Download citation
Download citation
link to html
The title compound, C25H17F2N3OS, was synthesized from 6-(benzyl­idene)­thia­zolo­[3,2-b][1,2,4]triazol-5(6H)-one. The fused thia­zolo­[3,2-b][1,2,4]triazole system is essentially planar, and bifurcated C—H...O, C—H...N and C—H...F interactions are present between mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010400410X/av1166sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010400410X/av1166Isup2.hkl
Contains datablock I

CCDC reference: 241238

Comment top

Since 6-benzylidenethiazolo[3,2-b]-1,2,4-triazole-5(6H)-one is structurally related to 5-(3,5-di-tert-butyl-4-hydroxy benzylidene)thiazol-4-one, which forms the nucleus of a number of compounds with anti-inflammatory activity, our interest has focused recently on the synthesis and chemistry of this type of compound (Song et al., 1999). In earlier studies, we synthesized new derivatives by combining condensed triazole with ibuprofen and S-naproxen, which belong to the class of 2-arylpropionic acid derivatives of non-steroidal anti-inflammatory drugs, to improve its effectiveness, and these were evaluated for their anti-inflammatory activity. In a continuation of our research programme on the synthesis of novel heterocyclic systems which have analgesic or anti-inflammatory activity, we have prepared some new 6-benzylidenethiazolo[3,2-b]-1,2,4-triazole-5(6H)-ones starting from Flurbiprofen and have determined their anti-inflammatory activity. In order to clarify the structure of this type of compounds, an X-ray structure determination of the title compound, (I), which gave a single-crystal of suitable quality, has been carried out and the results are presented here. \sch

In compound (I), the fused thiazolo[3,2-b]-1,2,4-triazole system is essentially planar. The maximum deviations from the plane of the eight-membered thiazolo-triazole system are 0.031 (6) and −0.040 (4) Å for atoms C9 and N1, respectively. The puckering parameters (Cremer & Pople, 1975) of this system are q2 0.045 (5)° and ϕ 260 (5)°. Atoms C10 and N1 are on opposite sides of the plane passing through atoms S1, C8 and C9, at distances of 0.081 (5) and 0.106 (4) Å, respectively. The thiazolo-triazole system makes dihedral angles of 34.54 (17)° with the C1—C6 ring and 86.83 (11)° with the C14—C19 ring. Rings C1—C6 and C14—C19 are almost perpendicular to each other, with a dihedral angle of 85.37 (16)°.

The C7—C8 bond is a double bond, while C1—C7 and C11—C12 are single bonds. A similar lengthening of the S1—C8 bond relative to the S1—C10 bond has been seen in the structure of a similar compound (Özbey et al., 1999).

Compound (I) is stabilized by C—H···O, C—H···N and C—H···F intermolecular contacts. The C4—H4 bond in fact forms a bifurcated contact to two acceptors, namely atoms N3 and O1 [C4—H4···O1i and C4—H4···N3i; symmetry code: (i) x − 5/4, y − 1/4, 1/4 − z] (Table 2). The bifurcated nature of the contact explains the relatively large H···A distance and relatively small D—H···A angles. Other important intermolecular contacts are C15—H15···F2ii and C23—H23···F2iii (Table 2), where atom F2 accepts hydrogen bonds from C—H donors [symmetry codes: (ii) x + 1/4, y + 1/4, 1/4 − z; (iii) x − 3/4, 3/4 − y, z − 1/4].

Experimental top

The synthesis of (I) was carried out simply by heating equimolar amounts of 3-{1-[(3-fluoro-4-phenyl)phenyl]ethyl}-5-mercapto-1,2,4-triazole, chloroacetic acid and 2-fluorobenzaldehyde dissolved in acetic acid and acetic anhydride in the presence of anhydrous sodium acetate. The starting compound, 3-{1-[(3-fluoro-4-phenyl)phenyl]ethyl}-5-mercapto-1,2,4-triazole, was prepared by employing the previously reported procedure (Tozkoparan et al., 2000; Berk et al., 2001). Compound (I) was crystallized from acetone/su (su is? Ratio?) (yield 67.8%, m.p. 432–433 K). Spectroscopic analysis: IR (ν, cm−1): 3087, 3032 (aromatic C—H), 2970, 2932 (aliphatic C—H), 1744 (lactam CO), 1616 (CN); 1H NMR (CDCl3, δ, p.p.m.): 1.75 (d, 3H,CH3), 4.30 (q, 1H, CH), 7.10–7.60 (m, 12H, aromatic H), 8.30 (s, 1H, CH).

Refinement top

H atoms were located geometrically and refined using a riding model, fixing the aromatic C—H distance at 0.93 Å, the C—H2 distance at 0.97 Å and the C—H3 distance at 0.96 Å. The intensity data collected for (I) were generally weak, so the least-squares goodness-of-fit parameter lies outside the range (goodness-of-fit given 0.627). 1421 Friedel-related reflections were merged in the final refinement because of the meaninglessness of the absolute structure parameter value.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A crystal-packing diagram for (I), viewed along the a axis. Please check added text.
2-[1-[(3-fluoro-4-phenyl]ethyl]-6-(2-fluorobenzylidene)thiazolo[3,2-b]- 1,2,4-triazol-5(6H)-one top
Crystal data top
C25H17F2N3OSDx = 1.391 Mg m3
Mr = 445.48Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 8331 reflections
a = 24.059 (3) Åθ = 1.5–24.9°
b = 54.213 (5) ŵ = 0.19 mm1
c = 6.5223 (5) ÅT = 293 K
V = 8507.3 (15) Å3Prism, yellow
Z = 160.40 × 0.23 × 0.13 mm
F(000) = 3680
Data collection top
Stoe IPDS-2
diffractometer
813 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 25.5°, θmin = 1.9°
Detector resolution: 6.67 pixels mm-1h = 2828
ω scansk = 5264
10401 measured reflectionsl = 67
2135 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0269P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 0.67Δρmax = 0.24 e Å3
2135 reflectionsΔρmin = 0.12 e Å3
291 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00023 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (14)
Crystal data top
C25H17F2N3OSV = 8507.3 (15) Å3
Mr = 445.48Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 24.059 (3) ŵ = 0.19 mm1
b = 54.213 (5) ÅT = 293 K
c = 6.5223 (5) Å0.40 × 0.23 × 0.13 mm
Data collection top
Stoe IPDS-2
diffractometer
813 reflections with I > 2σ(I)
10401 measured reflectionsRint = 0.065
2135 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.24 e Å3
S = 0.67Δρmin = 0.12 e Å3
2135 reflectionsAbsolute structure: Flack (1983)
291 parametersAbsolute structure parameter: 0.00 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07714 (6)0.17418 (3)0.6643 (7)0.0940 (5)
N10.01094 (17)0.17434 (8)0.3538 (7)0.0721 (13)
C160.1676 (2)0.24505 (9)0.6269 (9)0.0774 (16)
H160.19690.23660.68830.093*
C140.0880 (2)0.24472 (10)0.3935 (9)0.0689 (15)
C110.0236 (2)0.20917 (11)0.3207 (10)0.0742 (17)
F10.10176 (11)0.30505 (6)0.6125 (6)0.1113 (12)
C170.1577 (2)0.26982 (11)0.6725 (9)0.0671 (15)
C190.0778 (2)0.26911 (9)0.4342 (9)0.0721 (15)
H190.04840.27750.37370.087*
N20.00902 (17)0.21042 (9)0.4935 (8)0.0838 (15)
N30.02406 (16)0.18772 (9)0.2268 (8)0.0792 (13)
C100.0291 (2)0.18827 (11)0.5010 (10)0.0764 (17)
C180.1137 (2)0.28048 (9)0.5698 (9)0.0708 (16)
C200.1909 (2)0.28429 (10)0.8210 (9)0.0682 (15)
C120.0502 (2)0.23210 (10)0.2327 (9)0.0784 (17)
H120.02020.24370.19990.094*
O10.02261 (17)0.13589 (7)0.2060 (8)0.1104 (16)
C20.1233 (2)0.09494 (13)0.8111 (12)0.104 (2)
C250.2119 (2)0.30721 (11)0.7762 (11)0.103 (2)
H250.20470.31430.64920.123*
C150.1324 (2)0.23315 (9)0.4856 (10)0.0776 (18)
H150.13950.21670.45310.093*
C80.0705 (2)0.14711 (9)0.5165 (9)0.0748 (17)
C60.1627 (3)0.13439 (12)0.8337 (12)0.110 (3)
H60.16730.15050.78850.133*
C30.1514 (3)0.08637 (12)0.9763 (12)0.115 (3)
H30.14730.07021.02150.138*
C10.1268 (2)0.11855 (10)0.7323 (10)0.0758 (17)
C90.0327 (2)0.15059 (11)0.3371 (10)0.085 (2)
C130.0803 (2)0.22664 (11)0.0374 (9)0.093 (2)
H13C0.11070.21560.06470.111*
H13B0.05530.21910.05840.111*
H13A0.09450.24170.01960.111*
C220.2337 (2)0.28721 (14)1.1543 (12)0.108 (2)
H220.24120.28051.28270.130*
C210.2016 (2)0.27401 (11)1.0111 (10)0.0835 (19)
H210.18770.25851.04390.100*
C40.1854 (3)0.10215 (15)1.0715 (11)0.111 (2)
H40.20530.09691.18590.133*
C230.2537 (3)0.30999 (13)1.1019 (15)0.119 (3)
H230.27480.31881.19620.143*
C50.1916 (3)0.12579 (13)1.0041 (13)0.120 (3)
H50.21560.13641.07330.144*
C70.0932 (2)0.12531 (9)0.5593 (9)0.0808 (18)
H70.08640.11280.46470.097*
C240.2435 (3)0.31973 (12)0.9183 (14)0.115 (2)
H240.25780.33520.88560.138*
F20.08862 (16)0.07911 (6)0.7174 (7)0.164 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1255 (12)0.0651 (9)0.0913 (13)0.0232 (9)0.0458 (10)0.0145 (11)
N10.092 (3)0.048 (3)0.077 (4)0.017 (2)0.030 (3)0.009 (3)
C160.110 (4)0.052 (4)0.071 (4)0.026 (3)0.020 (4)0.007 (4)
C140.089 (4)0.059 (4)0.058 (4)0.021 (3)0.019 (3)0.003 (4)
C110.086 (4)0.061 (4)0.076 (5)0.024 (3)0.020 (4)0.010 (4)
F10.135 (3)0.080 (2)0.120 (3)0.0026 (17)0.031 (2)0.006 (2)
C170.061 (3)0.074 (4)0.067 (4)0.009 (3)0.004 (3)0.008 (4)
C190.089 (4)0.060 (4)0.067 (5)0.017 (3)0.002 (3)0.005 (4)
N20.106 (4)0.071 (4)0.074 (4)0.033 (3)0.027 (3)0.024 (3)
N30.100 (3)0.064 (3)0.074 (4)0.018 (3)0.018 (3)0.011 (3)
C100.089 (4)0.060 (4)0.081 (5)0.021 (3)0.028 (4)0.005 (4)
C180.100 (4)0.038 (3)0.073 (5)0.012 (3)0.010 (4)0.002 (3)
C200.082 (4)0.061 (4)0.062 (5)0.007 (3)0.010 (3)0.004 (4)
C120.094 (4)0.059 (4)0.082 (5)0.022 (3)0.006 (4)0.001 (4)
O10.161 (3)0.060 (3)0.110 (4)0.031 (2)0.067 (3)0.021 (3)
C20.117 (5)0.079 (5)0.116 (8)0.003 (4)0.046 (5)0.002 (5)
C250.124 (5)0.082 (5)0.102 (6)0.041 (4)0.025 (4)0.007 (5)
C150.090 (4)0.045 (3)0.097 (6)0.001 (3)0.023 (4)0.003 (4)
C80.100 (4)0.048 (4)0.076 (5)0.006 (3)0.029 (3)0.007 (3)
C60.116 (5)0.074 (4)0.141 (8)0.007 (4)0.061 (5)0.005 (5)
C30.152 (6)0.083 (5)0.109 (7)0.000 (4)0.060 (5)0.017 (5)
C10.093 (4)0.057 (4)0.077 (5)0.015 (3)0.026 (4)0.001 (4)
C90.119 (5)0.054 (4)0.083 (6)0.011 (3)0.033 (4)0.006 (4)
C130.125 (5)0.091 (5)0.062 (5)0.037 (4)0.019 (4)0.001 (4)
C220.120 (6)0.104 (6)0.100 (6)0.003 (4)0.031 (5)0.008 (6)
C210.080 (4)0.084 (5)0.086 (5)0.009 (3)0.023 (4)0.003 (4)
C40.141 (6)0.099 (6)0.093 (6)0.044 (5)0.044 (4)0.013 (5)
C230.152 (6)0.081 (5)0.124 (8)0.010 (5)0.060 (6)0.016 (6)
C50.133 (5)0.089 (6)0.136 (8)0.020 (4)0.077 (5)0.033 (5)
C70.102 (4)0.053 (4)0.088 (5)0.003 (3)0.029 (3)0.007 (4)
C240.146 (7)0.084 (5)0.114 (7)0.038 (4)0.028 (5)0.002 (6)
F20.217 (4)0.069 (2)0.207 (6)0.012 (3)0.137 (4)0.028 (3)
Geometric parameters (Å, º) top
S1—C101.747 (6)C2—C11.382 (7)
S1—C81.763 (6)C25—C241.377 (8)
N1—C101.299 (6)C25—H250.9300
N1—N31.386 (5)C15—H150.9300
N1—C91.394 (7)C8—C71.331 (6)
C16—C171.396 (7)C8—C91.494 (7)
C16—C151.408 (7)C6—C11.385 (7)
C16—H160.9300C6—C51.392 (9)
C14—C191.371 (6)C6—H60.9300
C14—C151.377 (7)C3—C41.337 (8)
C14—C121.548 (7)C3—H30.9300
C11—N31.314 (6)C1—C71.435 (7)
C11—N21.376 (6)C13—H13C0.9600
C11—C121.511 (7)C13—H13B0.9600
F1—C181.391 (5)C13—H13A0.9600
C17—C181.380 (7)C22—C231.369 (8)
C17—C201.481 (7)C22—C211.407 (8)
C19—C181.381 (7)C22—H220.9300
C19—H190.9300C21—H210.9300
N2—C101.296 (6)C4—C51.363 (8)
C20—C251.372 (7)C4—H40.9300
C20—C211.384 (7)C23—C241.332 (9)
C12—C131.496 (7)C23—H230.9300
C12—H120.9800C5—H50.9300
O1—C91.193 (6)C7—H70.9300
C2—F21.345 (6)C24—H240.9300
C2—C31.354 (8)
C10—S1—C888.3 (3)C16—C15—H15118.5
C10—N1—N3110.0 (4)C7—C8—C9121.7 (5)
C10—N1—C9117.9 (5)C7—C8—S1125.9 (4)
N3—N1—C9131.7 (5)C9—C8—S1112.2 (4)
C17—C16—C15118.5 (5)C1—C6—C5119.0 (7)
C17—C16—H16120.8C1—C6—H6120.5
C15—C16—H16120.8C5—C6—H6120.5
C19—C14—C15119.6 (5)C4—C3—C2117.1 (7)
C19—C14—C12116.9 (5)C4—C3—H3121.4
C15—C14—C12123.4 (5)C2—C3—H3121.4
N3—C11—N2115.5 (5)C2—C1—C6115.7 (6)
N3—C11—C12123.2 (5)C2—C1—C7119.7 (6)
N2—C11—C12120.8 (6)C6—C1—C7124.6 (6)
C18—C17—C16115.5 (5)O1—C9—N1126.6 (5)
C18—C17—C20120.6 (5)O1—C9—C8126.9 (5)
C16—C17—C20123.8 (5)N1—C9—C8106.5 (5)
C14—C19—C18116.3 (5)C12—C13—H13C109.5
C14—C19—H19121.9C12—C13—H13B109.5
C18—C19—H19121.9H13C—C13—H13B109.5
C10—N2—C11101.4 (5)C12—C13—H13A109.5
C11—N3—N1100.4 (4)H13C—C13—H13A109.5
N1—C10—N2112.7 (5)H13B—C13—H13A109.5
N1—C10—S1114.8 (4)C23—C22—C21119.1 (7)
N2—C10—S1132.5 (5)C23—C22—H22120.5
C19—C18—C17127.1 (5)C21—C22—H22120.5
C19—C18—F1115.3 (5)C20—C21—C22119.5 (6)
C17—C18—F1117.5 (5)C20—C21—H21120.3
C25—C20—C21119.1 (6)C22—C21—H21120.3
C25—C20—C17122.6 (6)C3—C4—C5121.2 (6)
C21—C20—C17118.2 (6)C3—C4—H4119.4
C13—C12—C11111.5 (5)C5—C4—H4119.4
C13—C12—C14112.3 (5)C24—C23—C22121.1 (7)
C11—C12—C14110.8 (5)C24—C23—H23119.4
C13—C12—H12107.3C22—C23—H23119.4
C11—C12—H12107.3C4—C5—C6121.2 (6)
C14—C12—H12107.3C4—C5—H5119.4
F2—C2—C3116.9 (7)C6—C5—H5119.4
F2—C2—C1117.4 (6)C8—C7—C1128.5 (5)
C3—C2—C1125.7 (7)C8—C7—H7115.8
C20—C25—C24120.4 (7)C1—C7—H7115.8
C20—C25—H25119.8C23—C24—C25120.8 (7)
C24—C25—H25119.8C23—C24—H24119.6
C14—C15—C16122.9 (5)C25—C24—H24119.6
C14—C15—H15118.5
C15—C16—C17—C180.9 (7)C21—C20—C25—C240.4 (9)
C15—C16—C17—C20178.8 (5)C17—C20—C25—C24178.7 (6)
C15—C14—C19—C180.6 (8)C19—C14—C15—C162.0 (9)
C12—C14—C19—C18176.7 (5)C12—C14—C15—C16177.9 (5)
N3—C11—N2—C100.2 (7)C17—C16—C15—C141.2 (8)
C12—C11—N2—C10171.8 (5)C10—S1—C8—C7173.7 (5)
N2—C11—N3—N10.7 (7)C10—S1—C8—C92.8 (5)
C12—C11—N3—N1172.5 (5)F2—C2—C3—C4179.1 (7)
C10—N1—N3—C111.3 (6)C1—C2—C3—C40.1 (12)
C9—N1—N3—C11174.1 (5)F2—C2—C1—C6179.5 (6)
N3—N1—C10—N21.6 (7)C3—C2—C1—C60.3 (10)
C9—N1—C10—N2175.5 (5)F2—C2—C1—C71.1 (9)
N3—N1—C10—S1176.4 (4)C3—C2—C1—C7178.1 (6)
C9—N1—C10—S12.4 (7)C5—C6—C1—C20.5 (9)
C11—N2—C10—N11.1 (7)C5—C6—C1—C7177.8 (5)
C11—N2—C10—S1176.4 (5)C10—N1—C9—O1176.2 (6)
C8—S1—C10—N10.4 (5)N3—N1—C9—O13.8 (10)
C8—S1—C10—N2177.9 (7)C10—N1—C9—C84.4 (7)
C14—C19—C18—C171.7 (8)N3—N1—C9—C8176.7 (5)
C14—C19—C18—F1178.5 (5)C7—C8—C9—O17.2 (11)
C16—C17—C18—C192.4 (8)S1—C8—C9—O1176.1 (6)
C20—C17—C18—C19177.2 (5)C7—C8—C9—N1172.2 (5)
C16—C17—C18—F1179.2 (4)S1—C8—C9—N14.4 (6)
C20—C17—C18—F10.5 (7)C25—C20—C21—C220.0 (9)
C18—C17—C20—C2549.0 (8)C17—C20—C21—C22179.2 (5)
C16—C17—C20—C25131.3 (6)C23—C22—C21—C200.1 (10)
C18—C17—C20—C21131.8 (5)C2—C3—C4—C50.3 (12)
C16—C17—C20—C2147.8 (8)C21—C22—C23—C240.2 (11)
N3—C11—C12—C134.6 (8)C3—C4—C5—C60.1 (12)
N2—C11—C12—C13176.0 (5)C1—C6—C5—C40.4 (11)
N3—C11—C12—C14130.5 (6)C9—C8—C7—C1175.0 (5)
N2—C11—C12—C1458.2 (7)S1—C8—C7—C11.1 (9)
C19—C14—C12—C13109.1 (6)C2—C1—C7—C8146.5 (6)
C15—C14—C12—C1366.8 (7)C6—C1—C7—C831.8 (9)
C19—C14—C12—C11125.5 (5)C22—C23—C24—C250.7 (12)
C15—C14—C12—C1158.5 (7)C20—C25—C24—C230.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.573.333 (8)140
C4—H4···N3i0.932.713.551 (8)150
C15—H15···F2ii0.932.543.448 (6)165
C23—H23···F2iii0.932.413.307 (8)162
Symmetry codes: (i) x+1/4, y+1/4, z+5/4; (ii) x1/4, y+1/4, z1/4; (iii) x1/4, y+1/4, z+3/4.

Experimental details

Crystal data
Chemical formulaC25H17F2N3OS
Mr445.48
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)24.059 (3), 54.213 (5), 6.5223 (5)
V3)8507.3 (15)
Z16
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.40 × 0.23 × 0.13
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10401, 2135, 813
Rint0.065
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.069, 0.67
No. of reflections2135
No. of parameters291
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.12
Absolute structureFlack (1983)
Absolute structure parameter0.00 (14)

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97, ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
S1—C101.747 (6)C11—C121.511 (7)
S1—C81.763 (6)F1—C181.391 (5)
N1—N31.386 (5)O1—C91.193 (6)
N1—C91.394 (7)C8—C71.331 (6)
C11—N31.314 (6)C1—C71.435 (7)
C11—N21.376 (6)
C10—S1—C888.3 (3)N1—C10—S1114.8 (4)
C10—N1—N3110.0 (4)N2—C10—S1132.5 (5)
C10—N1—C9117.9 (5)C11—C12—C14110.8 (5)
N3—C11—N2115.5 (5)C8—C7—C1128.5 (5)
N1—C10—N2112.7 (5)
C12—C11—N3—N1172.5 (5)S1—C8—C7—C11.1 (9)
N3—C11—C12—C14130.5 (6)C2—C1—C7—C8146.5 (6)
N2—C11—C12—C1458.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.573.333 (8)140
C4—H4···N3i0.932.713.551 (8)150
C15—H15···F2ii0.932.543.448 (6)165
C23—H23···F2iii0.932.413.307 (8)162
Symmetry codes: (i) x+1/4, y+1/4, z+5/4; (ii) x1/4, y+1/4, z1/4; (iii) x1/4, y+1/4, z+3/4.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds