La1—O1570.18 (8)C2—C1—La1i171.1 (2)
O2—La1—O15126.81 (8)C7—C2—C3119.9 (3)
O13—La1—O1i73.44 (8)C7—C2—C1122.8 (3)
O3—La1—O1i142.38 (8)C3—C2—C1117.3 (3)
O9—La1—O1i126.34 (8)C4—C3—C2121.3 (3)
O8—La1—O1i121.22 (8)C4—C3—H3119.4
O2—La1—O1i112.94 (7)C2—C3—H3119.4
O15—La1—O1i66.82 (8)C5—C4—C3119.7 (3)
O13—La1—O1476.51 (8)C5—C4—H4120.2
O3—La1—O1477.96 (8)C3—C4—H4120.2
O9—La1—O14143.32 (8)C4—C5—C6119.2 (3)
O8—La1—O14137.10 (8)C4—C5—H5120.4
O2—La1—O1472.77 (7)C6—C5—H5120.4
O15—La1—O14135.12 (8)C5—C6—C7122.8 (3)
O1i—La1—O1468.30 (8)C5—C6—N1117.6 (3)
O13—La1—O2i121.50 (7)C7—C6—N1119.5 (3)
O3—La1—O2i133.32 (7)C2—C7—C6117.1 (3)
O9—La1—O2i92.98 (7)C2—C7—C8120.3 (3)
O8—La1—O2i149.00 (8)C6—C7—C8122.2 (3)
O2—La1—O2i67.47 (8)O4—C8—O3126.6 (3)
O15—La1—O2i80.12 (8)O4—C8—C7115.2 (3)
O1i—La1—O2i49.59 (7)O3—C8—C7118.2 (3)
O14—La1—O2i71.68 (8)O8—C9—O7122.2 (3)
O13—La1—C1i96.79 (8)O8—C9—C10123.5 (3)
O3—La1—C1i142.74 (8)O7—C9—C10114.3 (3)
O9—La1—C1i112.33 (8)C11—C10—C15121.0 (3)
O8—La1—C1i140.52 (8)C11—C10—C9118.5 (3)
O2—La1—C1i89.75 (8)C15—C10—C9120.5 (3)
O15—La1—C1i73.57 (8)C12—C11—C10120.6 (4)
O1i—La1—C1i24.58 (7)C12—C11—H11119.7
O14—La1—C1i65.99 (8)C10—C11—H11119.7
O2i—La1—C1i25.14 (7)C11—C12—C13119.8 (3)
C1—O1—La1i95.36 (18)C11—C12—H12120.1
C1—O2—La1140.9 (2)C13—C12—H12120.1
C1—O2—La1i94.15 (18)C12—C13—C14119.4 (4)
La1—O2—La1i112.53 (8)C12—C13—H13120.3
C8—O3—La1129.1 (2)C14—C13—H13120.3
C9—O7—H7105.4C13—C14—C15122.5 (3)
C9—O8—La1149.0 (2)C13—C14—N2116.9 (3)
C16—O9—La1122.26 (19)C15—C14—N2120.5 (3)
La1—O13—H13A121.6C14—C15—C10116.6 (3)
La1—O13—H13B120.7C14—C15—C16123.3 (3)
H13A—O13—H13B115.3C10—C15—C16120.1 (3)
La1—O14—H14A116.1O10—C16—O9126.7 (3)
La1—O14—H14B123.0O10—C16—C15115.8 (3)
H14A—O14—H14B115.7O9—C16—C15117.4 (3)
La1—O15—H15A103.4H16A—O16—H16B115.9
O13—La1—O2—C1117.7 (3)O2—C1—C2—C3149.2 (3)
O3—La1—O2—C170.6 (3)C7—C2—C3—C40.2 (5)
O9—La1—O2—C127.6 (3)C1—C2—C3—C4178.9 (3)
O8—La1—O2—C117.8 (3)C2—C3—C4—C50.9 (5)
O15—La1—O2—C172.3 (3)C3—C4—C5—C60.7 (5)
O1i—La1—O2—C1149.8 (3)C4—C5—C6—C70.1 (5)
O14—La1—O2—C1153.7 (3)C4—C5—C6—N1177.5 (3)
O2i—La1—O2—C1129.5 (4)O5—N1—C6—C5175.2 (4)
C1i—La1—O2—C1141.4 (3)O6—N1—C6—C54.5 (5)
O13—La1—O2—La1i112.87 (12)O5—N1—C6—C77.1 (5)
O3—La1—O2—La1i159.93 (10)O6—N1—C6—C7173.2 (3)
O9—La1—O2—La1i101.89 (9)C3—C2—C7—C60.7 (5)
O8—La1—O2—La1i147.28 (8)C1—C2—C7—C6178.0 (3)
O15—La1—O2—La1i57.15 (12)C3—C2—C7—C8174.1 (3)
O1i—La1—O2—La1i20.32 (11)C1—C2—C7—C84.6 (5)
O14—La1—O2—La1i76.84 (9)C5—C6—C7—C20.8 (5)
O2i—La1—O2—La1i0.0N1—C6—C7—C2176.8 (3)
C1i—La1—O2—La1i11.96 (9)C5—C6—C7—C8174.1 (3)
O13—La1—O3—C8161.3 (3)N1—C6—C7—C83.5 (5)
O9—La1—O3—C861.1 (3)La1—O3—C8—O4111.4 (3)
O8—La1—O3—C8129.1 (3)La1—O3—C8—C766.6 (4)
O2—La1—O3—C87.9 (3)C2—C7—C8—O488.7 (4)
O15—La1—O3—C8117.8 (3)C6—C7—C8—O484.4 (4)
O1i—La1—O3—C8110.1 (3)C2—C7—C8—O389.6 (4)
O14—La1—O3—C883.7 (3)C6—C7—C8—O397.3 (4)
O2i—La1—O3—C833.7 (3)La1—O8—C9—O7132.3 (4)
C1i—La1—O3—C869.1 (3)La1—O8—C9—C1048.7 (6)
O13—La1—O8—C9122.6 (5)O8—C9—C10—C11159.7 (3)
O3—La1—O8—C933.8 (4)O7—C9—C10—C1121.2 (5)
O9—La1—O8—C963.3 (4)O8—C9—C10—C1520.7 (5)
O2—La1—O8—C917.4 (5)O7—C9—C10—C15158.4 (3)
O15—La1—O8—C9139.1 (4)C15—C10—C11—C121.4 (5)
O1i—La1—O8—C9176.0 (4)C9—C10—C11—C12178.2 (3)
O14—La1—O8—C985.0 (4)C10—C11—C12—C130.1 (6)
O2i—La1—O8—C9121.6 (4)C11—C12—C13—C141.7 (6)
C1i—La1—O8—C9163.5 (4)C12—C13—C14—C151.9 (6)
O13—La1—O9—C1611.8 (3)C12—C13—C14—N2180.0 (3)
O3—La1—O9—C1692.5 (2)O11—N2—C14—C13179.3 (3)
O8—La1—O9—C1619.9 (2)O12—N2—C14—C131.4 (5)
O2—La1—O9—C16161.1 (2)O11—N2—C14—C152.6 (5)
O15—La1—O9—C1655.6 (2)O12—N2—C14—C15176.7 (3)
O1i—La1—O9—C1694.2 (2)C13—C14—C15—C100.5 (5)
O14—La1—O9—C16163.2 (2)N2—C14—C15—C10178.5 (3)
O2i—La1—O9—C16134.0 (2)C13—C14—C15—C16176.4 (3)
C1i—La1—O9—C16117.5 (2)N2—C14—C15—C161.6 (5)
La1i—O1—C1—O28.1 (3)C11—C10—C15—C141.1 (5)
La1i—O1—C1—C2169.8 (2)C9—C10—C15—C14178.5 (3)
La1—O2—C1—O1142.4 (3)C11—C10—C15—C16178.2 (3)
La1i—O2—C1—O18.1 (3)C9—C10—C15—C161.4 (5)
La1—O2—C1—C235.5 (5)La1—O9—C16—O1079.6 (4)
La1i—O2—C1—C2169.8 (3)La1—O9—C16—C1596.2 (3)
La1—O2—C1—La1i134.4 (3)C14—C15—C16—O1089.6 (4)
O1—C1—C2—C7150.0 (3)C10—C15—C16—O1087.3 (4)
O2—C1—C2—C732.1 (5)C14—C15—C16—O994.1 (4)
O1—C1—C2—C328.7 (4)C10—C15—C16—O989.0 (4)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O16ii0.851.762.599 (4)168
O13—H13A···O16ii0.852.042.881 (4)169
O13—H13B···O4iii0.851.822.659 (3)169
O14—H14A···O9i0.852.193.036 (3)170
O14—H14B···O3iii0.852.072.916 (4)174
O15—H15A···O100.901.912.794 (4)168
O15—H15B···O1iv0.861.882.734 (4)168
O16—H16A···O10v0.852.042.756 (4)142
O16—H16B···O4vi0.851.912.747 (4)169
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1, z; (iii) x, y+2, z+1; (iv) x, y+1, z; (v) x, y1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC32H26La2N4O30·2H2O
Mr1260.42
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.1700 (12), 8.9036 (13), 15.279 (2)
α, β, γ (°)100.828 (2), 90.935 (2), 104.581 (2)
V3)1054.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.12
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.593, 0.683
No. of measured, independent and
observed [I > 2σ(I)] reflections
5399, 3711, 3350
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.06
No. of reflections3711
No. of parameters316
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.90

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected bond lengths (Å) top
La1—O132.466 (2)La1—O142.615 (2)
La1—O32.491 (2)La1—O2i2.622 (2)
La1—O92.511 (2)O7—C91.300 (4)
La1—O82.528 (2)O8—C91.216 (4)
La1—O22.535 (2)O9—C161.264 (4)
La1—O152.543 (2)O10—C161.242 (4)
La1—O1i2.610 (2)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O16ii0.851.7612.599 (4)168
O13—H13A···O16ii0.852.0392.881 (4)169
O13—H13B···O4iii0.851.8152.659 (3)169
O14—H14B···O3iii0.852.0662.916 (4)174
O15—H15B···O1iv0.861.8832.734 (4)168
O16—H16A···O10v0.852.0362.756 (4)142
O16—H16B···O4vi0.851.9062.747 (4)169
Symmetry codes: (ii) x1, y+1, z; (iii) x, y+2, z+1; (iv) x, y+1, z; (v) x, y1, z; (vi) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds