Download citation
Download citation
link to html
The crystal structure of three derivatives of 2,4-di­methoxy-1,3,5-triazine are described. In 4-(4,6-di­methoxy-1,3,5-triazin-2-yl)­morpholine, C9H14N4O3, the morpholine moiety adopts a chair conformation, and the di­methoxy­triazine mol­ecule adopts a butterfly conformation with respect to the two methoxy groups. In 3-(4,6-di­methoxy-1,3,5-triazin-2-yl­oxy)-2-methyl­phenol, C12H13N3O4, the di­methoxy­triazine moiety adopts a propeller conformation with respect to the methoxy groups, and the mol­ecules form dimers held together by O—H...N hydrogen bonds. 4-(4,6-Di­methoxy-1,3,5-triazin-2-yl­oxy)­phenyl phenyl ketone, C18H15N3O4, crystallizes with two crystallographically independent mol­ecules in the asymmetric unit. The two mol­ecules adopt different conformations with respect to the geometric relations between the phenyl ketone and triazine moieties.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103024570/av1155sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103024570/av1155Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103024570/av1155IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103024570/av1155IIIsup4.hkl
Contains datablock III

CCDC references: 229102; 229103; 229104

Comment top

The title compounds, viz. 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)morpholine, (I), 1,3,5-triazine, 2-(2-methyl-3-hydroxy)-4,6-dimethoxy-(9CI), (II), and 2,4-Dimethoxy-6-oxybenzophenone-1,3,5-triazine, (III), have been prepared and studied in order to examine their potential ability to undergo methyl rearrangement in the solid or liquid state (Kaftory & Handelsman-Benory, 1994; Handelsman-Benory et al., 2000; Greenberg et al. 2001; Kaftory et al., 2001; Kaftory, 2002). We investigate here the structure of the three compounds, none of which undergo solid-state rearrangement.

The 4,6-dimethoxy-1,3,5-triazine moiety is common to the three compounds. Comparison of the external-ring bond angles at the two methoxy groups (Table 1) shows that they are strongly affected by the bulky methyl group, so that the bond angle at the same side as? the methyl group is larger by 5–8° than the bond angle at the opposite side. A similar steric effect is also observed at the external-ring bond angle at atom C1, where the substituent are larger groups than methyl (Table 1). These two bond angles are practically equal when the substituent is morpholin [i.e. in (I)], because the molecule has a pseudo-mirror symmetry (Fig. 1), and the differences between the angles is up to 7.7° in (III).

The molecules in (I) are packed in pairs that consist of two molecules related by an inversion center. Translation of pairs of molecules along the a axis forms columns, with each of the columns surrounded by four neighboring columns.

Molecules of (II) (Fig. 2) are packed as dimers formed by O—H···N hydrogen bonds [O4.·N1 = 3.028 (2) Å and O4—H4O.·N1 = 172°; Fig. 3]. The phenyl ring is almost perpendicular to the triazine moiety [C1—O3—C6—C11 = −98.2 (2)°]. The molecules of (II) are packed in such a way that the triazine planes of two neighboring molecules and the phenyl planes of two neighboring molecules are arranged face-to-face.

Compound (III) crystallizes with two crystallographically non-equivalent molecules. The two molecules adopt completely different conformations (Figs. 4 and 5); molecule A has a rod shape while molecule B is folded. Relevant torsion angles are given in Table 2. The molecules are stacked along the a axis.

The morpholin moiety in (I) adopts a chair conformation, and the triazine moiety adopts a butterfly conformation with respect to the two methoxy groups, as was found in 2-(4'-nitroanilino) 4,6-dimethoxy-1,3,5-triazine (Taycher et al., 2001). The same moiety in (II) and (III) adopts a propeller conformation. The torsion angles are given in Table 2.

Experimental top

Compound (I) was prepared according to the procedure described by Kunishima et al. (1999). Crystals were grown from methanol solution.

For the preparation of compound (II), a solution (10 mmol) of sodium hydroxide (0.2 g, 5 mmol) in methanol was heated to 313 K. A solution of 1,3,5-triazine 2,2'-[2-methyl-1,3-phenilenebis(oxy)] bis[4,6-dichloro]-(9CI) (0.84 g, 2 mmol) in tetrahydrofuran (10 ml) was added and the resulting mixture was refluxed at 353 K for 1.5 h. The mixture was diluted with water (20 ml), and the solution was treated with ether (15 ml) in order to extract the product. The solution was dried over MgSO4 and the resulting mixture was allowed to stand for 2 h. The ether extract was filtered and concentrated to dryness in vacuo and the product was obtained in 96% yield. Crystals suitable for X-ray diffraction were grown from a solution (1:1) of ethyl acetate and methanol.

Compound (III) was prepared according to the procedure described by Yonehara et al. (1994). Crystals suitable for X-ray diffraction were grown from a mixture (1:1) of methanol and methylene chloride.

Refinement top

In all three structures, H atoms were located from difference Fourier maps. During refinement, the position of the hydroxy H atom in (II) was refined refined freely? All other H atoms were constrained to ride on their parent atoms.

Computing details top

For all compounds, data collection: Collect (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) for (I), (III); ORTEP-3 for Windows for (II).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
Figure 1. The molecular structutre of (I). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2. The molecular structutre of (II). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 3. The structure of dimers of (II). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 4. The molecular structutre of (III) (molecule A). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 5. The molecular structutre of (III) (molecule B). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Table 1. Comparison of selected bond angles (°).

Table 2. Selected torsion angles (°).
(I) 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)morpholine top
Crystal data top
C9H14N4O3F(000) = 480
Mr = 226.24Dx = 1.391 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2944 reflections
a = 10.244 (2) Åθ = 2.5–25.0°
b = 9.208 (3) ŵ = 0.11 mm1
c = 11.615 (3) ÅT = 293 K
β = 99.70 (3)°Needle, colorless
V = 1079.9 (5) Å30.33 × 0.15 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
883 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
Detector resolution: 95 pixels mm-1h = 1211
ϕ scank = 910
2944 measured reflectionsl = 1313
1799 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
1799 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C9H14N4O3V = 1079.9 (5) Å3
Mr = 226.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.244 (2) ŵ = 0.11 mm1
b = 9.208 (3) ÅT = 293 K
c = 11.615 (3) Å0.33 × 0.15 × 0.12 mm
β = 99.70 (3)°
Data collection top
Nonius KappaCCD
diffractometer
883 reflections with I > 2σ(I)
2944 measured reflectionsRint = 0.060
1799 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.98Δρmax = 0.16 e Å3
1799 reflectionsΔρmin = 0.15 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4894 (3)0.3130 (3)1.0732 (2)0.0761 (8)
O20.1476 (2)0.0214 (3)0.9495 (2)0.0776 (8)
O30.6562 (3)0.1168 (3)0.6140 (2)0.0807 (8)
N10.3170 (3)0.0206 (3)0.8453 (2)0.0611 (8)
N20.4992 (3)0.1777 (3)0.9100 (2)0.0601 (8)
N30.3162 (3)0.1699 (3)1.0113 (2)0.0681 (9)
N40.4961 (3)0.0335 (3)0.7474 (2)0.0667 (8)
C10.4359 (3)0.0791 (4)0.8364 (3)0.0568 (9)
C20.4338 (4)0.2165 (4)0.9932 (3)0.0621 (9)
C30.2658 (4)0.0720 (4)0.9335 (3)0.0629 (10)
C40.6208 (4)0.3638 (4)1.0645 (3)0.0857 (12)
H4A0.64970.43191.12610.129*
H4B0.61930.41040.99030.129*
H4C0.68070.28291.07120.129*
C50.0796 (4)0.0807 (5)0.8682 (3)0.0871 (13)
H5A0.07120.04200.79060.131*
H5B0.00680.09880.88660.131*
H5C0.12870.16990.87280.131*
C60.6208 (3)0.0957 (4)0.7259 (3)0.0740 (11)
H6A0.66060.15260.79300.089*
H6B0.60410.15980.65870.089*
C70.7139 (4)0.0214 (4)0.7039 (3)0.0771 (11)
H7A0.79270.02200.68250.093*
H7B0.74060.07650.77520.093*
C80.5426 (4)0.1824 (4)0.6453 (3)0.0822 (12)
H8A0.56810.23650.71720.099*
H8B0.50560.25050.58480.099*
C90.4393 (4)0.0734 (4)0.6617 (3)0.0752 (11)
H9A0.40640.02580.58800.090*
H9B0.36560.12170.68820.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0883 (19)0.0788 (18)0.0638 (16)0.0046 (14)0.0202 (14)0.0111 (15)
O20.0632 (16)0.097 (2)0.0775 (17)0.0019 (14)0.0263 (13)0.0008 (15)
O30.0886 (19)0.0840 (18)0.0756 (18)0.0007 (15)0.0311 (14)0.0152 (15)
N10.0547 (18)0.0708 (19)0.0594 (18)0.0018 (15)0.0144 (14)0.0025 (15)
N20.0646 (18)0.0626 (19)0.0546 (18)0.0038 (15)0.0141 (15)0.0044 (15)
N30.073 (2)0.077 (2)0.058 (2)0.0016 (17)0.0213 (16)0.0011 (17)
N40.0604 (19)0.076 (2)0.0684 (19)0.0083 (15)0.0234 (15)0.0144 (16)
C10.060 (2)0.059 (2)0.053 (2)0.0116 (18)0.0157 (17)0.0033 (18)
C20.072 (3)0.064 (2)0.053 (2)0.0084 (19)0.016 (2)0.0043 (19)
C30.058 (2)0.075 (3)0.059 (2)0.0063 (19)0.0177 (19)0.007 (2)
C40.080 (3)0.090 (3)0.086 (3)0.014 (2)0.011 (2)0.015 (2)
C50.070 (3)0.103 (3)0.090 (3)0.017 (2)0.020 (2)0.009 (3)
C60.072 (3)0.080 (3)0.075 (3)0.005 (2)0.027 (2)0.010 (2)
C70.071 (2)0.095 (3)0.069 (2)0.004 (2)0.0237 (19)0.001 (2)
C80.096 (3)0.077 (3)0.080 (3)0.006 (2)0.035 (2)0.017 (2)
C90.074 (3)0.090 (3)0.064 (2)0.016 (2)0.0201 (19)0.013 (2)
Geometric parameters (Å, º) top
O1—C21.342 (4)C4—H4B0.9600
O1—C41.445 (4)C4—H4C0.9600
O2—C31.339 (4)C5—H5A0.9600
O2—C51.428 (4)C5—H5B0.9600
O3—C81.412 (4)C5—H5C0.9600
O3—C71.415 (4)C6—C71.490 (5)
N1—C31.315 (4)C6—H6A0.9700
N1—C11.352 (4)C6—H6B0.9700
N2—C21.314 (4)C7—H7A0.9700
N2—C11.338 (4)C7—H7B0.9700
N3—C31.318 (4)C8—C91.494 (5)
N3—C21.328 (4)C8—H8A0.9700
N4—C11.357 (4)C8—H8B0.9700
N4—C91.450 (4)C9—H9A0.9700
N4—C61.459 (4)C9—H9B0.9700
C4—H4A0.9600
C2—O1—C4117.2 (3)O2—C5—H5C109.5
C3—O2—C5119.3 (3)H5A—C5—H5C109.5
C8—O3—C7109.6 (3)H5B—C5—H5C109.5
C3—N1—C1113.6 (3)N4—C6—C7110.4 (3)
C2—N2—C1113.7 (3)N4—C6—H6A109.6
C3—N3—C2112.0 (3)C7—C6—H6A109.6
C1—N4—C9123.4 (3)N4—C6—H6B109.6
C1—N4—C6122.2 (3)C7—C6—H6B109.6
C9—N4—C6114.3 (3)H6A—C6—H6B108.1
N2—C1—N1124.5 (3)O3—C7—C6112.1 (3)
N2—C1—N4117.6 (3)O3—C7—H7A109.2
N1—C1—N4117.8 (3)C6—C7—H7A109.2
N2—C2—N3128.0 (3)O3—C7—H7B109.2
N2—C2—O1118.7 (3)C6—C7—H7B109.2
N3—C2—O1113.3 (3)H7A—C7—H7B107.9
N1—C3—N3128.1 (4)O3—C8—C9112.2 (3)
N1—C3—O2118.1 (3)O3—C8—H8A109.2
N3—C3—O2113.7 (3)C9—C8—H8A109.2
O1—C4—H4A109.5O3—C8—H8B109.2
O1—C4—H4B109.5C9—C8—H8B109.2
H4A—C4—H4B109.5H8A—C8—H8B107.9
O1—C4—H4C109.5N4—C9—C8109.4 (3)
H4A—C4—H4C109.5N4—C9—H9A109.8
H4B—C4—H4C109.5C8—C9—H9A109.8
O2—C5—H5A109.5N4—C9—H9B109.8
O2—C5—H5B109.5C8—C9—H9B109.8
H5A—C5—H5B109.5H9A—C9—H9B108.2
C2—N2—C1—N11.1 (5)C1—N1—C3—N30.4 (5)
C2—N2—C1—N4179.6 (3)C1—N1—C3—O2179.7 (3)
C3—N1—C1—N21.3 (4)C2—N3—C3—N10.6 (5)
C3—N1—C1—N4179.5 (3)C2—N3—C3—O2179.4 (3)
C9—N4—C1—N2179.6 (3)C5—O2—C3—N12.7 (5)
C6—N4—C1—N24.3 (5)C5—O2—C3—N3177.3 (3)
C9—N4—C1—N10.3 (5)C1—N4—C6—C7134.4 (3)
C6—N4—C1—N1176.4 (3)C9—N4—C6—C749.2 (4)
C1—N2—C2—N30.1 (5)C8—O3—C7—C659.8 (4)
C1—N2—C2—O1178.8 (3)N4—C6—C7—O353.5 (4)
C3—N3—C2—N20.7 (5)C7—O3—C8—C961.2 (4)
C3—N3—C2—O1178.1 (3)C1—N4—C9—C8133.8 (3)
C4—O1—C2—N22.3 (4)C6—N4—C9—C849.8 (4)
C4—O1—C2—N3176.7 (3)O3—C8—C9—N455.7 (4)
(II) 3-(4,6-dimethoxy-1,3,5-triazin-2-yloxy)-2-methylphenol top
Crystal data top
C12H13N3O4Z = 2
Mr = 263.25F(000) = 276
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.386 (2) ÅCell parameters from 2195 reflections
b = 9.718 (2) Åθ = 2.2–25.1°
c = 9.868 (2) ŵ = 0.11 mm1
α = 108.73 (2)°T = 293 K
β = 93.36 (2)°Plate, colorless
γ = 109.67 (2)°0.45 × 0.30 × 0.12 mm
V = 620.5 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
1496 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.1°, θmin = 2.2°
Detector resolution: 95 pixels mm-1h = 08
ϕ scank = 1110
2195 measured reflectionsl = 1111
2195 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0796P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.033
2195 reflectionsΔρmax = 0.20 e Å3
180 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.147 (19)
Crystal data top
C12H13N3O4γ = 109.67 (2)°
Mr = 263.25V = 620.5 (3) Å3
Triclinic, P1Z = 2
a = 7.386 (2) ÅMo Kα radiation
b = 9.718 (2) ŵ = 0.11 mm1
c = 9.868 (2) ÅT = 293 K
α = 108.73 (2)°0.45 × 0.30 × 0.12 mm
β = 93.36 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1496 reflections with I > 2σ(I)
2195 measured reflectionsRint = 0.000
2195 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
2195 reflectionsΔρmin = 0.18 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2006 (2)0.08654 (16)0.23330 (15)0.0598 (4)
O20.2673 (2)0.04644 (16)0.70501 (15)0.0591 (4)
O30.28057 (19)0.36964 (15)0.58597 (13)0.0521 (4)
O40.72997 (19)0.73066 (18)1.02197 (16)0.0578 (4)
N10.2749 (2)0.16300 (18)0.65529 (16)0.0446 (4)
N20.2402 (2)0.14724 (18)0.40902 (16)0.0463 (4)
N30.2328 (2)0.07614 (18)0.46333 (17)0.0500 (4)
C10.2652 (3)0.2205 (2)0.5521 (2)0.0418 (5)
C20.2258 (3)0.0002 (2)0.3730 (2)0.0449 (5)
C30.2571 (3)0.0128 (2)0.60157 (19)0.0444 (5)
C40.1937 (4)0.0120 (3)0.1293 (2)0.0690 (7)
H4A0.09630.03370.14410.104*
H4B0.16100.08850.03240.104*
H4C0.31920.06850.14220.104*
C50.2366 (4)0.2092 (3)0.6605 (3)0.0719 (7)
H5A0.10790.27100.60280.108*
H5B0.24890.23630.74500.108*
H5C0.33240.22940.60390.108*
C60.3184 (3)0.4681 (2)0.73407 (19)0.0423 (5)
C70.5118 (2)0.5495 (2)0.80501 (19)0.0419 (5)
C80.5417 (3)0.6530 (2)0.9474 (2)0.0426 (5)
C90.3870 (3)0.6779 (2)1.0098 (2)0.0467 (5)
H90.41080.75081.10350.056*
C100.1982 (3)0.5954 (2)0.9335 (2)0.0514 (5)
H100.09480.61240.97610.062*
C110.1615 (3)0.4874 (2)0.7938 (2)0.0490 (5)
H110.03420.42950.74190.059*
C120.6781 (3)0.5253 (3)0.7340 (2)0.0573 (6)
H12A0.68370.42720.73110.086*
H12B0.79870.60910.78880.086*
H12C0.65840.52420.63660.086*
H4O0.735 (4)0.776 (4)1.130 (3)0.123 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0887 (10)0.0468 (9)0.0414 (8)0.0281 (8)0.0120 (7)0.0100 (7)
O20.0826 (10)0.0461 (9)0.0488 (9)0.0226 (7)0.0032 (7)0.0207 (7)
O30.0782 (10)0.0390 (8)0.0397 (8)0.0266 (7)0.0040 (6)0.0115 (6)
O40.0526 (8)0.0585 (10)0.0495 (9)0.0115 (7)0.0010 (6)0.0147 (7)
N10.0533 (9)0.0381 (9)0.0405 (9)0.0173 (7)0.0039 (7)0.0127 (7)
N20.0585 (10)0.0396 (10)0.0378 (9)0.0186 (8)0.0044 (7)0.0110 (7)
N30.0615 (10)0.0401 (10)0.0469 (10)0.0192 (8)0.0070 (8)0.0144 (8)
C10.0456 (10)0.0355 (11)0.0410 (11)0.0152 (8)0.0034 (8)0.0105 (9)
C20.0491 (11)0.0398 (12)0.0414 (11)0.0154 (9)0.0080 (8)0.0104 (9)
C30.0476 (10)0.0408 (12)0.0440 (12)0.0157 (9)0.0052 (8)0.0159 (10)
C40.1035 (17)0.0594 (15)0.0401 (12)0.0293 (13)0.0088 (11)0.0151 (11)
C50.0972 (17)0.0465 (14)0.0769 (17)0.0243 (12)0.0096 (13)0.0327 (13)
C60.0592 (12)0.0329 (10)0.0363 (10)0.0196 (9)0.0055 (8)0.0127 (8)
C70.0510 (11)0.0392 (11)0.0431 (11)0.0210 (9)0.0121 (8)0.0196 (9)
C80.0508 (11)0.0357 (11)0.0425 (11)0.0136 (9)0.0067 (8)0.0188 (9)
C90.0633 (12)0.0397 (11)0.0399 (11)0.0220 (10)0.0149 (9)0.0142 (9)
C100.0558 (12)0.0494 (12)0.0609 (13)0.0263 (10)0.0228 (10)0.0261 (11)
C110.0474 (11)0.0412 (11)0.0572 (13)0.0162 (9)0.0067 (9)0.0174 (10)
C120.0610 (13)0.0651 (15)0.0544 (13)0.0302 (11)0.0211 (10)0.0240 (11)
Geometric parameters (Å, º) top
O1—C21.328 (2)C5—H5A0.9600
O1—C41.441 (3)C5—H5B0.9600
O2—C31.333 (2)C5—H5C0.9600
O2—C51.430 (2)C6—C111.371 (3)
O3—C11.341 (2)C6—C71.386 (3)
O3—C61.416 (2)C7—C81.394 (3)
O4—C81.364 (2)C7—C121.498 (2)
O4—H4O1.01 (3)C8—C91.384 (3)
N1—C11.319 (2)C9—C101.375 (3)
N1—C31.339 (2)C9—H90.9300
N2—C21.322 (2)C10—C111.382 (3)
N2—C11.330 (2)C10—H100.9300
N3—C31.323 (2)C11—H110.9300
N3—C21.339 (2)C12—H12A0.9600
C4—H4A0.9600C12—H12B0.9600
C4—H4B0.9600C12—H12C0.9600
C4—H4C0.9600
C2—O1—C4117.11 (16)H5A—C5—H5C109.5
C3—O2—C5117.97 (16)H5B—C5—H5C109.5
C1—O3—C6119.56 (14)C11—C6—C7124.23 (17)
C8—O4—H4O111.3 (18)C11—C6—O3117.40 (16)
C1—N1—C3112.28 (16)C7—C6—O3118.09 (15)
C2—N2—C1112.88 (16)C6—C7—C8115.86 (15)
C3—N3—C2112.52 (16)C6—C7—C12122.09 (17)
N1—C1—N2127.73 (17)C8—C7—C12122.04 (17)
N1—C1—O3120.50 (16)O4—C8—C9121.42 (17)
N2—C1—O3111.77 (16)O4—C8—C7117.26 (16)
N2—C2—O1119.10 (17)C9—C8—C7121.31 (17)
N2—C2—N3127.05 (17)C10—C9—C8120.25 (17)
O1—C2—N3113.85 (16)C10—C9—H9119.9
N3—C3—O2119.68 (17)C8—C9—H9119.9
N3—C3—N1127.53 (17)C9—C10—C11120.28 (17)
O2—C3—N1112.79 (16)C9—C10—H10119.9
O1—C4—H4A109.5C11—C10—H10119.9
O1—C4—H4B109.5C6—C11—C10117.99 (18)
H4A—C4—H4B109.5C6—C11—H11121.0
O1—C4—H4C109.5C10—C11—H11121.0
H4A—C4—H4C109.5C7—C12—H12A109.5
H4B—C4—H4C109.5C7—C12—H12B109.5
O2—C5—H5A109.5H12A—C12—H12B109.5
O2—C5—H5B109.5C7—C12—H12C109.5
H5A—C5—H5B109.5H12A—C12—H12C109.5
O2—C5—H5C109.5H12B—C12—H12C109.5
C3—N1—C1—N20.2 (3)C1—N1—C3—O2179.81 (14)
C3—N1—C1—O3179.89 (15)C1—O3—C6—C1198.15 (19)
C2—N2—C1—N10.5 (3)C1—O3—C6—C787.6 (2)
C2—N2—C1—O3179.60 (15)C11—C6—C7—C81.9 (3)
C6—O3—C1—N13.5 (2)O3—C6—C7—C8175.69 (14)
C6—O3—C1—N2176.60 (14)C11—C6—C7—C12179.25 (18)
C1—N2—C2—O1179.97 (16)O3—C6—C7—C125.4 (2)
C1—N2—C2—N30.4 (3)C6—C7—C8—O4177.71 (15)
C4—O1—C2—N21.0 (3)C12—C7—C8—O41.2 (3)
C4—O1—C2—N3179.37 (16)C6—C7—C8—C93.3 (3)
C3—N3—C2—N20.1 (3)C12—C7—C8—C9177.78 (16)
C3—N3—C2—O1179.70 (15)O4—C8—C9—C10178.45 (16)
C2—N3—C3—O2179.85 (15)C7—C8—C9—C102.6 (3)
C2—N3—C3—N10.3 (3)C8—C9—C10—C110.3 (3)
C5—O2—C3—N34.6 (3)C7—C6—C11—C100.4 (3)
C5—O2—C3—N1175.75 (17)O3—C6—C11—C10173.51 (16)
C1—N1—C3—N30.2 (3)C9—C10—C11—C61.2 (3)
(III) 4-(4,6-Dimethoxy-1,3,5-triazin-2-yloxy)phenyl phenyl ketone top
Crystal data top
C18H15N3O4F(000) = 2816
Mr = 337.33Dx = 1.351 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 11206 reflections
a = 32.610 (6) Åθ = 1.3–25.1°
b = 13.757 (3) ŵ = 0.10 mm1
c = 15.904 (3) ÅT = 293 K
β = 111.56 (2)°Prism, colorless
V = 6636 (2) Å30.60 × 0.30 × 0.27 mm
Z = 16
Data collection top
Nnius KappaCCD
diffractometer
3022 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.1°, θmin = 1.3°
Detector resolution: 95 pixels mm-1h = 3838
ϕ scank = 1615
11206 measured reflectionsl = 1818
5860 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0566P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max = 0.001
5860 reflectionsΔρmax = 0.17 e Å3
456 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (3)
Crystal data top
C18H15N3O4V = 6636 (2) Å3
Mr = 337.33Z = 16
Monoclinic, C2/cMo Kα radiation
a = 32.610 (6) ŵ = 0.10 mm1
b = 13.757 (3) ÅT = 293 K
c = 15.904 (3) Å0.60 × 0.30 × 0.27 mm
β = 111.56 (2)°
Data collection top
Nnius KappaCCD
diffractometer
3022 reflections with I > 2σ(I)
11206 measured reflectionsRint = 0.028
5860 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.85Δρmax = 0.17 e Å3
5860 reflectionsΔρmin = 0.14 e Å3
456 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.66170 (4)0.00892 (9)0.48751 (8)0.0622 (3)
O2A0.66417 (4)0.26587 (8)0.66506 (8)0.0688 (4)
O3A0.67589 (4)0.03023 (8)0.78378 (8)0.0617 (3)
O4A0.71875 (5)0.46717 (10)0.73537 (10)0.0909 (5)
N1A0.66961 (4)0.11831 (10)0.72511 (9)0.0555 (4)
N2A0.66797 (4)0.01990 (10)0.63372 (9)0.0515 (4)
N3A0.66272 (4)0.13890 (10)0.57137 (10)0.0558 (4)
C1A0.67122 (5)0.02454 (12)0.70984 (12)0.0510 (4)
C2A0.66422 (5)0.04273 (13)0.56765 (12)0.0516 (4)
C3A0.66528 (5)0.17101 (12)0.65149 (13)0.0548 (5)
C4A0.66598 (6)0.09463 (13)0.47840 (13)0.0704 (5)
H4A10.66800.10840.42090.106*
H4A20.69210.11740.52590.106*
H4A30.64070.12700.48240.106*
C5A0.66213 (8)0.32999 (14)0.59088 (14)0.0890 (7)
H5A10.66290.39640.60990.133*
H5A20.68690.31760.57350.133*
H5A30.63530.31830.54030.133*
C6A0.68543 (6)0.13006 (12)0.78587 (11)0.0522 (4)
C7A0.71676 (5)0.16633 (13)0.75524 (12)0.0569 (5)
H7A0.73220.12520.73100.068*
C8A0.72465 (5)0.26472 (13)0.76128 (12)0.0558 (5)
H8A0.74480.29050.73840.067*
C9A0.70326 (5)0.32649 (12)0.80074 (11)0.0515 (4)
C10A0.67356 (6)0.28721 (13)0.83508 (12)0.0594 (5)
H10A0.65990.32730.86400.071*
C11A0.66397 (6)0.18858 (13)0.82684 (12)0.0608 (5)
H11A0.64350.16250.84860.073*
C12A0.71147 (6)0.43276 (13)0.79954 (12)0.0590 (5)
C13A0.71174 (5)0.49715 (12)0.87423 (11)0.0509 (4)
C14A0.72609 (6)0.46591 (14)0.96302 (12)0.0616 (5)
H14A0.73370.40100.97660.074*
C15A0.72921 (6)0.53018 (17)1.03173 (13)0.0747 (6)
H15A0.73910.50861.09130.090*
C16A0.71780 (7)0.62593 (18)1.01218 (17)0.0830 (7)
H16A0.71990.66911.05860.100*
C17A0.70325 (7)0.65818 (15)0.92412 (17)0.0796 (6)
H17A0.69530.72290.91090.096*
C18A0.70051 (6)0.59436 (13)0.85565 (13)0.0634 (5)
H18A0.69100.61650.79630.076*
O1B0.55405 (5)0.13085 (12)0.68846 (11)0.0931 (5)
O2B0.55174 (4)0.07859 (11)0.40614 (10)0.0838 (4)
O3B0.56970 (4)0.17284 (11)0.60023 (9)0.0799 (4)
O4B0.60214 (7)0.55525 (13)0.41719 (12)0.1350 (7)
N1B0.56012 (5)0.04895 (12)0.49707 (11)0.0664 (4)
N2B0.56129 (5)0.02472 (13)0.64632 (11)0.0712 (5)
N3B0.55230 (5)0.11068 (12)0.54833 (13)0.0729 (5)
C1B0.56320 (6)0.07807 (15)0.57829 (15)0.0662 (5)
C2B0.55604 (6)0.06808 (17)0.62653 (15)0.0706 (6)
C3B0.55467 (6)0.04791 (17)0.48776 (14)0.0664 (5)
C4B0.56141 (9)0.0920 (2)0.77716 (16)0.1177 (9)
H4B10.55520.14130.81370.177*
H4B20.54230.03740.77180.177*
H4B30.59160.07170.80500.177*
C5B0.54694 (8)0.18171 (16)0.38823 (17)0.1075 (8)
H5B10.54630.19430.32840.161*
H5B20.51990.20390.39290.161*
H5B30.57140.21550.43150.161*
C6B0.57394 (6)0.24221 (14)0.53968 (13)0.0645 (5)
C7B0.61082 (6)0.30019 (16)0.57181 (14)0.0751 (6)
H7B0.63270.28760.62780.090*
C8B0.61496 (6)0.37705 (16)0.52025 (15)0.0769 (6)
H8B0.63910.41840.54280.092*
C9B0.58334 (6)0.39355 (14)0.43455 (13)0.0677 (5)
C10B0.54651 (6)0.33326 (14)0.40403 (13)0.0688 (5)
H10B0.52510.34360.34700.083*
C11B0.54131 (6)0.25847 (14)0.45697 (13)0.0676 (5)
H11B0.51620.21980.43700.081*
C12B0.58723 (7)0.47854 (16)0.38038 (16)0.0841 (6)
C13B0.57322 (7)0.46914 (17)0.28112 (16)0.0784 (6)
C14B0.57830 (6)0.38307 (19)0.24151 (15)0.0825 (6)
H14B0.58910.32860.27750.099*
C15B0.56759 (8)0.3766 (2)0.14892 (18)0.0994 (8)
H15B0.57180.31860.12310.119*
C16B0.55100 (9)0.4551 (3)0.0964 (2)0.1204 (11)
H16B0.54370.45090.03420.145*
C17B0.54477 (10)0.5411 (3)0.1340 (2)0.1269 (11)
H17B0.53270.59420.09700.152*
C18B0.55641 (8)0.5493 (2)0.2270 (2)0.1060 (8)
H18B0.55290.60810.25250.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0828 (8)0.0524 (8)0.0551 (8)0.0039 (6)0.0297 (6)0.0017 (6)
O2A0.0955 (9)0.0385 (8)0.0681 (8)0.0054 (6)0.0248 (7)0.0048 (6)
O3A0.0912 (9)0.0428 (8)0.0536 (7)0.0048 (6)0.0295 (6)0.0043 (6)
O4A0.1656 (14)0.0581 (9)0.0744 (10)0.0166 (9)0.0741 (10)0.0043 (8)
N1A0.0719 (9)0.0386 (9)0.0546 (9)0.0043 (7)0.0216 (7)0.0027 (7)
N2A0.0623 (9)0.0423 (9)0.0485 (9)0.0012 (6)0.0186 (7)0.0012 (8)
N3A0.0676 (9)0.0418 (10)0.0566 (10)0.0031 (7)0.0213 (7)0.0050 (7)
C1A0.0559 (10)0.0461 (12)0.0494 (11)0.0029 (8)0.0175 (8)0.0063 (9)
C2A0.0524 (10)0.0488 (12)0.0522 (11)0.0010 (8)0.0177 (8)0.0024 (10)
C3A0.0568 (11)0.0387 (11)0.0646 (13)0.0037 (8)0.0171 (9)0.0022 (10)
C4A0.0928 (14)0.0538 (13)0.0700 (13)0.0027 (10)0.0364 (11)0.0080 (10)
C5A0.1300 (18)0.0461 (13)0.0825 (15)0.0051 (11)0.0293 (13)0.0171 (11)
C6A0.0677 (11)0.0376 (11)0.0489 (10)0.0032 (8)0.0186 (9)0.0032 (8)
C7A0.0574 (10)0.0535 (12)0.0613 (11)0.0007 (9)0.0235 (9)0.0124 (9)
C8A0.0584 (10)0.0539 (12)0.0572 (11)0.0091 (8)0.0238 (9)0.0080 (9)
C9A0.0653 (11)0.0437 (11)0.0472 (10)0.0039 (8)0.0227 (9)0.0039 (8)
C10A0.0816 (12)0.0467 (11)0.0599 (11)0.0008 (9)0.0376 (10)0.0066 (9)
C11A0.0808 (12)0.0495 (12)0.0641 (12)0.0078 (9)0.0408 (10)0.0051 (9)
C12A0.0814 (13)0.0500 (12)0.0517 (11)0.0072 (9)0.0316 (10)0.0031 (9)
C13A0.0636 (11)0.0426 (11)0.0510 (10)0.0066 (8)0.0263 (8)0.0025 (9)
C14A0.0744 (12)0.0551 (12)0.0579 (12)0.0060 (9)0.0274 (9)0.0045 (10)
C15A0.0827 (14)0.0865 (17)0.0569 (12)0.0132 (12)0.0282 (10)0.0162 (12)
C16A0.0901 (15)0.0821 (18)0.0897 (17)0.0196 (12)0.0483 (13)0.0388 (14)
C17A0.0954 (15)0.0520 (13)0.1028 (19)0.0019 (11)0.0497 (14)0.0186 (13)
C18A0.0738 (12)0.0510 (12)0.0690 (13)0.0001 (9)0.0305 (10)0.0012 (10)
O1B0.1097 (11)0.0902 (12)0.0804 (11)0.0197 (8)0.0361 (9)0.0111 (9)
O2B0.0975 (10)0.0831 (11)0.0709 (10)0.0008 (8)0.0310 (8)0.0116 (8)
O3B0.1047 (10)0.0693 (10)0.0629 (8)0.0026 (8)0.0275 (7)0.0024 (8)
O4B0.213 (2)0.0903 (13)0.1092 (14)0.0686 (14)0.0687 (13)0.0302 (11)
N1B0.0660 (10)0.0685 (12)0.0619 (11)0.0015 (8)0.0201 (8)0.0003 (9)
N2B0.0688 (10)0.0767 (13)0.0666 (11)0.0053 (9)0.0231 (8)0.0011 (10)
N3B0.0715 (11)0.0688 (12)0.0780 (12)0.0047 (8)0.0269 (9)0.0047 (11)
C1B0.0608 (12)0.0661 (15)0.0650 (14)0.0004 (9)0.0154 (10)0.0024 (12)
C2B0.0609 (12)0.0795 (17)0.0681 (14)0.0069 (10)0.0198 (10)0.0024 (13)
C3B0.0532 (11)0.0755 (16)0.0656 (14)0.0002 (10)0.0161 (10)0.0107 (12)
C4B0.150 (2)0.139 (2)0.0673 (16)0.0316 (18)0.0447 (15)0.0034 (16)
C5B0.136 (2)0.0783 (18)0.1087 (19)0.0046 (15)0.0454 (16)0.0319 (15)
C6B0.0755 (13)0.0588 (13)0.0582 (12)0.0025 (10)0.0234 (11)0.0009 (10)
C7B0.0666 (13)0.0813 (15)0.0675 (13)0.0001 (11)0.0130 (10)0.0106 (12)
C8B0.0675 (13)0.0818 (16)0.0790 (15)0.0163 (11)0.0239 (12)0.0166 (13)
C9B0.0745 (13)0.0658 (13)0.0654 (13)0.0110 (10)0.0288 (11)0.0113 (11)
C10B0.0700 (12)0.0705 (14)0.0623 (12)0.0089 (10)0.0201 (10)0.0050 (11)
C11B0.0652 (12)0.0671 (14)0.0678 (13)0.0091 (10)0.0212 (10)0.0046 (11)
C12B0.1004 (16)0.0709 (16)0.0865 (16)0.0227 (12)0.0409 (13)0.0117 (13)
C13B0.0791 (13)0.0752 (16)0.0843 (16)0.0186 (12)0.0342 (12)0.0006 (14)
C14B0.0769 (14)0.0981 (19)0.0734 (15)0.0064 (12)0.0285 (11)0.0000 (14)
C15B0.0930 (17)0.129 (2)0.0844 (18)0.0233 (16)0.0424 (14)0.0134 (18)
C16B0.121 (2)0.153 (3)0.0848 (19)0.048 (2)0.0353 (17)0.020 (2)
C17B0.134 (2)0.116 (3)0.116 (3)0.033 (2)0.028 (2)0.043 (2)
C18B0.121 (2)0.0850 (19)0.113 (2)0.0231 (15)0.0441 (17)0.0135 (17)
Geometric parameters (Å, º) top
O1A—C2A1.331 (2)O1B—C2B1.329 (2)
O1A—C4A1.444 (2)O1B—C4B1.444 (3)
O2A—C3A1.325 (2)O2B—C3B1.335 (2)
O2A—C5A1.455 (2)O2B—C5B1.444 (2)
O3A—C1A1.3570 (19)O3B—C1B1.346 (2)
O3A—C6A1.4057 (19)O3B—C6B1.398 (2)
O4A—C12A1.225 (2)O4B—C12B1.218 (2)
N1A—C1A1.317 (2)N1B—C1B1.320 (2)
N1A—C3A1.340 (2)N1B—C3B1.345 (3)
N2A—C1A1.325 (2)N2B—C2B1.311 (3)
N2A—C2A1.329 (2)N2B—C1B1.328 (2)
N3A—C3A1.322 (2)N3B—C3B1.317 (2)
N3A—C2A1.326 (2)N3B—C2B1.339 (3)
C4A—H4A10.9600C4B—H4B10.9600
C4A—H4A20.9600C4B—H4B20.9600
C4A—H4A30.9600C4B—H4B30.9600
C5A—H5A10.9600C5B—H5B10.9600
C5A—H5A20.9600C5B—H5B20.9600
C5A—H5A30.9600C5B—H5B30.9600
C6A—C7A1.377 (2)C6B—C11B1.373 (3)
C6A—C11A1.377 (2)C6B—C7B1.375 (3)
C7A—C8A1.375 (2)C7B—C8B1.375 (3)
C7A—H7A0.9300C7B—H7B0.9300
C8A—C9A1.387 (2)C8B—C9B1.393 (3)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.384 (2)C9B—C10B1.392 (2)
C9A—C12A1.488 (2)C9B—C12B1.485 (3)
C10A—C11A1.388 (2)C10B—C11B1.379 (2)
C10A—H10A0.9300C10B—H10B0.9300
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.479 (2)C12B—C13B1.479 (3)
C13A—C14A1.383 (2)C13B—C14B1.379 (3)
C13A—C18A1.389 (2)C13B—C18B1.382 (3)
C14A—C15A1.380 (3)C14B—C15B1.386 (3)
C14A—H14A0.9300C14B—H14B0.9300
C15A—C16A1.373 (3)C15B—C16B1.351 (4)
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.377 (3)C16B—C17B1.374 (4)
C16A—H16A0.9300C16B—H16B0.9300
C17A—C18A1.376 (3)C17B—C18B1.390 (4)
C17A—H17A0.9300C17B—H17B0.9300
C18A—H18A0.9300C18B—H18B0.9300
C2A—O1A—C4A117.83 (14)C2B—O1B—C4B116.61 (19)
C3A—O2A—C5A117.44 (16)C3B—O2B—C5B117.79 (18)
C1A—O3A—C6A121.09 (14)C1B—O3B—C6B121.90 (16)
C1A—N1A—C3A111.56 (15)C1B—N1B—C3B111.57 (18)
C1A—N2A—C2A112.11 (15)C2B—N2B—C1B112.57 (19)
C3A—N3A—C2A112.72 (15)C3B—N3B—C2B112.49 (19)
N1A—C1A—N2A128.67 (16)N1B—C1B—N2B128.3 (2)
N1A—C1A—O3A112.55 (16)N1B—C1B—O3B119.7 (2)
N2A—C1A—O3A118.76 (15)N2B—C1B—O3B111.97 (19)
N3A—C2A—N2A127.27 (17)N2B—C2B—O1B119.5 (2)
N3A—C2A—O1A113.66 (16)N2B—C2B—N3B127.5 (2)
N2A—C2A—O1A119.08 (16)O1B—C2B—N3B113.0 (2)
N3A—C3A—O2A119.35 (17)N3B—C3B—O2B120.1 (2)
N3A—C3A—N1A127.63 (16)N3B—C3B—N1B127.6 (2)
O2A—C3A—N1A113.01 (17)O2B—C3B—N1B112.3 (2)
O1A—C4A—H4A1109.5O1B—C4B—H4B1109.5
O1A—C4A—H4A2109.5O1B—C4B—H4B2109.5
H4A1—C4A—H4A2109.5H4B1—C4B—H4B2109.5
O1A—C4A—H4A3109.5O1B—C4B—H4B3109.5
H4A1—C4A—H4A3109.5H4B1—C4B—H4B3109.5
H4A2—C4A—H4A3109.5H4B2—C4B—H4B3109.5
O2A—C5A—H5A1109.5O2B—C5B—H5B1109.5
O2A—C5A—H5A2109.5O2B—C5B—H5B2109.5
H5A1—C5A—H5A2109.5H5B1—C5B—H5B2109.5
O2A—C5A—H5A3109.5O2B—C5B—H5B3109.5
H5A1—C5A—H5A3109.5H5B1—C5B—H5B3109.5
H5A2—C5A—H5A3109.5H5B2—C5B—H5B3109.5
C7A—C6A—C11A121.83 (16)C11B—C6B—C7B121.71 (19)
C7A—C6A—O3A122.14 (16)C11B—C6B—O3B122.22 (17)
C11A—C6A—O3A115.85 (16)C7B—C6B—O3B115.73 (17)
C8A—C7A—C6A118.45 (17)C8B—C7B—C6B119.25 (18)
C8A—C7A—H7A120.8C8B—C7B—H7B120.4
C6A—C7A—H7A120.8C6B—C7B—H7B120.4
C7A—C8A—C9A121.49 (17)C7B—C8B—C9B120.62 (18)
C7A—C8A—H8A119.3C7B—C8B—H8B119.7
C9A—C8A—H8A119.3C9B—C8B—H8B119.7
C10A—C9A—C8A118.71 (16)C10B—C9B—C8B118.6 (2)
C10A—C9A—C12A122.95 (16)C10B—C9B—C12B120.89 (18)
C8A—C9A—C12A118.25 (16)C8B—C9B—C12B120.37 (18)
C9A—C10A—C11A120.68 (17)C11B—C10B—C9B121.03 (18)
C9A—C10A—H10A119.7C11B—C10B—H10B119.5
C11A—C10A—H10A119.7C9B—C10B—H10B119.5
C6A—C11A—C10A118.70 (17)C6B—C11B—C10B118.74 (18)
C6A—C11A—H11A120.6C6B—C11B—H11B120.6
C10A—C11A—H11A120.6C10B—C11B—H11B120.6
O4A—C12A—C13A119.46 (16)O4B—C12B—C13B120.1 (2)
O4A—C12A—C9A118.78 (16)O4B—C12B—C9B120.5 (2)
C13A—C12A—C9A121.75 (17)C13B—C12B—C9B119.44 (19)
C14A—C13A—C18A118.70 (17)C14B—C13B—C18B119.2 (2)
C14A—C13A—C12A122.27 (16)C14B—C13B—C12B121.4 (2)
C18A—C13A—C12A118.84 (16)C18B—C13B—C12B119.4 (2)
C15A—C14A—C13A120.55 (19)C13B—C14B—C15B121.0 (2)
C15A—C14A—H14A119.7C13B—C14B—H14B119.5
C13A—C14A—H14A119.7C15B—C14B—H14B119.5
C16A—C15A—C14A120.0 (2)C16B—C15B—C14B119.6 (3)
C16A—C15A—H15A120.0C16B—C15B—H15B120.2
C14A—C15A—H15A120.0C14B—C15B—H15B120.2
C15A—C16A—C17A120.2 (2)C15B—C16B—C17B120.6 (3)
C15A—C16A—H16A119.9C15B—C16B—H16B119.7
C17A—C16A—H16A119.9C17B—C16B—H16B119.7
C18A—C17A—C16A119.8 (2)C16B—C17B—C18B120.4 (3)
C18A—C17A—H17A120.1C16B—C17B—H17B119.8
C16A—C17A—H17A120.1C18B—C17B—H17B119.8
C17A—C18A—C13A120.69 (19)C13B—C18B—C17B119.2 (3)
C17A—C18A—H18A119.7C13B—C18B—H18B120.4
C13A—C18A—H18A119.7C17B—C18B—H18B120.4
C3A—N1A—C1A—N2A2.0 (2)C3B—N1B—C1B—N2B0.4 (3)
C3A—N1A—C1A—O3A179.59 (13)C3B—N1B—C1B—O3B178.61 (15)
C2A—N2A—C1A—N1A2.6 (2)C2B—N2B—C1B—N1B0.7 (3)
C2A—N2A—C1A—O3A179.05 (14)C2B—N2B—C1B—O3B178.44 (15)
C6A—O3A—C1A—N1A169.55 (14)C6B—O3B—C1B—N1B0.9 (3)
C6A—O3A—C1A—N2A11.8 (2)C6B—O3B—C1B—N2B178.31 (15)
C3A—N3A—C2A—N2A0.2 (2)C1B—N2B—C2B—O1B179.22 (16)
C3A—N3A—C2A—O1A180.00 (14)C1B—N2B—C2B—N3B0.6 (3)
C1A—N2A—C2A—N3A1.3 (2)C4B—O1B—C2B—N2B4.7 (3)
C1A—N2A—C2A—O1A178.44 (14)C4B—O1B—C2B—N3B175.11 (18)
C4A—O1A—C2A—N3A176.00 (14)C3B—N3B—C2B—N2B0.4 (3)
C4A—O1A—C2A—N2A3.8 (2)C3B—N3B—C2B—O1B179.48 (15)
C2A—N3A—C3A—O2A179.98 (14)C2B—N3B—C3B—O2B179.67 (16)
C2A—N3A—C3A—N1A1.0 (2)C2B—N3B—C3B—N1B0.1 (3)
C5A—O2A—C3A—N3A2.7 (2)C5B—O2B—C3B—N3B1.3 (3)
C5A—O2A—C3A—N1A176.49 (15)C5B—O2B—C3B—N1B178.46 (16)
C1A—N1A—C3A—N3A0.0 (2)C1B—N1B—C3B—N3B0.1 (3)
C1A—N1A—C3A—O2A179.13 (13)C1B—N1B—C3B—O2B179.66 (15)
C1A—O3A—C6A—C7A44.4 (2)C1B—O3B—C6B—C11B59.4 (3)
C1A—O3A—C6A—C11A140.46 (16)C1B—O3B—C6B—C7B127.12 (18)
C11A—C6A—C7A—C8A3.9 (2)C11B—C6B—C7B—C8B0.6 (3)
O3A—C6A—C7A—C8A178.78 (14)O3B—C6B—C7B—C8B172.84 (18)
C6A—C7A—C8A—C9A2.8 (3)C6B—C7B—C8B—C9B3.1 (3)
C7A—C8A—C9A—C10A0.4 (2)C7B—C8B—C9B—C10B2.9 (3)
C7A—C8A—C9A—C12A176.22 (15)C7B—C8B—C9B—C12B178.0 (2)
C8A—C9A—C10A—C11A2.7 (3)C8B—C9B—C10B—C11B0.2 (3)
C12A—C9A—C10A—C11A173.80 (16)C12B—C9B—C10B—C11B175.34 (19)
C7A—C6A—C11A—C10A1.7 (3)C7B—C6B—C11B—C10B1.9 (3)
O3A—C6A—C11A—C10A176.90 (15)O3B—C6B—C11B—C10B175.00 (17)
C9A—C10A—C11A—C6A1.6 (3)C9B—C10B—C11B—C6B2.1 (3)
C10A—C9A—C12A—O4A144.06 (19)C10B—C9B—C12B—O4B139.7 (2)
C8A—C9A—C12A—O4A32.4 (2)C8B—C9B—C12B—O4B35.3 (3)
C10A—C9A—C12A—C13A36.9 (3)C10B—C9B—C12B—C13B40.8 (3)
C8A—C9A—C12A—C13A146.61 (17)C8B—C9B—C12B—C13B144.1 (2)
O4A—C12A—C13A—C14A146.23 (18)O4B—C12B—C13B—C14B145.5 (2)
C9A—C12A—C13A—C14A32.8 (3)C9B—C12B—C13B—C14B34.0 (3)
O4A—C12A—C13A—C18A28.6 (3)O4B—C12B—C13B—C18B31.7 (3)
C9A—C12A—C13A—C18A152.42 (16)C9B—C12B—C13B—C18B148.8 (2)
C18A—C13A—C14A—C15A0.1 (3)C18B—C13B—C14B—C15B1.2 (3)
C12A—C13A—C14A—C15A174.74 (16)C12B—C13B—C14B—C15B176.0 (2)
C13A—C14A—C15A—C16A0.4 (3)C13B—C14B—C15B—C16B1.5 (3)
C14A—C15A—C16A—C17A0.1 (3)C14B—C15B—C16B—C17B0.2 (4)
C15A—C16A—C17A—C18A0.5 (3)C15B—C16B—C17B—C18B1.5 (4)
C16A—C17A—C18A—C13A0.8 (3)C14B—C13B—C18B—C17B0.4 (3)
C14A—C13A—C18A—C17A0.5 (3)C12B—C13B—C18B—C17B177.7 (2)
C12A—C13A—C18A—C17A175.53 (17)C16B—C17B—C18B—C13B1.7 (4)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC9H14N4O3C12H13N3O4C18H15N3O4
Mr226.24263.25337.33
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Monoclinic, C2/c
Temperature (K)293293293
a, b, c (Å)10.244 (2), 9.208 (3), 11.615 (3)7.386 (2), 9.718 (2), 9.868 (2)32.610 (6), 13.757 (3), 15.904 (3)
α, β, γ (°)90, 99.70 (3), 90108.73 (2), 93.36 (2), 109.67 (2)90, 111.56 (2), 90
V3)1079.9 (5)620.5 (3)6636 (2)
Z4216
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.110.110.10
Crystal size (mm)0.33 × 0.15 × 0.120.45 × 0.30 × 0.120.60 × 0.30 × 0.27
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nnius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2944, 1799, 883 2195, 2195, 1496 11206, 5860, 3022
Rint0.0600.0000.028
(sin θ/λ)max1)0.5950.5960.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.159, 0.98 0.042, 0.129, 1.03 0.039, 0.100, 0.85
No. of reflections179921955860
No. of parameters147180456
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.150.20, 0.180.17, 0.14

Computer programs: Collect (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), ORTEP-3 for Windows.

Comparison of selected bond angles (°) top
(I)(II)(IIIA)(IIIB)
O1-C2-N3113.3 (3)113.8 (2)113.7 (2)113.0 (2)
O2-C3-N3113.7 (3)119.7 (2)119.4 (2)120.1 (2)
O1-C2-N2118.7 (3)119.1 (2)119.1 (2)119.5 (2)
O2-C3-N1118.1 (3)112.8 (2)113.0 (2)112.3 (2)
N2-C1-C4117.6 (3)111.8 (2)118.8 (2)112.0 (2)
N1-C1-C4117.8 (3)120.5 (2)
N2-C1-O3118.8 (2)112.0 (2)
N1-C1-O3112.6 (2)119.7 (2)
Selected torsion angles (°) top
(I)(II)(IIIA)(IIIB)
N2-C2-O1-C4-2.3 (4)175.7 (2)3.8 (2)-4.7 (2)
N1-C3-O2-C5-2.7 (5)1.0 (2)-176.5 (2)178.5 (2)
N1-C1-N4-C90.3 (5)
(N1-C1-O3-C6)3.5 (2)169.6 (2)-0.9 (3)
C1-O3-C6-C11-98.1 (2)140.5 (2)59.4 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds