Download citation
Download citation
link to html
In the crystal structures of two cyclic trihydroxamic acid derivatives containing the same substructure unit, viz. 1,3,5-trihydroxy-1,3,5-triazinane-2,4,6-trione dihydrate, C3H3N3O6·2H2O, (I), and 1,3,5-benz­yloxy-1,3,5-triazinane-2,4,6-trione, C24H21N3O6, (II), there is no significant difference in the geometric parameters. In (I), there are 11 hydrogen bonds of the O—H...O type inter­connecting the mol­ecules in a three-dimensional network, while in (II) there are only two weak C—H...O hydrogen bonds. The results of IR spectroscopic analysis are in good agreement with the crystallographic study.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106049985/av3046sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106049985/av3046Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106049985/av3046IIsup3.hkl
Contains datablock II

CCDC references: 634901; 634902

Comment top

The compound 1,3,5-trihydroxy-1,3,5-triazinane-2,4,6-trione has recently been applied as an aerobic oxidation catalyst (Hirai et al., 2003, 2004). Jadrijević-Mladar Takač et al. (2006 or 2004???) reported for it and its derivatives (acetyl and pivaloyl esters) physico-chemical analyses and properties such as pKa, FT–IR, NMR, MS and TGA, and indicated some metal binding properties. Caira et al. (2006) investigated the ability of this compound to act as a host for a series of solvents. Among other triazinones and numerous cyclic amines, it has already been involved in the investigation of sulfur dioxide removal from fluids containing SO2 (Christiansen et al. 1992). On the other hand, using pharmacophore query developed through a molecular modeling study of a class of known HIV-1 integrase inhibitors, the O-substituted derivative 1,3,5-trihydroxmethyl-1,3,5-triazinane-2,4,6-trione, has been observed as one of the four most potent candidates (IC50 < 30 µmol dm−3), with the triazinone molecule being a promising lead compound for the development of new anti-AIDS drugs.

Although the structure of 1,3,5-trihydroxy-1,3,5-triazinane-2,4,6-trione hosting three DMF molecules has already been published (Caira et al., 2006), no X-ray data for 1,3,5-trihydroxy-1,3,5-triazinane-2,4,6-trione dihydrate, (I), has been published so far. Therefore, as part of our work on the structure evaluation of hydroxamic acids (Matković-Čalogović et al., 2003; Đilović et al., 2006), in this paper we present the crystal structures of (I) and its precursor 1,3,5-benzyloxy-1,3,5-triazinane-2,4,6-trione, (II), as examples of unsubstituted and substituted cyclic trihydroxamic acids.

The molecular geometries and atom labelling schemes for (I) and (II) are shown in Figs. 1 and 2. There is no significant difference in the bond distances and angles in (I) and (II) (Tables 1 and 3). The geometric parameters are comparable to the corresponding values reported in the literature (Larsen, 1976; Đilović et al., 2006). The six-membered heterocyclic rings are almost planar [the largest displacements of the C and N atoms from the mean plane of triazine rings are, respectively, 0.031 (1) and 0.023 (1) Å for (I), and 0.024 (1) and 0.029 (1) Å for (II)] but show considerable deviation from the ideal hexagonal form. The internal C—N—C angles are considerably greater than 120° [the minimal and maximal values are 126.91 (10) and 128.05 (14)°], while the internal N—C—N angles are smaller than 120° [the minimum and maximum values are 111.94 (14) and 112.87 (10)°]. Thus, aromaticity is achieved only by the contribution of lone-pair electrons located at the N atoms.

The crystal packing of (I) is characterized by strong hydrogen-bonding interactions between the host and water molecules (Fig. 3 and Table 2). Voids in the crystal structure of the host molecule are occupied by water molecules which `transfer' the hydrogen-bond interactions throughout the crystal structure, interconnecting the molecules into an infinite three-dimensional framework.

Comparison of N,N',N''-tribenzyloxydicarbonimidic diamide (Đilović et al., 2006) with (II) reveals a difference in the crystal packing of two molecules containing the (CO)2NOCH2C6H5 substructure unit in non-cyclic and cyclic system, respectively. Because of the conformation, molecules of (II) are packed into `stepwise' chains with dominating weak hydrogen interactions (Fig. 4 and Table 4) and relatively close H···H contacts (2.283 Å). Chains parallel to the crystallographic plane (111) are connected through ππ (3.340 Å) and C—H···π interactions (2.891 Å). The presence of additional conformational freedom in the non-cyclic system results in sheets of centrosymmetric dimers, which are interconnected by strong hydrogen bonds. In addition to the above-mentioned interactions, C—H···π contacts between the terminal phenyl groups and weaker hydrogen interactions are also present in the crystal structure.

Experimental top

Compounds (I) and (II) were synthesized by the previously published procedure (Butula et al., 2000). The structure and purity was confirmed by means of thin layer chromatography, FT–IR and NMR analysis. Compound (I) was crystallized from a saturated acetone/diethyl ether (9:1) solution and (II) from a saturated acetone/diethyl ether (1:1) solution by slow evaporation at room temperature (a beaker containing the solution was covered with aluminium foil to slow down evaporation). Colorless crystals of good quality were obtained after three weeks, and these were stable for months when exposed to the atmosphere.

Refinement top

The positions of H atoms were obtained from a difference Fourier map and they were included in the refinement process with isotropic displacement parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003) for (I); CrysAlis CCD (Oxford Diffraction,2003) for (II). For both compounds, cell refinement: CrysAlis CCD. Data reduction: CrysAlis CCD [or ERD?] (Oxford Diffraction, 2003) for (I); CrysAlis CCD [or RED?] (Oxford Diffraction,2003) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006) for (I); ORTEP-3 (Farrugia, 1997) for (II). For both compounds, software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecular structure of (II), with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 3] Fig. 3. The crystal packing of (I). Hydrogen bonds are indicated with dashed lines. Water molecules are represented in ball-and-stick style, while the other molecules are represented in capped sticks style. In the online version of the journal, all molecules are colored by symmetry equivalence. Difference between a and b?
[Figure 4] Fig. 4. The crystal packing of (II). Only one layer of molecules is shown. Hydrogen bonds are indicated with dashed lines.
(I) 1,3,5-trihydroxy-1,3,5-triazinane-2,4,6-trione dihydrate top
Crystal data top
C3H3N3O6·2H2OZ = 4
Mr = 213.12F(000) = 440
Monoclinic, P21/aDx = 1.953 Mg m3
Hall symbol: -P 2yabMo Kα radiation, λ = 0.71073 Å
a = 7.5109 (12) ŵ = 0.20 mm1
b = 11.9244 (17) ÅT = 113 K
c = 8.1794 (12) ÅPrism, colourless
β = 98.405 (13)°0.50 × 0.43 × 0.36 mm
V = 724.70 (19) Å3
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1451 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 27.5°, θmin = 4.9°
ω scansh = 99
4408 measured reflectionsk = 1514
1634 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.3604P]
where P = (Fo2 + 2Fc2)/3
1634 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C3H3N3O6·2H2OV = 724.70 (19) Å3
Mr = 213.12Z = 4
Monoclinic, P21/aMo Kα radiation
a = 7.5109 (12) ŵ = 0.20 mm1
b = 11.9244 (17) ÅT = 113 K
c = 8.1794 (12) Å0.50 × 0.43 × 0.36 mm
β = 98.405 (13)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1451 reflections with I > 2σ(I)
4408 measured reflectionsRint = 0.015
1634 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088All H-atom parameters refined
S = 1.12Δρmax = 0.28 e Å3
1634 reflectionsΔρmin = 0.23 e Å3
157 parameters
Special details top

Experimental. The IR spectra were recorded on an FT–IR Perkin Elmer Paragon 500 spectrometer from samples dispersed in KBr pellets.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36122 (16)0.40859 (10)0.89150 (15)0.0139 (3)
C20.28211 (16)0.48736 (11)0.61008 (15)0.0146 (3)
C30.46792 (16)0.31608 (10)0.65255 (14)0.0135 (3)
N10.28310 (14)0.48697 (9)0.77898 (12)0.0147 (2)
N20.37338 (14)0.39749 (9)0.55594 (12)0.0144 (2)
N30.45038 (14)0.32555 (9)0.81811 (12)0.0150 (2)
O10.35424 (12)0.41340 (8)1.03799 (11)0.0168 (2)
H1O0.106 (3)0.5854 (19)0.808 (3)0.043 (6)*
O20.20627 (13)0.55864 (8)0.52094 (11)0.0196 (2)
H2O0.289 (3)0.3624 (19)0.343 (3)0.043 (6)*
O30.55397 (12)0.24296 (8)0.59886 (11)0.0179 (2)
H3O0.482 (3)0.1863 (18)0.892 (3)0.035 (5)*
O1N0.22109 (13)0.58290 (8)0.84687 (11)0.0192 (2)
O2N0.38927 (13)0.39594 (8)0.38972 (10)0.0162 (2)
O3N0.53911 (13)0.24573 (8)0.92203 (11)0.0173 (2)
O1W0.11192 (14)0.55977 (9)0.18084 (12)0.0209 (2)
H11W0.190 (3)0.5272 (19)0.130 (3)0.044 (6)*
H12W0.152 (3)0.5594 (18)0.279 (3)0.038 (5)*
O2W0.40866 (13)0.79979 (9)0.73166 (12)0.0194 (2)
H21W0.437 (3)0.7617 (19)0.657 (3)0.039 (5)*
H22W0.405 (3)0.756 (2)0.805 (3)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0128 (5)0.0141 (6)0.0146 (5)0.0028 (4)0.0019 (4)0.0015 (4)
C20.0130 (5)0.0170 (6)0.0139 (6)0.0026 (5)0.0023 (4)0.0001 (4)
C30.0135 (5)0.0139 (6)0.0131 (6)0.0040 (4)0.0026 (4)0.0018 (4)
N10.0159 (5)0.0156 (5)0.0130 (5)0.0024 (4)0.0028 (4)0.0026 (4)
N20.0170 (5)0.0170 (5)0.0096 (5)0.0002 (4)0.0031 (4)0.0006 (4)
N30.0182 (5)0.0147 (5)0.0117 (5)0.0022 (4)0.0012 (4)0.0011 (4)
O10.0191 (5)0.0202 (5)0.0115 (4)0.0005 (3)0.0031 (3)0.0009 (3)
O20.0214 (5)0.0215 (5)0.0154 (4)0.0047 (4)0.0015 (3)0.0022 (4)
O30.0217 (5)0.0175 (5)0.0150 (4)0.0021 (4)0.0045 (3)0.0012 (3)
O1N0.0195 (5)0.0201 (5)0.0182 (4)0.0061 (4)0.0031 (3)0.0038 (4)
O2N0.0191 (5)0.0219 (5)0.0077 (4)0.0026 (4)0.0029 (3)0.0012 (3)
O3N0.0219 (5)0.0153 (5)0.0136 (4)0.0026 (4)0.0020 (3)0.0020 (3)
O1W0.0247 (5)0.0241 (5)0.0138 (5)0.0064 (4)0.0029 (4)0.0006 (4)
O2W0.0260 (5)0.0187 (5)0.0135 (5)0.0046 (4)0.0030 (4)0.0005 (4)
Geometric parameters (Å, º) top
C1—O11.2084 (15)N2—O2N1.3822 (13)
C1—N11.3808 (16)N3—O3N1.3809 (13)
C1—N31.3814 (16)O1N—H1O0.88 (2)
C2—O21.2071 (16)O2N—H2O0.89 (2)
C2—N21.3802 (16)O3N—H3O0.84 (2)
C2—N11.3804 (16)O1W—H11W0.86 (3)
C3—O31.2063 (15)O1W—H12W0.82 (2)
C3—N21.3809 (16)O2W—H21W0.82 (2)
C3—N31.3843 (16)O2W—H22W0.80 (2)
N1—O1N1.3825 (14)
C1—N1—O1N115.33 (10)N3—O3N—H3O102.8 (14)
C1—N3—C3127.27 (11)O1—C1—N1123.54 (11)
C2—N1—C1127.48 (11)O1—C1—N3124.02 (11)
C2—N1—O1N116.54 (10)O2—C2—N1122.65 (12)
C2—N2—C3126.91 (10)O2—C2—N2124.47 (11)
C2—N2—O2N116.42 (10)O3—C3—N2123.93 (11)
C3—N2—O2N116.22 (10)O3—C3—N3123.25 (11)
N1—C1—N3112.43 (10)O3N—N3—C1116.61 (10)
N1—O1N—H1O104.9 (15)O3N—N3—C3116.04 (10)
N2—C2—N1112.87 (10)H11W—O1W—H12W107 (2)
N2—C3—N3112.80 (10)H21W—O2W—H22W104 (2)
N2—O2N—H2O104.0 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1N—H1O···O1Wi0.88 (2)2.39 (2)3.0060 (15)127 (2)
O1N—H1O···O2Wii0.88 (2)2.05 (2)2.7758 (15)140 (2)
O2N—H2O···O2Wiii0.89 (2)1.69 (2)2.5803 (14)175 (2)
O3N—H3O···O1Wiii0.85 (2)1.73 (2)2.5754 (15)173 (2)
O1W—H11W···O1iv0.86 (2)2.05 (2)2.8889 (15)165 (2)
O1W—H11W···O1Niv0.86 (2)2.45 (2)2.9775 (14)120 (2)
O1W—H12W···O20.82 (2)1.96 (2)2.7685 (14)170 (2)
O2W—H21W···O2Nv0.81 (2)2.35 (2)3.0294 (15)141 (2)
O2W—H21W···O3v0.81 (2)2.11 (2)2.8052 (14)144 (2)
O2W—H22W···O1N0.80 (2)2.54 (2)3.1543 (15)136 (2)
O2W—H22W···O3Nvi0.80 (2)2.21 (2)2.8544 (14)138 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+3/2, z; (iii) x+1/2, y1/2, z+1; (iv) x, y, z1; (v) x+1, y+1, z+1; (vi) x+1, y+1, z+2.
(II) 1,3,5-benzyloxy-1,3,5-triazinane-2,4,6-trione top
Crystal data top
C24H21N3O6V = 1073.8 (5) Å3
Mr = 447.44Z = 2
Triclinic, P1F(000) = 468
Hall symbol: -P 1Dx = 1.384 Mg m3
a = 7.765 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.139 (3) ŵ = 0.10 mm1
c = 12.783 (3) ÅT = 113 K
α = 66.36 (2)°Prism, colourless
β = 76.78 (2)°0.82 × 0.68 × 0.44 mm
γ = 82.79 (2)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
3183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 27.0°, θmin = 4.6°
ω scansh = 99
8404 measured reflectionsk = 1515
4600 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.1119P)2]
where P = (Fo2 + 2Fc2)/3
4600 reflections(Δ/σ)max < 0.001
382 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C24H21N3O6γ = 82.79 (2)°
Mr = 447.44V = 1073.8 (5) Å3
Triclinic, P1Z = 2
a = 7.765 (2) ÅMo Kα radiation
b = 12.139 (3) ŵ = 0.10 mm1
c = 12.783 (3) ÅT = 113 K
α = 66.36 (2)°0.82 × 0.68 × 0.44 mm
β = 76.78 (2)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
3183 reflections with I > 2σ(I)
8404 measured reflectionsRint = 0.022
4600 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.167All H-atom parameters refined
S = 1.05Δρmax = 0.53 e Å3
4600 reflectionsΔρmin = 0.35 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8588 (2)0.82131 (14)0.06410 (14)0.0220 (4)
C20.7641 (2)1.03328 (15)0.04282 (14)0.0230 (4)
C30.6172 (2)0.92207 (15)0.16315 (15)0.0249 (4)
C110.9340 (2)0.89208 (18)0.20064 (16)0.0302 (4)
H11A0.924 (3)0.802 (2)0.1598 (17)0.033 (5)*
H11B0.817 (3)0.9311 (18)0.2107 (17)0.033 (5)*
C121.0661 (2)0.92506 (16)0.31238 (15)0.0260 (4)
C131.1794 (2)0.84032 (19)0.34206 (18)0.0337 (4)
H131.169 (3)0.758 (2)0.2854 (18)0.032 (5)*
C141.2971 (3)0.8745 (2)0.44955 (19)0.0401 (5)
H141.374 (3)0.8143 (19)0.4721 (19)0.041 (6)*
C151.3014 (2)0.9929 (2)0.52610 (18)0.0369 (5)
H151.385 (3)1.017 (2)0.605 (2)0.049 (6)*
C161.1900 (3)1.07803 (19)0.49648 (17)0.0358 (5)
H161.196 (3)1.1678 (19)0.5558 (18)0.034 (5)*
C171.0731 (2)1.04489 (17)0.39132 (16)0.0297 (4)
H170.992 (3)1.101 (2)0.3667 (19)0.041 (6)*
C210.6012 (2)1.20535 (17)0.08107 (19)0.0305 (4)
H21A0.695 (3)1.2410 (18)0.0214 (18)0.031 (5)*
H21B0.639 (3)1.1573 (19)0.1587 (19)0.039 (5)*
C220.4584 (2)1.29766 (15)0.08718 (15)0.0248 (4)
C230.3920 (2)1.37283 (17)0.01112 (17)0.0317 (4)
H230.445 (3)1.3603 (18)0.0805 (18)0.030 (5)*
C240.2580 (3)1.45742 (17)0.0032 (2)0.0398 (5)
H240.218 (3)1.508 (2)0.075 (2)0.063 (7)*
C250.1894 (3)1.46835 (18)0.1022 (2)0.0410 (5)
H250.098 (3)1.534 (2)0.1043 (18)0.041 (6)*
C260.2553 (3)1.39466 (19)0.1995 (2)0.0391 (5)
H260.203 (3)1.404 (2)0.276 (2)0.057 (7)*
C270.3877 (2)1.30899 (17)0.19298 (17)0.0301 (4)
H270.427 (3)1.2532 (19)0.2657 (19)0.038 (5)*
C310.8050 (3)0.70820 (17)0.33618 (17)0.0322 (4)
H31A0.755 (3)0.7739 (19)0.3628 (18)0.033 (5)*
H31B0.932 (3)0.7212 (18)0.2911 (18)0.036 (5)*
C320.7795 (2)0.58482 (15)0.42814 (15)0.0267 (4)
C330.6716 (2)0.56619 (18)0.53571 (16)0.0321 (4)
H330.607 (3)0.632 (2)0.5504 (19)0.043 (6)*
C340.6493 (3)0.4502 (2)0.61965 (18)0.0412 (5)
H340.579 (3)0.442 (2)0.691 (2)0.047 (6)*
C350.7336 (3)0.35286 (19)0.59678 (19)0.0406 (5)
H350.724 (3)0.272 (2)0.652 (2)0.053 (7)*
C360.8403 (3)0.37212 (19)0.4892 (2)0.0403 (5)
H360.904 (3)0.303 (2)0.4707 (19)0.044 (6)*
C370.8642 (2)0.48661 (17)0.40526 (17)0.0327 (4)
H370.946 (3)0.5002 (18)0.3276 (19)0.035 (5)*
N10.87062 (18)0.93029 (13)0.03050 (12)0.0239 (3)
N20.64202 (18)1.02157 (12)0.05813 (12)0.0236 (3)
N30.72844 (18)0.82497 (12)0.15710 (12)0.0243 (3)
O10.95215 (15)0.73418 (11)0.06547 (11)0.0295 (3)
O20.77767 (17)1.12336 (11)0.13051 (11)0.0317 (3)
O30.51260 (16)0.92042 (12)0.24918 (11)0.0329 (3)
O1N1.00136 (14)0.93721 (11)0.12697 (10)0.0255 (3)
O2N0.52359 (15)1.11809 (10)0.05381 (11)0.0270 (3)
O3N0.69860 (15)0.71741 (10)0.25166 (10)0.0274 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0202 (8)0.0242 (8)0.0244 (8)0.0028 (6)0.0050 (6)0.0113 (7)
C20.0212 (8)0.0253 (9)0.0254 (9)0.0006 (6)0.0059 (7)0.0121 (7)
C30.0225 (8)0.0268 (9)0.0277 (9)0.0036 (7)0.0037 (7)0.0126 (7)
C110.0281 (9)0.0392 (11)0.0291 (10)0.0076 (8)0.0031 (7)0.0185 (8)
C120.0220 (8)0.0338 (9)0.0261 (9)0.0024 (7)0.0041 (7)0.0155 (7)
C130.0322 (10)0.0356 (11)0.0400 (11)0.0037 (8)0.0119 (8)0.0203 (9)
C140.0259 (9)0.0593 (14)0.0491 (12)0.0051 (9)0.0066 (9)0.0375 (12)
C150.0261 (9)0.0577 (13)0.0339 (11)0.0104 (9)0.0006 (8)0.0258 (10)
C160.0373 (10)0.0434 (12)0.0289 (10)0.0132 (9)0.0034 (8)0.0144 (9)
C170.0287 (9)0.0357 (10)0.0298 (10)0.0018 (8)0.0048 (7)0.0180 (8)
C210.0229 (9)0.0320 (10)0.0450 (11)0.0004 (7)0.0061 (8)0.0241 (9)
C220.0197 (8)0.0229 (8)0.0327 (9)0.0035 (6)0.0020 (7)0.0125 (7)
C230.0298 (9)0.0316 (10)0.0346 (10)0.0051 (7)0.0062 (8)0.0127 (8)
C240.0373 (11)0.0266 (10)0.0513 (13)0.0031 (8)0.0185 (10)0.0050 (9)
C250.0297 (10)0.0304 (10)0.0695 (15)0.0045 (8)0.0101 (10)0.0276 (10)
C260.0300 (10)0.0473 (12)0.0499 (12)0.0000 (8)0.0016 (9)0.0326 (10)
C270.0277 (9)0.0325 (10)0.0311 (10)0.0031 (7)0.0024 (7)0.0145 (8)
C310.0383 (11)0.0289 (10)0.0306 (10)0.0066 (8)0.0121 (8)0.0082 (8)
C320.0268 (9)0.0282 (9)0.0243 (9)0.0035 (7)0.0081 (7)0.0070 (7)
C330.0291 (9)0.0387 (11)0.0299 (10)0.0006 (8)0.0058 (8)0.0148 (8)
C340.0346 (10)0.0619 (14)0.0240 (10)0.0179 (10)0.0018 (8)0.0108 (10)
C350.0396 (11)0.0328 (11)0.0423 (12)0.0109 (9)0.0181 (9)0.0008 (9)
C360.0362 (11)0.0331 (11)0.0531 (13)0.0022 (8)0.0158 (10)0.0154 (10)
C370.0289 (9)0.0331 (10)0.0345 (10)0.0014 (7)0.0033 (8)0.0131 (8)
N10.0213 (7)0.0273 (8)0.0226 (7)0.0011 (5)0.0002 (6)0.0114 (6)
N20.0222 (7)0.0212 (7)0.0275 (7)0.0030 (5)0.0050 (6)0.0106 (6)
N30.0242 (7)0.0228 (7)0.0230 (7)0.0004 (5)0.0029 (6)0.0067 (6)
O10.0283 (6)0.0273 (7)0.0347 (7)0.0032 (5)0.0072 (5)0.0145 (5)
O20.0381 (7)0.0281 (7)0.0267 (7)0.0014 (5)0.0060 (5)0.0082 (6)
O30.0301 (7)0.0374 (7)0.0303 (7)0.0024 (5)0.0021 (5)0.0160 (6)
O1N0.0213 (6)0.0336 (7)0.0238 (6)0.0036 (5)0.0007 (5)0.0154 (5)
O2N0.0220 (6)0.0243 (6)0.0400 (7)0.0049 (5)0.0085 (5)0.0182 (5)
O3N0.0315 (7)0.0249 (6)0.0221 (6)0.0069 (5)0.0060 (5)0.0030 (5)
Geometric parameters (Å, º) top
C1—O11.201 (2)C22—C271.393 (3)
C1—N11.385 (2)C23—C241.384 (3)
C1—N31.386 (2)C23—H230.95 (2)
C2—O21.206 (2)C24—C251.383 (3)
C2—N21.383 (2)C24—H240.98 (3)
C2—N11.383 (2)C25—C261.376 (3)
C3—O31.203 (2)C25—H251.00 (2)
C3—N31.389 (2)C26—C271.381 (3)
C3—N21.392 (2)C26—H261.01 (3)
C11—O1N1.474 (2)C27—H270.99 (2)
C11—C121.493 (3)C31—O3N1.466 (2)
C11—H11A1.01 (2)C31—C321.490 (3)
C11—H11B0.98 (2)C31—H31A0.99 (2)
C12—C131.382 (3)C31—H31B1.02 (2)
C12—C171.398 (3)C32—C331.384 (3)
C13—C141.400 (3)C32—C371.391 (3)
C13—H130.97 (2)C33—C341.388 (3)
C14—C151.376 (3)C33—H330.95 (2)
C14—H140.98 (2)C34—C351.381 (3)
C15—C161.378 (3)C34—H340.92 (2)
C15—H151.02 (2)C35—C361.380 (3)
C16—C171.376 (3)C35—H350.95 (3)
C16—H161.05 (2)C36—C371.376 (3)
C17—H170.97 (2)C36—H361.00 (2)
C21—O2N1.469 (2)C37—H371.01 (2)
C21—C221.486 (2)O1N—N11.3872 (17)
C21—H21A0.93 (2)O2N—N21.3865 (17)
C21—H21B1.02 (2)O3N—N31.3789 (18)
C22—C231.391 (3)
O1—C1—N1123.72 (15)C23—C24—H24116.3 (16)
O1—C1—N3124.07 (15)C26—C25—C24119.65 (18)
N1—C1—N3112.21 (14)C26—C25—H25121.5 (12)
O2—C2—N2123.88 (15)C24—C25—H25118.7 (12)
O2—C2—N1124.14 (15)C25—C26—C27120.48 (19)
N2—C2—N1111.96 (14)C25—C26—H26118.4 (14)
O3—C3—N3123.94 (16)C27—C26—H26121.1 (14)
O3—C3—N2124.12 (15)C26—C27—C22120.31 (18)
N3—C3—N2111.94 (14)C26—C27—H27118.8 (12)
O1N—C11—C12105.94 (14)C22—C27—H27120.8 (12)
O1N—C11—H11A108.6 (12)O3N—C31—C32105.74 (14)
C12—C11—H11A111.5 (12)O3N—C31—H31A103.9 (12)
O1N—C11—H11B107.2 (12)C32—C31—H31A114.5 (12)
C12—C11—H11B112.9 (12)O3N—C31—H31B105.7 (11)
H11A—C11—H11B110.5 (16)C32—C31—H31B112.8 (12)
C13—C12—C17118.61 (17)H31A—C31—H31B113.1 (17)
C13—C12—C11122.12 (17)C33—C32—C37119.40 (17)
C17—C12—C11119.25 (16)C33—C32—C31121.07 (16)
C12—C13—C14120.23 (19)C37—C32—C31119.52 (17)
C12—C13—H13116.1 (12)C32—C33—C34119.93 (19)
C14—C13—H13123.6 (12)C32—C33—H33120.1 (14)
C15—C14—C13120.20 (18)C34—C33—H33119.9 (14)
C15—C14—H14119.3 (13)C35—C34—C33120.6 (2)
C13—C14—H14120.5 (13)C35—C34—H34122.2 (15)
C14—C15—C16119.82 (19)C33—C34—H34117.2 (15)
C14—C15—H15119.7 (13)C36—C35—C34119.16 (19)
C16—C15—H15120.4 (13)C36—C35—H35117.8 (15)
C17—C16—C15120.29 (19)C34—C35—H35123.0 (15)
C17—C16—H16121.1 (11)C37—C36—C35120.9 (2)
C15—C16—H16118.6 (11)C37—C36—H36118.4 (13)
C16—C17—C12120.84 (17)C35—C36—H36120.7 (13)
C16—C17—H17123.3 (13)C36—C37—C32120.04 (19)
C12—C17—H17115.8 (13)C36—C37—H37120.4 (12)
O2N—C21—C22105.83 (13)C32—C37—H37119.5 (12)
O2N—C21—H21A109.2 (12)N1—O1N—C11109.33 (12)
C22—C21—H21A109.5 (12)N2—O2N—C21109.90 (12)
O2N—C21—H21B105.6 (12)N3—O3N—C31109.64 (12)
C22—C21—H21B113.2 (12)C2—N1—C1128.05 (14)
H21A—C21—H21B113.1 (17)C2—N1—O1N115.19 (13)
C23—C22—C27118.98 (16)C1—N1—O1N116.72 (13)
C23—C22—C21121.14 (17)C2—N2—O2N116.70 (13)
C27—C22—C21119.87 (17)C2—N2—C3127.98 (14)
C24—C23—C22120.14 (19)O2N—N2—C3115.24 (13)
C24—C23—H23124.8 (12)O3N—N3—C1115.89 (13)
C22—C23—H23115.1 (12)O3N—N3—C3116.35 (13)
C25—C24—C23120.43 (19)C1—N3—C3127.62 (14)
C25—C24—H24123.3 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i1.02 (2)2.54 (2)3.350 (3)136 (2)
C25—H25···O1ii1.00 (3)2.46 (3)3.423 (3)161 (2)
Symmetry codes: (i) x+1, y, z1; (ii) x1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC3H3N3O6·2H2OC24H21N3O6
Mr213.12447.44
Crystal system, space groupMonoclinic, P21/aTriclinic, P1
Temperature (K)113113
a, b, c (Å)7.5109 (12), 11.9244 (17), 8.1794 (12)7.765 (2), 12.139 (3), 12.783 (3)
α, β, γ (°)90, 98.405 (13), 9066.36 (2), 76.78 (2), 82.79 (2)
V3)724.70 (19)1073.8 (5)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.200.10
Crystal size (mm)0.50 × 0.43 × 0.360.82 × 0.68 × 0.44
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Oxford Diffraction Xcalibur CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4408, 1634, 1451 8404, 4600, 3183
Rint0.0150.022
(sin θ/λ)max1)0.6500.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.12 0.055, 0.167, 1.05
No. of reflections16344600
No. of parameters157382
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.230.53, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis CCD (Oxford Diffraction,2003), CrysAlis CCD [or ERD?] (Oxford Diffraction, 2003), CrysAlis CCD [or RED?] (Oxford Diffraction,2003), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
C1—O11.2084 (15)C2—N11.3804 (16)
C1—N11.3808 (16)C3—O31.2063 (15)
C1—N31.3814 (16)C3—N21.3809 (16)
C2—O21.2071 (16)C3—N31.3843 (16)
C2—N21.3802 (16)
C1—N3—C3127.27 (11)N1—C1—N3112.43 (10)
C2—N1—C1127.48 (11)N2—C2—N1112.87 (10)
C2—N2—C3126.91 (10)N2—C3—N3112.80 (10)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1N—H1O···O1Wi0.88 (2)2.39 (2)3.0060 (15)127 (2)
O1N—H1O···O2Wii0.88 (2)2.05 (2)2.7758 (15)140 (2)
O2N—H2O···O2Wiii0.89 (2)1.69 (2)2.5803 (14)175 (2)
O3N—H3O···O1Wiii0.85 (2)1.73 (2)2.5754 (15)173 (2)
O1W—H11W···O1iv0.86 (2)2.05 (2)2.8889 (15)165 (2)
O1W—H11W···O1Niv0.86 (2)2.45 (2)2.9775 (14)120 (2)
O1W—H12W···O20.82 (2)1.96 (2)2.7685 (14)170 (2)
O2W—H21W···O2Nv0.81 (2)2.35 (2)3.0294 (15)141 (2)
O2W—H21W···O3v0.81 (2)2.11 (2)2.8052 (14)144 (2)
O2W—H22W···O1N0.80 (2)2.54 (2)3.1543 (15)136 (2)
O2W—H22W···O3Nvi0.80 (2)2.21 (2)2.8544 (14)138 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+3/2, z; (iii) x+1/2, y1/2, z+1; (iv) x, y, z1; (v) x+1, y+1, z+1; (vi) x+1, y+1, z+2.
Selected geometric parameters (Å, º) for (II) top
C1—O11.201 (2)C2—N11.383 (2)
C1—N11.385 (2)C3—O31.203 (2)
C1—N31.386 (2)C3—N31.389 (2)
C2—O21.206 (2)C3—N21.392 (2)
C2—N21.383 (2)
N1—C1—N3112.21 (14)C2—N1—C1128.05 (14)
N2—C2—N1111.96 (14)C2—N2—C3127.98 (14)
N3—C3—N2111.94 (14)C1—N3—C3127.62 (14)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i1.02 (2)2.54 (2)3.350 (3)136 (2)
C25—H25···O1ii1.00 (3)2.46 (3)3.423 (3)161 (2)
Symmetry codes: (i) x+1, y, z1; (ii) x1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds