Download citation
Download citation
link to html
A new type of benzo­thia­zolinone derivative with potential pharmacological activity, viz. 6-(3,4-di­fluoro­benzoyl)-3-[2-(4-pyridyl)­ethyl]-1,3-benzo­thia­zol-2(3H)-one, C21H14F2N2O2S, has been prepared and studied by NMR, IR and single-crystal X-ray diffraction techniques. The mol­ecule is not planar, the pyridine and di­fluoro­benzene moieties being located above and below the benzo­thia­zole ring system. The carbonyl O atoms are involved in an intramolecular hydrogen-bond-type interaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104019730/av1196sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104019730/av1196Isup2.hkl
Contains datablock I

CCDC reference: 254932

Comment top

Benzothiazole derivatives possess a broad spectrum of pharmacological activitie, such as antibacterial, antifungal (Delmas et al., 2002; Kanoongo et al., 1990; Karalı et al., 2004; Lakhan et al., 2000), dopaminergic (Weinstock et al., 1987;), anticonvulsant (Chopade et al., 2002), antiadrenergic (Di Nunno et al., 2000) and analgesic anti-inflammatory activities (Gökhan et al., 2004; Khedekar et al., 2003). The immunological importance of these derivatives prompted us to synthesize a 3-substituted-2-benzothiazolinone derivative and clarify its structure.

It has been stated that 2-hydroxybenzothiazole may also exist in the tautomeric form (Katritzky, 1985). The vinylpyridine group therefore may be bonded to the 6-acyl-2-benzothiazolinone moiety through both the N and the O atoms depending on whether the molecule existed in the hydroxy or the one form, and a mixture of N-substituted or O-substituted benzothiazolinone derivatives may be generated. The present work has been carried out in order to determine the stereochemistry of the reactive tautomeric form.

The title compound, (I), was synthesized by the reaction of 6-(3,4-difluorobenzoyl)-2- benzothiazolinone with 4-vinylpyridine. The structure of (I) was suggested by IR, 1H NMR and elementary analysis. In order to obtain information about the stereochemistry of the molecule and to confirm the assigned structure, X-ray analysis was undertaken. The biological activity of (I) is under investigation.

The molecular structure and atom-numbering scheme are shown in Fig. 1, and the arrangement of the molecules in the unit cell is given in Fig. 2. Selected bond lengths and angles are listed in Table 1. The benzothiazole ring system is planar, the greatest deviations from the least-squares plane of the system being those of atoms C3 [−0.016 (2) Å] and C1 [0.0142 (2) Å]. The dihedral angle between the planes associated with the benzene and thiazole rings is only 0.55 (8)°. This value is close to those found for other structures including a benzothiazole ring system [e.g. 0.3 (1)° (Ćaleta et al., 2004) and 2.3 (4)° (Castiñeiras et al., 2000)].

The pyridylethyl moiety at atom N1 is rotated around the N1—C8 and C9—C10 bonds, giving C7—N1—C8—C9 and C8—C9—C10—C14 torsion angles of 81.9 (3) and 98.3 (3)°. The dihedral angle between the ring planes is 1.08 (9)°, so that the pyridine ring is almost parallel to the benzothiazole ring system. The difluorobenzene moiety is nearly planar, and atoms F1 and F2 lie −0.043 (2) and 0.56 (2) Å from the mean plane of the benzene ring atoms. The carbonyl group at atom C4 is inclined with respect to the benzothiazole system; atom O2 departs 0.853 (2) Å from the mean ring plane. The dihedral angle between the plane defined by atoms O2, C4, C15 and C16 and the plane of the benzene ring is 33.3 (1)°.

In the thiazole ring, the S1—C1 bond is longer than the S1—C2 bond [1.784 (2) Å versus 1.746 (2) Å] and is also longer than the accepted value for an S—Csp2 single bond [1.762 Å for O=C—S—C#; Allen et al., 1987]. The difference between the S1—C1 and S1—C2 bond lengths can be attributed to the fact that carbonyl atom O1 is bonded to atom C1, whereas atom C2 belongs to the aromatic ring. The S—C distances are in agreement with those found for other structures containing benzothiazolinone, such as 2-hydroxybenzothiazole [1.7767 (13) and 1.7479 (13) Å; Flakus et al., 2002] and methyl-3-(5-choloro-2-oxo-1,3-benzothiazol-3(2H)-yl)propanoate [1.776 (3) and 1.742 (3) Å; Aydın et al., 2002]. The N1—C1 [1.377 (3) Å] and N1—C7 [1.380 (3) Å] bond lengths are within the usual range for Csp2—Nsp2 bonds, while the N1—C8 bond length [1.464 (2) Å] is close to the average length of Csp3—Nsp2 bonds (Allen et al., 1987). These values are comparable to those of other structures [1.3589 (16) and 1.3911 (16) Å in 2-hydroxybenzothiazole, and 1.362 (4), 1.401 (4) and 1.469 (3) Å in methyl-3-(5-choloro-2-oxo- 1,3-benzothiazol-3(2H)-yl)propanoate]. The sum of the angles about atom N1 (360°) indicates a planar sp2 environment.

In this structure, the orientations of carbonyl atoms O2 and O1 toward the benzothiazole and ethyl groups, respectively, are consistent with an intramolecular hydrogen-type interaction. In this manner, carbonyl groups are involved in the formation of a five-membered ring structure [C5···O2 = 2.830 (3) Å, C5—H5···O2 = 94.9°, C8···O1 = 2.835 (3) Å and C8—H8B···O1 = 100.3°]. The crystal packing of (I) is shown in Fig. 2. There are no intermolecular hydrogen bonds, but the F atoms of the phenyl substituent are involved in short intermolecular contacts [F1···F1i = 2.814 (3) Å and S1···F2ii = 3.347 (2) Å; symmetry codes: (i) −x, −y, −z; (ii) 1/2 − x, 1/2 + y, 1/2 − z].

Experimental top

For the synthesis of (I), to 6-(3,4-difluorobenzoyl)-2-benzothiazolinone (2.5 mmol) was added 4-vinylpyridine (7.5 mmol), and the reaction mixture was heated under reflux in an oil bath until molten and then for an additional 2 h at 353 K. On addition of a cold alchol–water mixture, the product separated, and the resulting precipitate was collected by filtration (Gökhan et al., 1999). Yield: 61.41%. M.p: 399–401 K. The crude product was recrystallized from ethanol–water. IR (KBr, cm−1): n 1692 (lactam C=O), 1649 (arom. ket.). 1H NMR (CDCl3): d 3.071–3.109 (t, 2H, CH2—Ar), 4.243–4.280 (t, 2H, N—CH2), 7.026–7.047 (d, J = 8.4 Hz, 1H, 2-benzothiazolinone H-4), 7.162–7.173 (d, J = 4.4 Hz, 2H, pyridine H-2, H-6), 7.315–7.339 (t, 1H, benzene H-5'), 7.53–7.57 (s, 1H, benzene H-2'), 7.624–7.674 (t, 1H, benzene H-6'), 7.728–7.754 (d, J = 10 Hz, 2-benzothiazolinone H-5), 7.922–7.926 (s, 1H, benzothiazolinone H-7), 8.529–8.543 (d, J = 8 Hz, 2H, pyridine H-3, H-5). Analysis calulate for C21H14F2N2O2S (MW = 396): N 7.07, S 8.09%; found: N 6.93, S 7.81%).

Refinement top

H atoms were placed in idealized positions and refined using a riding model [Ueq(H) = 1.3Ueq(C), C—H = 0.93 Å (aromatic) and C—H = 0.97 Å (ethyl)].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
Figure 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Figure 2. The crystal packing of (I), projected on to the bc plane.
(I) top
Crystal data top
C21H14F2N2O2SF(000) = 816
Mr = 396.4Dx = 1.468 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.2985 (15) Åθ = 11–18.1°
b = 19.4347 (19) ŵ = 0.22 mm1
c = 12.6638 (16) ÅT = 295 K
β = 93.020 (1)°Prism, colourless
V = 1793.8 (5) Å30.54 × 0.42 × 0.12 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
non–profiled ω/2θ scansθmax = 26.3°, θmin = 2.6°
Absorption correction: ψ scan
(North et al., 1968)
h = 90
Tmin = 0.852, Tmax = 0.974k = 240
3924 measured reflectionsl = 1515
3636 independent reflections3 standard reflections every 120 min
2575 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.5076P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.22 e Å3
3636 reflectionsΔρmin = 0.20 e Å3
253 parameters
Crystal data top
C21H14F2N2O2SV = 1793.8 (5) Å3
Mr = 396.4Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2985 (15) ŵ = 0.22 mm1
b = 19.4347 (19) ÅT = 295 K
c = 12.6638 (16) Å0.54 × 0.42 × 0.12 mm
β = 93.020 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2575 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.852, Tmax = 0.9743 standard reflections every 120 min
3924 measured reflections intensity decay: none
3636 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
3636 reflectionsΔρmin = 0.20 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3487 (3)0.19388 (12)0.92523 (17)0.0517 (5)
C100.8748 (3)0.23074 (12)1.13913 (15)0.0474 (5)
C110.9403 (3)0.16475 (12)1.15321 (18)0.0562 (6)
C121.1193 (3)0.15461 (13)1.1900 (2)0.0632 (6)
C131.1752 (3)0.26674 (13)1.1952 (2)0.0682 (7)
C140.9989 (3)0.28276 (12)1.1598 (2)0.0605 (6)
C150.1012 (3)0.49966 (11)0.86825 (18)0.0526 (5)
C160.0555 (3)0.50812 (10)0.78782 (17)0.0490 (5)
C170.0463 (3)0.48641 (12)0.68443 (18)0.0578 (6)
C180.1855 (4)0.50253 (13)0.6099 (2)0.0686 (7)
C190.3334 (4)0.53844 (13)0.6410 (2)0.0677 (7)
C20.2085 (3)0.31080 (10)0.88687 (15)0.0404 (4)
C200.3480 (3)0.55728 (12)0.7441 (2)0.0634 (6)
C210.2092 (3)0.54415 (11)0.81764 (19)0.0578 (6)
C30.1127 (3)0.37026 (10)0.86199 (15)0.0425 (5)
C40.2005 (3)0.43338 (10)0.87735 (16)0.0458 (5)
C50.3856 (3)0.43468 (12)0.91406 (17)0.0521 (5)
C60.4821 (3)0.37588 (12)0.93701 (16)0.0508 (5)
C70.3927 (3)0.31298 (11)0.92419 (15)0.0423 (4)
C80.6569 (3)0.23639 (13)0.98100 (17)0.0537 (6)
C90.6797 (3)0.24464 (15)1.10050 (17)0.0596 (6)
F10.4717 (3)0.55545 (9)0.57044 (15)0.1065 (6)
F20.5002 (2)0.59065 (9)0.77139 (15)0.0998 (6)
N10.4668 (2)0.24848 (9)0.94270 (14)0.0480 (4)
N21.2385 (3)0.20429 (11)1.21157 (17)0.0635 (5)
O10.3860 (2)0.13405 (9)0.93881 (16)0.0759 (5)
O20.1432 (2)0.54769 (8)0.92658 (15)0.0744 (5)
S10.13058 (7)0.22595 (3)0.87782 (4)0.04813 (17)
H110.86420.12731.1380.067*
H121.15880.10951.20040.076*
H131.2560.30311.20850.082*
H140.9640.32841.14990.073*
H170.05390.46080.66470.069*
H180.17790.4890.53980.082*
H210.21720.55910.8870.069*
H30.00840.36830.83540.051*
H50.44430.47690.9230.062*
H60.60470.37780.96070.061*
H8A0.73670.26870.94740.064*
H8B0.69320.19030.96170.064*
H9A0.6460.29111.11990.072*
H9B0.59840.21291.13420.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (12)0.0570 (13)0.0544 (13)0.0084 (10)0.0018 (9)0.0022 (10)
C100.0372 (10)0.0657 (13)0.0389 (11)0.0089 (10)0.0005 (8)0.0023 (10)
C110.0468 (12)0.0568 (13)0.0643 (14)0.0000 (10)0.0036 (11)0.0004 (11)
C120.0567 (14)0.0573 (14)0.0751 (16)0.0194 (12)0.0011 (12)0.0055 (12)
C130.0523 (14)0.0633 (15)0.0872 (19)0.0054 (12)0.0152 (13)0.0009 (13)
C140.0564 (14)0.0503 (13)0.0732 (16)0.0117 (11)0.0118 (12)0.0045 (11)
C150.0503 (13)0.0462 (12)0.0603 (13)0.0064 (10)0.0060 (11)0.0025 (10)
C160.0486 (12)0.0411 (11)0.0565 (13)0.0049 (9)0.0043 (10)0.0053 (9)
C170.0560 (14)0.0582 (13)0.0592 (14)0.0008 (11)0.0019 (11)0.0007 (11)
C180.0801 (18)0.0694 (16)0.0551 (14)0.0037 (14)0.0081 (13)0.0035 (12)
C190.0725 (17)0.0539 (14)0.0736 (17)0.0028 (12)0.0247 (14)0.0088 (12)
C20.0320 (9)0.0513 (11)0.0375 (10)0.0061 (8)0.0030 (8)0.0008 (8)
C200.0560 (14)0.0484 (13)0.0848 (19)0.0090 (11)0.0074 (13)0.0016 (12)
C210.0630 (15)0.0495 (12)0.0600 (14)0.0056 (11)0.0044 (11)0.0010 (10)
C30.0305 (9)0.0505 (11)0.0457 (11)0.0024 (8)0.0060 (8)0.0016 (9)
C40.0398 (11)0.0493 (11)0.0473 (11)0.0050 (9)0.0080 (9)0.0029 (9)
C50.0440 (12)0.0546 (13)0.0563 (13)0.0126 (10)0.0097 (10)0.0066 (10)
C60.0313 (10)0.0667 (14)0.0531 (12)0.0081 (9)0.0103 (9)0.0058 (10)
C70.0316 (10)0.0568 (12)0.0379 (10)0.0016 (9)0.0039 (8)0.0006 (9)
C80.0359 (11)0.0767 (16)0.0481 (12)0.0143 (10)0.0026 (9)0.0006 (11)
C90.0402 (12)0.0899 (17)0.0481 (13)0.0161 (11)0.0027 (9)0.0008 (11)
F10.1055 (14)0.1027 (13)0.1048 (13)0.0269 (11)0.0544 (11)0.0002 (10)
F20.0762 (11)0.0969 (12)0.1247 (15)0.0370 (10)0.0110 (10)0.0061 (10)
N10.0345 (9)0.0608 (11)0.0477 (10)0.0058 (8)0.0058 (7)0.0005 (8)
N20.0410 (10)0.0719 (14)0.0763 (14)0.0119 (9)0.0084 (9)0.0041 (10)
O10.0650 (11)0.0573 (10)0.1041 (14)0.0145 (9)0.0069 (10)0.0060 (10)
O20.0748 (12)0.0542 (10)0.0913 (13)0.0008 (8)0.0241 (10)0.0182 (9)
S10.0354 (3)0.0474 (3)0.0610 (3)0.0031 (2)0.0036 (2)0.0009 (2)
Geometric parameters (Å, º) top
S1—C21.746 (2)C6—H60.93
S1—C11.784 (2)C11—C101.377 (3)
C7—N11.380 (3)C11—C121.378 (3)
C7—C61.391 (3)C11—H110.93
C7—C21.402 (3)C16—C171.381 (3)
N1—C11.377 (3)C16—C211.392 (3)
N1—C81.464 (2)C8—C91.522 (3)
C3—C21.378 (3)C8—H8A0.97
C3—C41.393 (3)C8—H8B0.97
C3—H30.93C12—H120.93
O1—C11.204 (3)F1—C191.353 (3)
C5—C61.366 (3)C10—C91.505 (3)
C5—C41.406 (3)C9—H9A0.97
C5—H50.93C9—H9B0.97
O2—C151.219 (2)C20—C211.364 (3)
C15—C41.480 (3)C20—C191.365 (4)
C15—C161.500 (3)C19—C181.361 (4)
N2—C131.311 (3)C13—H130.93
N2—C121.319 (3)C21—H210.93
F2—C201.347 (3)C17—C181.385 (3)
C14—C101.373 (3)C17—H170.93
C14—C131.376 (3)C18—H180.93
C14—H140.93
C2—S1—C191.49 (10)N1—C1—S1108.94 (15)
N1—C7—C6126.97 (17)N1—C8—C9111.37 (17)
N1—C7—C2112.95 (17)N1—C8—H8A109.4
C6—C7—C2120.07 (18)C9—C8—H8A109.4
C1—N1—C7115.86 (16)N1—C8—H8B109.4
C1—N1—C8120.22 (18)C9—C8—H8B109.4
C7—N1—C8123.90 (18)H8A—C8—H8B108
C2—C3—C4118.86 (17)N2—C12—C11124.7 (2)
C2—C3—H3120.6N2—C12—H12117.7
C4—C3—H3120.6C11—C12—H12117.7
C3—C2—C7121.16 (18)C14—C10—C11116.13 (19)
C3—C2—S1128.12 (14)C14—C10—C9122.2 (2)
C7—C2—S1110.72 (15)C11—C10—C9121.7 (2)
C6—C5—C4122.07 (19)C10—C9—C8110.87 (17)
C6—C5—H5119C10—C9—H9A109.5
C4—C5—H5119C8—C9—H9A109.5
O2—C15—C4120.84 (19)C10—C9—H9B109.5
O2—C15—C16119.1 (2)C8—C9—H9B109.5
C4—C15—C16120.08 (18)H9A—C9—H9B108.1
C13—N2—C12115.0 (2)F2—C20—C21120.5 (2)
C3—C4—C5119.27 (19)F2—C20—C19118.8 (2)
C3—C4—C15122.43 (18)C21—C20—C19120.7 (2)
C5—C4—C15117.93 (18)F1—C19—C18120.7 (3)
C10—C14—C13119.4 (2)F1—C19—C20118.2 (3)
C10—C14—H14120.3C18—C19—C20121.1 (2)
C13—C14—H14120.3N2—C13—C14125.2 (2)
C5—C6—C7118.53 (17)N2—C13—H13117.4
C5—C6—H6120.7C14—C13—H13117.4
C7—C6—H6120.7C20—C21—C16119.3 (2)
C10—C11—C12119.6 (2)C20—C21—H21120.4
C10—C11—H11120.2C16—C21—H21120.4
C12—C11—H11120.2C16—C17—C18120.4 (2)
C17—C16—C21119.4 (2)C16—C17—H17119.8
C17—C16—C15122.5 (2)C18—C17—H17119.8
C21—C16—C15117.9 (2)C19—C18—C17118.9 (2)
O1—C1—N1125.9 (2)C19—C18—H18120.5
O1—C1—S1125.16 (19)C17—C18—H18120.5
C6—C7—N1—C1179.2 (2)C8—N1—C1—S1179.33 (15)
C2—C7—N1—C12.0 (2)C2—S1—C1—O1179.3 (2)
C6—C7—N1—C80.7 (3)C2—S1—C1—N11.22 (15)
C2—C7—N1—C8179.43 (18)C1—N1—C8—C996.6 (2)
C4—C3—C2—C71.8 (3)C7—N1—C8—C981.9 (3)
C4—C3—C2—S1178.61 (16)C13—N2—C12—C110.2 (4)
N1—C7—C2—C3178.69 (17)C10—C11—C12—N21.5 (4)
C6—C7—C2—C30.2 (3)C13—C14—C10—C111.7 (3)
N1—C7—C2—S11.0 (2)C13—C14—C10—C9179.9 (2)
C6—C7—C2—S1179.82 (16)C12—C11—C10—C142.4 (3)
C1—S1—C2—C3179.78 (19)C12—C11—C10—C9179.2 (2)
C1—S1—C2—C70.16 (15)C14—C10—C9—C898.3 (3)
C2—C3—C4—C52.3 (3)C11—C10—C9—C880.1 (3)
C2—C3—C4—C15170.59 (19)N1—C8—C9—C10178.9 (2)
C6—C5—C4—C31.1 (3)F2—C20—C19—F11.2 (4)
C6—C5—C4—C15172.0 (2)C21—C20—C19—F1177.1 (2)
O2—C15—C4—C3143.6 (2)F2—C20—C19—C18177.7 (2)
C16—C15—C4—C335.4 (3)C21—C20—C19—C184.0 (4)
O2—C15—C4—C529.4 (3)C12—N2—C13—C140.9 (4)
C16—C15—C4—C5151.7 (2)C10—C14—C13—N20.1 (4)
C4—C5—C6—C70.5 (3)F2—C20—C21—C16178.5 (2)
N1—C7—C6—C5179.7 (2)C19—C20—C21—C163.2 (4)
C2—C7—C6—C51.0 (3)C17—C16—C21—C200.0 (3)
O2—C15—C16—C17135.3 (2)C15—C16—C21—C20175.0 (2)
C4—C15—C16—C1745.7 (3)C21—C16—C17—C182.5 (3)
O2—C15—C16—C2139.5 (3)C15—C16—C17—C18172.3 (2)
C4—C15—C16—C21139.5 (2)F1—C19—C18—C17179.7 (2)
C7—N1—C1—O1178.4 (2)C20—C19—C18—C171.4 (4)
C8—N1—C1—O10.2 (3)C16—C17—C18—C191.8 (4)
C7—N1—C1—S12.1 (2)

Experimental details

Crystal data
Chemical formulaC21H14F2N2O2S
Mr396.4
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.2985 (15), 19.4347 (19), 12.6638 (16)
β (°) 93.020 (1)
V3)1793.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.54 × 0.42 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.852, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
3924, 3636, 2575
Rint0.020
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.02
No. of reflections3636
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S1—C21.746 (2)C15—C161.500 (3)
S1—C11.784 (2)N2—C131.311 (3)
C7—N11.380 (3)N2—C121.319 (3)
N1—C11.377 (3)F2—C201.347 (3)
N1—C81.464 (2)C8—C91.522 (3)
O1—C11.204 (3)F1—C191.353 (3)
O2—C151.219 (2)C10—C91.505 (3)
C15—C41.480 (3)
C2—S1—C191.49 (10)O1—C1—N1125.9 (2)
N1—C7—C2112.95 (17)N1—C1—S1108.94 (15)
C1—N1—C7115.86 (16)N1—C8—C9111.37 (17)
C7—C2—S1110.72 (15)N2—C12—C11124.7 (2)
C13—N2—C12115.0 (2)C14—C10—C11116.13 (19)
C10—C11—C12119.6 (2)N2—C13—C14125.2 (2)
C16—C15—C4—C335.4 (3)C7—N1—C8—C981.9 (3)
C4—C15—C16—C1745.7 (3)C14—C10—C9—C898.3 (3)
C1—N1—C8—C996.6 (2)N1—C8—C9—C10178.9 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds