Download citation
Download citation
link to html
The title compound, [Cu2(C16H24N2O)2Cl4], is a dinuclear copper(II) complex with inversion symmetry. Each CuII atom is five-coordinated by two O and one N atom from two Schiff base ligands, and by two Cl atoms, giving an approximately trigonal–bipyramidal coordination environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104017718/av1192sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104017718/av1192Isup2.hkl
Contains datablock I

CCDC reference: 251293

Comment top

Investigations into the magnetic properties of molecule-based materials containing a polymetallic assembly have become a fascinating subject in the field of condensed matter physics and materials chemistry (Dalai et al., 2002; Bhaduri et al., 2003). Much attention has been focused on coordination complexes with novel magnetic properties, which may have potentially useful applications in materials science (Ray et al., 2003). The prime strategy for designing these molecular materials is to use a suitable bridging ligand that determines the nature of the magnetic interactions (Koner et al., 2003). Recently, we have reported a few Schiff base complexes (You et al., 2003; You, Xiong et al., 2004; You, Zhu & Liu, 2004). As an extension of this work on the structural characterization of Schiff base complexes, the title dinuclear copper(II) complex, (I), is reported here.

Complex (I) exhibits inversion symmetry (Fig. 1). The two CuII ions of the dinuclear complex are bridged by two υ-O (phenolate O atoms) ions, with a separation of 3.141 (2) Å. Each copper(II) ion in the complex is five-coordinated by one imine N atom from a Schiff base ligand, two terminal Cl ions and two bridging phenolate O atoms. The average Cu—Cl bond length [2.398 (2) Å; Table 1] is a little shorter than the corresponding bond distance [2.421 (2) Å] observed in a similar copper(II) complex (Kani et al., 2000). The fact that the Cu1—O1 distance [2.013 (3) Å] is longer than the Cu1—O1(-x, 1 − y, −z) distance [1.974 (3) Å] is indicative of the greater trans influence of the Cl ion over the Schiff base imine N atom. The Cu1—N1 bond length is a little longer than the corresponding bond distance [1.927 (3) Å] observed in a Schiff base copper(II) complex that we reported recently (You, Chen et al., 2004). This difference is probably caused by the two Cl atoms in (I) having a larger hindrance than the water molecule in the related complex. The Cu—O(phenolate) bond distances ?exhibit the same pattern in each complex?. The C7=N1 bond distance in (I) [1.277 (6) Å] conforms to the value for a double bond, while the C8—N1 bond distance [1.491 (6) Å] conforms to the value for a single bond. The six-membered chelate ring in the complex is nearly planar, with a deviation of 0.0349 Å. The C1–C6 phenyl ring plane and the Cu1/O1/Cu1(-x, 1 − y, −z)/O1(-x, 1 − y, −z) four-membered ring are nearly planar, with a dihedral angle of 8.5 (3) °.

The stereochemistry around the CuII atom in (I) can be described as a slightly distorted trigonal-bipyramidal geometry. Taking atoms N1 and O1(-x, 1 − y, −z) as the axial donors, an angle of 168.18 (17)° is subtended at the copper(II) ion, which is a little smaller than the theoretical value of 180°. The angles between the two axial donors and the three equatorial donors O1, Cl1 and Cl2 range from 76.04 (16)° for O1(-x, 1 − y, −z)—Cu1—O1 to 94.12 (11)° for O1(-x, 1 − y, −z)—Cu1—Cl1. The three equatorial angles range from 116.17 (6)° for Cl1—Cu1—Cl2 to 122.72 (11)° for O1—Cu1—Cl2, showing only slight differences from the ideal value of 120 °.

In the crystal stucture, all of the Cl atoms and all amine N atoms in the ligands contribute to hydrogen bonds, leading to the formation of sheets parallel to the ac plane (Table 2 and Fig. 2). As expected, the cyclohexyl groups in the complex adopt chair conformations to minimize steric effects.

Experimental top

Salicylaldehyde and N-cyclohexyl-1,3-diaminopropane were available commercially and were used without further purification. Salicylaldehyde (0.2 mmol, 24.4 mg) and N-cyclohexyl-1,3-diaminopropane (0.2 mmol, 31.2 mg) were dissolved in ethanol (20 ml). The mixture was stirred for 1 h to give a clear orange solution of L (0.2 mmol), where L is 2-[(3-cyclohexylaminopropylimino)methyl]phenol. To the solution of L was added a ethanol solution (10 ml) of CuCl2·2H2O (0.1 mmol, 17.0 mg), with stirring. After keeping the resulting solution in air for 15 d, blue block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvents. The crystals were isolated, washed three times with ethanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 63.2%). Analysis found: C 48.8, H 6.3, N 7.2%; calculated for C32H48Cl4Cu2N4O2: C 48.7, H 6.1, N 7.1%.

Refinement top

Atoms H2A and H2B were placed in geometrically idealized positions and constrained to ride on their parent atoms, with Uiso(H) values fixed at 0.08 Å2. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.98 Å, and with Uiso(H) values of 1.2 Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis. All H atoms have been omitted for clarity.
Bis{µ-2-[3-(cyclohexylamino)propyliminomethyl]phenolato}bis[dichlorocopper(II)] top
Crystal data top
[Cu2(C16H24N2O)2Cl4]F(000) = 1640
Mr = 789.62Dx = 1.466 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ab2acCell parameters from 3328 reflections
a = 15.487 (3) Åθ = 2.2–23.2°
b = 22.117 (4) ŵ = 1.52 mm1
c = 10.442 (2) ÅT = 293 K
V = 3576.7 (12) Å3Block, blue
Z = 40.23 × 0.18 × 0.12 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3402 independent reflections
Radiation source: fine-focus sealed tube1917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1718
Tmin = 0.721, Tmax = 0.838k = 2427
11330 measured reflectionsl = 121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0216P)2]
where P = (Fo2 + 2Fc2)/3
3402 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.63 e Å3
3 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu2(C16H24N2O)2Cl4]V = 3576.7 (12) Å3
Mr = 789.62Z = 4
Orthorhombic, PccnMo Kα radiation
a = 15.487 (3) ŵ = 1.52 mm1
b = 22.117 (4) ÅT = 293 K
c = 10.442 (2) Å0.23 × 0.18 × 0.12 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3402 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1917 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.838Rint = 0.096
11330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0713 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.96Δρmax = 0.63 e Å3
3402 reflectionsΔρmin = 0.44 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.03570 (4)0.47493 (3)0.13039 (6)0.0344 (2)
C10.1825 (4)0.5816 (3)0.0883 (5)0.0336 (15)
C100.2670 (3)0.4040 (3)0.3098 (5)0.0430 (17)
C110.3956 (4)0.3406 (3)0.2487 (5)0.0461 (17)
C120.3751 (4)0.3451 (3)0.1062 (6)0.062 (2)
C130.4167 (5)0.2945 (3)0.0335 (7)0.078 (2)
C140.5132 (5)0.2933 (4)0.0554 (7)0.089 (3)
C150.5325 (5)0.2869 (4)0.1978 (7)0.079 (2)
C160.4921 (4)0.3375 (3)0.2723 (6)0.061 (2)
C20.1179 (4)0.5816 (3)0.0031 (5)0.0315 (15)
C30.1212 (4)0.6257 (3)0.0999 (5)0.0362 (15)
C40.1874 (4)0.6668 (3)0.1050 (6)0.0449 (17)
C50.2524 (4)0.6656 (3)0.0165 (6)0.055 (2)
C60.2513 (4)0.6234 (3)0.0761 (6)0.0509 (19)
C70.1854 (4)0.5443 (3)0.2010 (5)0.0390 (16)
C80.1453 (3)0.4746 (3)0.3623 (5)0.0414 (15)
C90.2381 (3)0.4558 (3)0.3938 (5)0.0394 (16)
Cl10.06551 (9)0.48779 (7)0.30053 (13)0.0474 (5)
Cl20.09922 (9)0.37590 (7)0.11037 (13)0.0416 (4)
N10.1325 (3)0.5029 (2)0.2341 (4)0.0311 (12)
N20.3609 (3)0.3939 (2)0.3202 (4)0.0445 (14)
O10.0540 (2)0.54068 (16)0.0001 (3)0.0326 (10)
H10A0.23670.36750.33470.052*
H10B0.25240.41280.22140.052*
H11A0.36890.30380.28280.055*
H12A0.31300.34350.09390.074*
H12B0.39570.38350.07340.074*
H13A0.40510.29940.05720.094*
H13B0.39190.25630.06060.094*
H14A0.53880.33030.02310.106*
H14B0.53840.25960.00920.106*
H15A0.51030.24860.22850.095*
H15B0.59450.28730.21110.095*
H16A0.51840.37550.24740.073*
H16B0.50270.33140.36290.073*
H2A0.378 (4)0.392 (2)0.4055 (19)0.080*
H2B0.384 (4)0.4289 (16)0.285 (4)0.080*
H3A0.07780.62710.16150.043*
H4A0.18810.69590.16940.054*
H5A0.29700.69370.02030.066*
H6A0.29700.62160.13380.061*
H7A0.23140.55120.25640.047*
H8A0.10880.43910.36770.050*
H8B0.12590.50280.42720.050*
H9A0.27630.49000.38130.047*
H9B0.24160.44380.48300.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0303 (4)0.0435 (5)0.0293 (4)0.0042 (4)0.0032 (4)0.0050 (4)
C10.034 (4)0.029 (4)0.037 (4)0.005 (3)0.004 (3)0.000 (3)
C100.030 (4)0.055 (5)0.044 (4)0.003 (3)0.006 (3)0.001 (3)
C110.042 (4)0.052 (5)0.045 (4)0.008 (4)0.002 (3)0.009 (3)
C120.060 (5)0.072 (5)0.053 (5)0.010 (4)0.022 (4)0.020 (4)
C130.087 (7)0.087 (7)0.061 (5)0.015 (5)0.014 (5)0.022 (5)
C140.068 (7)0.120 (8)0.078 (6)0.031 (6)0.004 (5)0.035 (5)
C150.056 (5)0.097 (7)0.083 (6)0.038 (5)0.014 (5)0.024 (5)
C160.040 (5)0.077 (6)0.065 (5)0.015 (4)0.013 (4)0.009 (4)
C20.039 (4)0.032 (4)0.024 (3)0.005 (3)0.001 (3)0.004 (3)
C30.025 (4)0.049 (4)0.035 (4)0.001 (3)0.005 (3)0.004 (3)
C40.046 (5)0.036 (4)0.053 (4)0.009 (3)0.009 (4)0.017 (3)
C50.035 (5)0.062 (5)0.069 (5)0.021 (4)0.002 (4)0.011 (4)
C60.037 (4)0.060 (5)0.056 (5)0.014 (4)0.018 (3)0.010 (4)
C70.025 (4)0.043 (4)0.049 (4)0.006 (3)0.006 (3)0.002 (3)
C80.045 (4)0.051 (4)0.028 (3)0.003 (4)0.001 (3)0.004 (3)
C90.032 (4)0.054 (5)0.032 (3)0.002 (3)0.011 (3)0.003 (3)
Cl10.0399 (10)0.0612 (12)0.0410 (9)0.0036 (8)0.0094 (8)0.0012 (8)
Cl20.0377 (10)0.0448 (10)0.0423 (9)0.0002 (8)0.0035 (8)0.0024 (8)
N10.029 (3)0.037 (3)0.027 (3)0.004 (2)0.003 (2)0.000 (2)
N20.040 (4)0.057 (4)0.036 (3)0.001 (3)0.007 (3)0.002 (3)
O10.031 (2)0.037 (2)0.030 (2)0.011 (2)0.0085 (18)0.0117 (18)
Geometric parameters (Å, º) top
Cu1—N11.950 (4)C10—H10B0.9700
Cu1—O1i1.974 (3)C7—H7A0.9300
Cu1—O12.013 (3)C9—H9A0.9700
Cu1—Cl12.386 (2)C9—H9B0.9700
Cu1—Cl22.410 (2)C16—C151.499 (8)
O1—C21.342 (6)C16—C111.515 (8)
O1—Cu1i1.974 (3)C16—H16A0.9700
C2—C11.383 (7)C16—H16B0.9700
C2—C31.406 (7)C11—C121.525 (7)
C8—N11.491 (6)C11—H11A0.9800
C8—C91.531 (7)C3—H3A0.9300
C8—H8A0.9700C6—C51.343 (8)
C8—H8B0.9700C6—H6A0.9300
N1—C71.277 (6)C12—C131.497 (8)
C1—C61.416 (7)C12—H12A0.9700
C1—C71.438 (7)C12—H12B0.9700
N2—C101.474 (7)C5—H5A0.9300
N2—C111.497 (7)C15—C141.524 (9)
N2—H2B0.93 (4)C15—H15A0.9700
N2—H2A0.93 (3)C15—H15B0.9700
C4—C51.366 (7)C13—C141.512 (8)
C4—C31.371 (7)C13—H13A0.9700
C4—H4A0.9300C13—H13B0.9700
C10—C91.511 (7)C14—H14A0.9700
C10—H10A0.9700C14—H14B0.9700
N1—Cu1—O1i168.18 (17)C10—C9—H9B109.4
N1—Cu1—O192.22 (17)C8—C9—H9B109.4
O1i—Cu1—O176.04 (16)H9A—C9—H9B108.0
N1—Cu1—Cl193.07 (13)C15—C16—C11111.1 (6)
O1i—Cu1—Cl194.12 (11)C15—C16—H16A109.4
O1—Cu1—Cl1120.67 (11)C11—C16—H16A109.4
N1—Cu1—Cl291.31 (13)C15—C16—H16B109.4
O1i—Cu1—Cl293.92 (11)C11—C16—H16B109.4
O1—Cu1—Cl2122.72 (11)H16A—C16—H16B108.0
Cl1—Cu1—Cl2116.17 (6)N2—C11—C16108.0 (5)
C2—O1—Cu1i128.4 (3)N2—C11—C12111.1 (5)
C2—O1—Cu1127.4 (3)C16—C11—C12111.6 (5)
Cu1i—O1—Cu1103.96 (16)N2—C11—H11A108.7
O1—C2—C1121.2 (5)C16—C11—H11A108.7
O1—C2—C3120.8 (5)C12—C11—H11A108.7
C1—C2—C3118.0 (6)C4—C3—C2121.0 (6)
N1—C8—C9115.6 (4)C4—C3—H3A119.5
N1—C8—H8A108.4C2—C3—H3A119.5
C9—C8—H8A108.4C5—C6—C1121.8 (6)
N1—C8—H8B108.4C5—C6—H6A119.1
C9—C8—H8B108.4C1—C6—H6A119.1
H8A—C8—H8B107.4C13—C12—C11110.8 (6)
C7—N1—C8117.4 (5)C13—C12—H12A109.5
C7—N1—Cu1124.8 (4)C11—C12—H12A109.5
C8—N1—Cu1117.9 (4)C13—C12—H12B109.5
C2—C1—C6118.9 (5)C11—C12—H12B109.5
C2—C1—C7125.9 (6)H12A—C12—H12B108.1
C6—C1—C7115.1 (5)C6—C5—C4119.5 (6)
C10—N2—C11116.0 (5)C6—C5—H5A120.3
C10—N2—H2B103 (4)C4—C5—H5A120.3
C11—N2—H2B109 (4)C16—C15—C14110.8 (6)
C10—N2—H2A111 (4)C16—C15—H15A109.5
C11—N2—H2A110 (4)C14—C15—H15A109.5
H2B—N2—H2A108 (2)C16—C15—H15B109.5
C5—C4—C3120.8 (6)C14—C15—H15B109.5
C5—C4—H4A119.6H15A—C15—H15B108.1
C3—C4—H4A119.6C12—C13—C14111.2 (6)
N2—C10—C9111.4 (5)C12—C13—H13A109.4
N2—C10—H10A109.4C14—C13—H13A109.4
C9—C10—H10A109.4C12—C13—H13B109.4
N2—C10—H10B109.4C14—C13—H13B109.4
C9—C10—H10B109.4H13A—C13—H13B108.0
H10A—C10—H10B108.0C13—C14—C15110.1 (6)
N1—C7—C1127.9 (5)C13—C14—H14A109.6
N1—C7—H7A116.1C15—C14—H14A109.6
C1—C7—H7A116.1C13—C14—H14B109.6
C10—C9—C8111.0 (5)C15—C14—H14B109.6
C10—C9—H9A109.4H14A—C14—H14B108.2
C8—C9—H9A109.4
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl2ii0.93 (3)2.20 (3)3.118 (5)170 (4)
N2—H2B···Cl1iii0.93 (4)2.19 (4)3.120 (5)178 (5)
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C16H24N2O)2Cl4]
Mr789.62
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)293
a, b, c (Å)15.487 (3), 22.117 (4), 10.442 (2)
V3)3576.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.23 × 0.18 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.721, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
11330, 3402, 1917
Rint0.096
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.104, 0.96
No. of reflections3402
No. of parameters205
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.44

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N11.950 (4)Cu1—Cl12.386 (2)
Cu1—O1i1.974 (3)Cu1—Cl22.410 (2)
Cu1—O12.013 (3)
N1—Cu1—O1i168.18 (17)O1—Cu1—Cl1120.67 (11)
N1—Cu1—O192.22 (17)N1—Cu1—Cl291.31 (13)
O1i—Cu1—O176.04 (16)O1i—Cu1—Cl293.92 (11)
N1—Cu1—Cl193.07 (13)O1—Cu1—Cl2122.72 (11)
O1i—Cu1—Cl194.12 (11)Cl1—Cu1—Cl2116.17 (6)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl2ii0.93 (3)2.20 (3)3.118 (5)170 (4)
N2—H2B···Cl1iii0.93 (4)2.19 (4)3.120 (5)178 (5)
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds