Download citation
Download citation
link to html
In the title compound, poly­[[(2,2′-bi­pyridine-κ2N,N′)­manganese(II)]-μ3-N-tosyl-L-glutamato-κ4O,O′:O′′:O′′′], [Mn(tsgluo)(bipy)]n, where tsgluo is N-tosyl-L-glutamate (C12H13NO6S) and bipy is 2,2′-bi­pyridine (C10H8N2), the Mn atoms are octahedrally coordinated by two N atoms of one bipy ligand and by four O atoms of three tsgluo2− anions. The γ-carboxyl group coordinates to the MnII atom in a chelating mode, while the α-carboxyl group coordinates in a bidentate–bridging mode. The complex displays a one-dimensional double-chain structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104008893/av1175sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104008893/av1175Isup2.hkl
Contains datablock I

CCDC reference: 243580

Comment top

In recent years, there has been considerable interest in the design and synthesis of manganese(II) complexes with carboxylate ligands (Yu et al., 1992; Zheng et al., 2002; Tangoulis et al., 1996; Zhang et al., 2003). The main reason may be that these complexes can be used for investigation of the exchange coupling interactions between metal ions, as well as for a new variety of molecular-based magnetic materials (Cano et al., 1994; Ma et al., 2003; Sain et al., 2003). Furthermore, polymanganese complexes have been used as models for the study of the photosynthetic oxygen-evolving complexes (OEC) of photosystem II in green plants (Wieghardt, 1989). On the other hand, N-protected amino acids, being biologically important compounds derived from naturally occurring amino acids, have been studied extensively in the coordination chemistry of metal ions (Bonamartini Corradi., 1992). However, N-p-tolysulfonyl-L-glutamic acid (H2tsglu), which may act as a polydentate ligand and present a variety of coordination modes because of the presence of two carboxyl functions and a sulfonamide group, has been studied only in a limited number of systems (Bonamartini Corradi et al., 1999) so far, and the manganese complex of H2tsglu has not yet been reported. We present here the crystal structure of a manganese complex with mixed ligands of bipy and H2tsglu, [Mn(C12H15NO6S)(C10H8N2)]n,(I). The complex has a one-dimensional double-chain structure.

The molecular structure of (I) and the symmetry dimeric [Mn(C12H15NO6S) (C10H8N2)]2 unit are shown in Figs. 1 and 2, respectively. The crystal structure consists of an infinite one-dimensional double chain. Each Mn ion is six-coordinated by two N atoms of one 2,2'-bipyridine group, two O atoms of the γ-carboxyl group of one tsgluo2− ligand, and two O atoms from two α-carboxyl groups of two other tsgluo2− ligands. The two carboxylate groups display different coordination modes. The γ-carboxyl group coordinates to Mn(II) in a chelating mode, while the α-carboxyl group coordinates in bidentate-bridging mode. The bridging of the α-carboxyl O atoms of a ligand between every two adjacent manganese ions gives rise to an infinite chain. The alternate disposition of the α- and γ-carboxylate terminals of the ligands along the a axis results in a one-dimensional double-chain structure. The Mn site exhibits a distorted octahedral coordination sphere, with bond angles ranging from 163.10 (6) to 176.54 (6)° for trans angles and from 71.58 (6) to 137.25 (6)° for the other angles (Table 1). The Mn—O bond distances range from 2.1268 (13) to 2.3010 (16) Å. The Mn1—O6 bond length [2.3010 (16) Å] is slightly longer than those of the other Mn1—O bonds (Table 1), indicating a weaker interaction of the axial coordination O atom (O6) as a result of the instability of the four-membered ring formed by the chelating action of the γ-carboxyl group. The Mn—N bond distances change from 2.2397 (15) to 2.2910 (15) Å and the C—O bond lengths are in the range 1.235 (2)–1.273 (2) Å; these values are in good agreement with the corresponding bond lengths found in manganese–carboxylic acid–phen complexes (Shen, 2003).

Experimental top

An ethanol solution (10 ml) of 2,2'-bipyridine (0.156 g, 1 mmol) was added dropwise with continuous stirring to an aqueous solution (10 ml) of N-p-tolylsul-fonyl-L-glutamic acid (0.301 g, 1 mmol), NaOH (0.080 g, 2 mmol) and MnSO4·H2O (0.175 g, 1 mmol). The resulting yellow solution was stirred for 4 h at room temperature and then filtered. Crystals of the title complex suitable for X-ray analysis were obtained by slow evaporation from the filtrate after 20 d. Analysis calculated for C22H21MnN3O6S: C 51.72, H 4.11, N 8.22, S 6.27%; found: C 51.76, H 4.15, N 8.23, S 6.28%.

Refinement top

The H atoms on atom C14 were positioned geometrically, with C—H distances of 0.96 Å, and included in the refinement with Uiso(H) values of 1.5Ueq(C). All other H atoms? were placed at idealized positions and refined using a riding model, with C—H distances of 0.93–0.98 Å, an N—H distance of 0.86 Å, and Uiso(H) values of 1.2Ueq(C,N). The U(eq) values of atoms O5 and C21 [0.0657 (6) Å2 and 0.0518 (7) Å2] are greater than those of atoms C22 and C20 [0.0372 (5) Å2 and 0.0295 (4) Å2]; this difference can be ascribed to the slight disorders of atoms O5 and C21.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The [Mn(bipy)(tsgluo)] molecule in (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A projection showing the polymeric ribbon of (I).
poly[[(2,2'-bipyridine-κ2N,N')manganese(II)]-µ3-N-tosyl-L-glutamato- κ4O,O':O'':O'''] top
Crystal data top
[Mn(C12H13NO6S)(C10H8N2)]F(000) = 1052
Mr = 510.42Dx = 1.539 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 924 reflections
a = 5.3131 (6) Åθ = 3.6–27.0°
b = 17.727 (2) ŵ = 0.74 mm1
c = 23.382 (3) ÅT = 293 K
V = 2202.2 (4) Å3Block, yellow
Z = 40.43 × 0.40 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4789 independent reflections
Radiation source: fine-focus sealed tube4406 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 65
Tmin = 0.742, Tmax = 0.756k = 2219
13798 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.0383P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
4789 reflectionsΔρmax = 0.32 e Å3
298 parametersΔρmin = 0.40 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (12)
Crystal data top
[Mn(C12H13NO6S)(C10H8N2)]V = 2202.2 (4) Å3
Mr = 510.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3131 (6) ŵ = 0.74 mm1
b = 17.727 (2) ÅT = 293 K
c = 23.382 (3) Å0.43 × 0.40 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4789 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4406 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.756Rint = 0.019
13798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.32 e Å3
S = 1.03Δρmin = 0.40 e Å3
4789 reflectionsAbsolute structure: Flack (1983)
298 parametersAbsolute structure parameter: 0.003 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.72871 (5)0.609304 (14)0.134143 (10)0.02652 (8)
S10.35609 (8)1.02332 (3)0.044762 (19)0.02931 (11)
C10.4396 (4)0.46327 (12)0.18564 (9)0.0400 (5)
H1A0.34250.46850.15280.048*
C20.3920 (5)0.40278 (12)0.22153 (10)0.0468 (5)
H2A0.26570.36820.21300.056*
C30.5364 (5)0.39494 (13)0.27025 (9)0.0482 (5)
H3A0.51110.35440.29480.058*
C40.7183 (5)0.44806 (11)0.28187 (8)0.0439 (5)
H4A0.81510.44420.31490.053*
C50.7565 (4)0.50734 (10)0.24413 (7)0.0316 (4)
C60.9517 (4)0.56641 (11)0.25393 (8)0.0309 (4)
C71.1166 (5)0.56643 (12)0.29969 (8)0.0413 (5)
H7A1.10520.52940.32780.050*
C81.2975 (4)0.62155 (12)0.30330 (9)0.0470 (5)
H8A1.41080.62200.33360.056*
C91.3095 (4)0.67631 (13)0.26149 (9)0.0443 (5)
H9A1.43120.71390.26290.053*
C101.1383 (4)0.67400 (12)0.21791 (8)0.0395 (5)
H10A1.14500.71140.19000.047*
C110.6614 (4)1.13718 (11)0.00700 (10)0.0420 (5)
H11B0.75221.13010.04060.050*
C120.7351 (5)1.19097 (11)0.03214 (11)0.0521 (6)
H12B0.87731.21990.02460.063*
C130.6035 (5)1.20318 (12)0.08239 (11)0.0484 (6)
C140.6867 (6)1.26405 (15)0.12361 (12)0.0694 (8)
H14D0.83401.28860.10890.104*
H14E0.55411.30040.12810.104*
H14F0.72471.24180.16000.104*
C150.3946 (5)1.15857 (13)0.09320 (10)0.0497 (6)
H15B0.30491.16530.12700.060*
C160.3171 (4)1.10403 (12)0.05442 (9)0.0456 (5)
H16B0.17631.07450.06210.055*
C170.4513 (4)1.09393 (10)0.00420 (8)0.0322 (4)
C180.6613 (3)0.92065 (9)0.00158 (7)0.0244 (3)
H18B0.77270.95370.02360.029*
C190.7280 (3)0.93104 (8)0.06176 (7)0.0245 (3)
C200.7148 (4)0.83882 (9)0.02092 (7)0.0295 (4)
H20C0.60500.80450.00040.035*
H20D0.88750.82570.01180.035*
C210.6722 (5)0.83030 (12)0.08468 (8)0.0518 (7)
H21C0.79350.86140.10480.062*
H21D0.50550.84900.09400.062*
C220.6951 (4)0.75004 (11)0.10572 (8)0.0372 (5)
N10.6189 (3)0.51462 (9)0.19599 (6)0.0323 (3)
N20.9621 (3)0.62064 (9)0.21345 (6)0.0320 (3)
N30.4024 (3)0.94276 (8)0.01471 (6)0.0256 (3)
H3B0.27830.91350.00660.031*
O10.5201 (3)1.02823 (9)0.09317 (6)0.0407 (3)
O20.0906 (3)1.03016 (9)0.05359 (7)0.0431 (4)
O30.9627 (2)0.92866 (8)0.07255 (5)0.0347 (3)
O50.8317 (4)0.70448 (9)0.07940 (8)0.0657 (6)
O60.5809 (3)0.72964 (9)0.14941 (6)0.0504 (4)
O40.5623 (2)0.94300 (8)0.09768 (5)0.0320 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02640 (14)0.03232 (13)0.02084 (12)0.00071 (11)0.00146 (10)0.00545 (10)
S10.0257 (2)0.0326 (2)0.0296 (2)0.00001 (18)0.00221 (18)0.00644 (18)
C10.0434 (12)0.0411 (11)0.0354 (10)0.0052 (9)0.0020 (9)0.0044 (9)
C20.0548 (14)0.0389 (12)0.0466 (12)0.0097 (10)0.0048 (11)0.0023 (9)
C30.0684 (15)0.0382 (11)0.0381 (11)0.0047 (11)0.0076 (11)0.0133 (9)
C40.0613 (14)0.0413 (10)0.0290 (9)0.0004 (11)0.0027 (10)0.0104 (8)
C50.0387 (10)0.0339 (9)0.0221 (8)0.0057 (9)0.0029 (8)0.0029 (6)
C60.0354 (10)0.0344 (10)0.0228 (8)0.0066 (8)0.0029 (8)0.0028 (7)
C70.0548 (14)0.0416 (11)0.0275 (10)0.0018 (10)0.0053 (9)0.0085 (8)
C80.0532 (14)0.0553 (13)0.0324 (10)0.0009 (11)0.0168 (10)0.0028 (9)
C90.0441 (13)0.0504 (12)0.0384 (10)0.0076 (10)0.0074 (9)0.0037 (9)
C100.0416 (11)0.0460 (11)0.0310 (9)0.0059 (10)0.0029 (9)0.0101 (8)
C110.0344 (11)0.0348 (10)0.0566 (13)0.0002 (8)0.0088 (10)0.0011 (9)
C120.0409 (12)0.0354 (11)0.0800 (16)0.0044 (10)0.0013 (13)0.0052 (10)
C130.0488 (13)0.0350 (11)0.0614 (15)0.0025 (10)0.0099 (11)0.0048 (10)
C140.082 (2)0.0509 (14)0.0752 (18)0.0046 (13)0.0137 (16)0.0176 (13)
C150.0552 (15)0.0475 (13)0.0463 (12)0.0028 (11)0.0053 (11)0.0071 (10)
C160.0448 (12)0.0432 (11)0.0487 (12)0.0089 (10)0.0072 (10)0.0007 (9)
C170.0296 (9)0.0261 (10)0.0409 (10)0.0014 (7)0.0017 (8)0.0027 (7)
C180.0245 (9)0.0245 (8)0.0241 (8)0.0023 (7)0.0028 (7)0.0008 (6)
C190.0260 (9)0.0219 (7)0.0256 (8)0.0033 (7)0.0024 (7)0.0007 (6)
C200.0388 (11)0.0252 (8)0.0245 (8)0.0030 (8)0.0013 (8)0.0031 (6)
C210.089 (2)0.0367 (11)0.0299 (10)0.0140 (12)0.0129 (11)0.0085 (8)
C220.0466 (13)0.0342 (10)0.0308 (9)0.0037 (9)0.0015 (9)0.0088 (8)
N10.0361 (9)0.0339 (8)0.0267 (8)0.0003 (7)0.0004 (6)0.0038 (6)
N20.0343 (8)0.0403 (9)0.0214 (7)0.0021 (7)0.0011 (6)0.0055 (6)
N30.0234 (7)0.0264 (7)0.0269 (7)0.0053 (6)0.0024 (6)0.0022 (6)
O10.0435 (8)0.0513 (9)0.0273 (7)0.0013 (7)0.0029 (6)0.0109 (6)
O20.0280 (7)0.0491 (9)0.0521 (9)0.0003 (6)0.0079 (6)0.0115 (7)
O30.0264 (7)0.0490 (8)0.0287 (7)0.0010 (6)0.0057 (5)0.0021 (6)
O50.0842 (14)0.0430 (9)0.0699 (11)0.0263 (9)0.0423 (10)0.0242 (8)
O60.0657 (11)0.0457 (9)0.0397 (8)0.0083 (8)0.0181 (7)0.0137 (7)
O40.0309 (7)0.0403 (7)0.0247 (6)0.0061 (6)0.0033 (5)0.0061 (5)
Geometric parameters (Å, º) top
Mn1—O3i2.1268 (13)C11—C121.378 (3)
Mn1—O4ii2.1745 (13)C11—C171.379 (3)
Mn1—O52.1874 (15)C11—H11B0.9300
Mn1—N22.2397 (15)C12—C131.384 (3)
Mn1—N12.2910 (15)C12—H12B0.9300
Mn1—O62.3010 (16)C13—C151.386 (3)
S1—O21.4308 (15)C13—C141.513 (3)
S1—O11.4311 (14)C14—H14D0.9600
S1—N31.6104 (15)C14—H14E0.9600
S1—C171.770 (2)C14—H14F0.9600
C1—N11.340 (3)C15—C161.388 (3)
C1—C21.385 (3)C15—H15B0.9300
C1—H1A0.9300C16—C171.386 (3)
C2—C31.380 (3)C16—H16B0.9300
C2—H2A0.9300C18—N31.463 (2)
C3—C41.376 (3)C18—C191.534 (2)
C3—H3A0.9300C18—C201.546 (2)
C4—C51.387 (2)C18—H18B0.9800
C4—H4A0.9300C19—O41.235 (2)
C5—N11.348 (2)C19—O31.273 (2)
C5—C61.491 (3)C20—C211.515 (2)
C6—N21.350 (2)C20—H20C0.9700
C6—C71.383 (3)C20—H20D0.9700
C7—C81.373 (3)C21—C221.510 (3)
C7—H7A0.9300C21—H21C0.9700
C8—C91.379 (3)C21—H21D0.9700
C8—H8A0.9300C22—O61.242 (2)
C9—C101.366 (3)C22—O51.248 (3)
C9—H9A0.9300N3—H3B0.8600
C10—N21.335 (3)O3—Mn1ii2.1268 (13)
C10—H10A0.9300O4—Mn1i2.1745 (13)
O3i—Mn1—O4ii98.12 (5)C13—C12—H12B119.1
O3i—Mn1—O590.80 (7)C12—C13—C15118.0 (2)
O4ii—Mn1—O584.00 (6)C12—C13—C14120.3 (2)
O3i—Mn1—N2163.10 (6)C15—C13—C14121.6 (2)
O4ii—Mn1—N284.93 (5)C13—C14—H14D109.5
O5—Mn1—N2106.07 (7)C13—C14—H14E109.5
O3i—Mn1—N191.52 (5)H14D—C14—H14E109.5
O4ii—Mn1—N198.21 (6)C13—C14—H14F109.5
O5—Mn1—N1176.54 (6)H14D—C14—H14F109.5
N2—Mn1—N171.58 (6)H14E—C14—H14F109.5
O3i—Mn1—O699.88 (6)C13—C15—C16121.1 (2)
O4ii—Mn1—O6137.25 (6)C13—C15—H15B119.5
O5—Mn1—O657.40 (5)C16—C15—H15B119.5
N2—Mn1—O688.70 (6)C17—C16—C15119.4 (2)
N1—Mn1—O6119.62 (5)C17—C16—H16B120.3
O2—S1—O1118.75 (9)C15—C16—H16B120.3
O2—S1—N3106.78 (9)C11—C17—C16120.38 (19)
O1—S1—N3107.82 (8)C11—C17—S1120.11 (16)
O2—S1—C17108.37 (10)C16—C17—S1119.49 (15)
O1—S1—C17107.13 (9)N3—C18—C19112.81 (14)
N3—S1—C17107.53 (8)N3—C18—C20111.28 (14)
N1—C1—C2123.1 (2)C19—C18—C20110.65 (13)
N1—C1—H1A118.4N3—C18—H18B107.3
C2—C1—H1A118.4C19—C18—H18B107.3
C3—C2—C1118.5 (2)C20—C18—H18B107.3
C3—C2—H2A120.8O4—C19—O3124.68 (16)
C1—C2—H2A120.8O4—C19—C18120.85 (16)
C4—C3—C2118.96 (19)O3—C19—C18114.43 (15)
C4—C3—H3A120.5C21—C20—C18110.72 (15)
C2—C3—H3A120.5C21—C20—H20C109.5
C3—C4—C5119.7 (2)C18—C20—H20C109.5
C3—C4—H4A120.2C21—C20—H20D109.5
C5—C4—H4A120.2C18—C20—H20D109.5
N1—C5—C4121.61 (19)H20C—C20—H20D108.1
N1—C5—C6115.99 (15)C22—C21—C20113.73 (17)
C4—C5—C6122.40 (17)C22—C21—H21C108.8
N2—C6—C7121.08 (18)C20—C21—H21C108.8
N2—C6—C5114.87 (16)C22—C21—H21D108.8
C7—C6—C5124.03 (17)C20—C21—H21D108.8
C8—C7—C6119.43 (18)H21C—C21—H21D107.7
C8—C7—H7A120.3O6—C22—O5120.08 (18)
C6—C7—H7A120.3O6—C22—C21120.19 (19)
C7—C8—C9119.31 (19)O5—C22—C21119.72 (18)
C7—C8—H8A120.3C1—N1—C5118.12 (16)
C9—C8—H8A120.3C1—N1—Mn1124.39 (13)
C10—C9—C8118.5 (2)C5—N1—Mn1117.32 (13)
C10—C9—H9A120.8C10—N2—C6118.57 (17)
C8—C9—H9A120.8C10—N2—Mn1121.10 (12)
N2—C10—C9123.11 (18)C6—N2—Mn1119.60 (13)
N2—C10—H10A118.4C18—N3—S1118.22 (12)
C9—C10—H10A118.4C18—N3—H3B120.9
C12—C11—C17119.2 (2)S1—N3—H3B120.9
C12—C11—H11B120.4C19—O3—Mn1ii142.71 (12)
C17—C11—H11B120.4C22—O5—Mn193.73 (12)
C11—C12—C13121.9 (2)C22—O6—Mn188.60 (12)
C11—C12—H12B119.1C19—O4—Mn1i140.76 (11)
N1—C1—C2—C30.1 (3)O4ii—Mn1—N1—C199.76 (16)
C1—C2—C3—C41.2 (3)N2—Mn1—N1—C1178.41 (18)
C2—C3—C4—C51.2 (3)O6—Mn1—N1—C1100.94 (17)
C3—C4—C5—N10.2 (3)O3i—Mn1—N1—C5173.87 (14)
C3—C4—C5—C6179.5 (2)O4ii—Mn1—N1—C575.44 (14)
N1—C5—C6—N21.1 (2)N2—Mn1—N1—C56.39 (13)
C4—C5—C6—N2179.19 (18)O6—Mn1—N1—C583.86 (15)
N1—C5—C6—C7177.33 (18)C9—C10—N2—C60.1 (3)
C4—C5—C6—C72.4 (3)C9—C10—N2—Mn1170.05 (17)
N2—C6—C7—C81.5 (3)C7—C6—N2—C101.1 (3)
C5—C6—C7—C8176.9 (2)C5—C6—N2—C10177.42 (17)
C6—C7—C8—C90.7 (3)C7—C6—N2—Mn1171.41 (14)
C7—C8—C9—C100.5 (3)C5—C6—N2—Mn17.1 (2)
C8—C9—C10—N20.9 (3)O3i—Mn1—N2—C10178.17 (18)
C17—C11—C12—C130.3 (3)O4ii—Mn1—N2—C1076.89 (16)
C11—C12—C13—C151.0 (4)O5—Mn1—N2—C105.37 (17)
C11—C12—C13—C14178.5 (2)N1—Mn1—N2—C10177.29 (17)
C12—C13—C15—C161.0 (4)O6—Mn1—N2—C1060.80 (16)
C14—C13—C15—C16178.6 (2)O3i—Mn1—N2—C68.1 (3)
C13—C15—C16—C170.2 (4)O4ii—Mn1—N2—C693.19 (14)
C12—C11—C17—C160.5 (3)O5—Mn1—N2—C6175.45 (14)
C12—C11—C17—S1178.86 (17)N1—Mn1—N2—C67.21 (13)
C15—C16—C17—C110.5 (3)O6—Mn1—N2—C6129.12 (14)
C15—C16—C17—S1178.92 (18)C19—C18—N3—S1101.84 (15)
O2—S1—C17—C11133.51 (17)C20—C18—N3—S1133.10 (12)
O1—S1—C17—C114.26 (19)O2—S1—N3—C18179.05 (13)
N3—S1—C17—C11111.41 (17)O1—S1—N3—C1850.39 (14)
O2—S1—C17—C1648.11 (19)C17—S1—N3—C1864.82 (14)
O1—S1—C17—C16177.36 (16)O4—C19—O3—Mn1ii39.3 (3)
N3—S1—C17—C1666.97 (18)C18—C19—O3—Mn1ii142.93 (15)
N3—C18—C19—O412.7 (2)O6—C22—O5—Mn14.5 (2)
C20—C18—C19—O4112.71 (18)C21—C22—O5—Mn1176.31 (19)
N3—C18—C19—O3165.17 (14)O3i—Mn1—O5—C2298.72 (15)
C20—C18—C19—O369.44 (19)O4ii—Mn1—O5—C22163.20 (15)
N3—C18—C20—C2159.0 (2)N2—Mn1—O5—C2280.25 (15)
C19—C18—C20—C21174.73 (18)O6—Mn1—O5—C222.50 (13)
C18—C20—C21—C22174.12 (19)O5—C22—O6—Mn14.3 (2)
C20—C21—C22—O6153.6 (2)C21—C22—O6—Mn1176.5 (2)
C20—C21—C22—O527.2 (3)O3i—Mn1—O6—C2282.07 (13)
C2—C1—N1—C51.0 (3)O4ii—Mn1—O6—C2231.48 (16)
C2—C1—N1—Mn1174.20 (17)O5—Mn1—O6—C222.51 (13)
C4—C5—N1—C10.9 (3)N2—Mn1—O6—C22112.58 (13)
C6—C5—N1—C1179.38 (18)N1—Mn1—O6—C22179.53 (12)
C4—C5—N1—Mn1174.58 (15)O3—C19—O4—Mn1i120.75 (18)
C6—C5—N1—Mn15.1 (2)C18—C19—O4—Mn1i61.6 (2)
O3i—Mn1—N1—C11.33 (17)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Mn(C12H13NO6S)(C10H8N2)]
Mr510.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.3131 (6), 17.727 (2), 23.382 (3)
V3)2202.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.43 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.742, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
13798, 4789, 4406
Rint0.019
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.03
No. of reflections4789
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.40
Absolute structureFlack (1983)
Absolute structure parameter0.003 (12)

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Mn1—O3i2.1268 (13)Mn1—O62.3010 (16)
Mn1—O4ii2.1745 (13)C19—O41.235 (2)
Mn1—O52.1874 (15)C19—O31.273 (2)
Mn1—N22.2397 (15)C22—O61.242 (2)
Mn1—N12.2910 (15)C22—O51.248 (3)
O3i—Mn1—O4ii98.12 (5)N2—Mn1—N171.58 (6)
O3i—Mn1—O590.80 (7)O3i—Mn1—O699.88 (6)
O4ii—Mn1—O584.00 (6)O4ii—Mn1—O6137.25 (6)
O3i—Mn1—N2163.10 (6)O5—Mn1—O657.40 (5)
O4ii—Mn1—N284.93 (5)N2—Mn1—O688.70 (6)
O5—Mn1—N2106.07 (7)N1—Mn1—O6119.62 (5)
O3i—Mn1—N191.52 (5)O4—C19—O3124.68 (16)
O4ii—Mn1—N198.21 (6)O6—C22—O5120.08 (18)
O5—Mn1—N1176.54 (6)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds