Download citation
Download citation
link to html
Turquoise crystals of the title salt, propyl­ammonium di-μ-thio-1:2κ4S-di­thio-2κ2S-tris(2-amino­ethyl)­amine-1κ4N-anti­mony(V)­nickel(II), (C3H10N)[NiSbS4(C6H18N4)] or [PAH][Ni(tren)SbS4] [where tren is tris(2-amino­ethyl)­amine and PA is propyl­amine], were synthesized under solvothermal conditions by reacting [Ni(tren)2]Cl2, Sb and S in a solution of PA. The NiII ion is octahedrally surrounded by four N atoms of the tetradentate tren mol­ecule and by two S atoms of the tetrahedral [SbVS4]3− anion, thus forming the anionic [Ni(tren)SbS4] part of the compound. Charge balance is achieved through the PAH+ cation. An extended intermolecular hydrogen-bonding network is observed between the anion and the cation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102017754/av1121sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102017754/av1121Isup2.hkl
Contains datablock I

CCDC reference: 199405

Comment top

Thioantimonates(III) exhibit a rich structural diversity, due to the very flexible coordination behaviour of the SbIII atom, with coordination numbers ranging from 3 to 6 (Sheldrick & Wachhold, 1997; Wang & Liebau, 1996). The thioantimonate(III) anions occur as isolated units, chains, layers or three-dimensional frameworks (Sheldrick & Wachhold, 1998). On the other hand, thioantimonates(V) are often isolated (Graf & Schäfer, 1976; Schur et al., 1998). Compounds in which the SbVS4 tetrahedron is interconnected to transition metal cations are A2AuSbS4 (A is Rb or Cs; Hanko & Kanatzidis, 1998), MAg2SbS4 and M2AgSbS4 (M is K or Rb; Schimek et al., 1996), or [(H2O)9Mo3S4SbS4Mo3(H2O)9](CH3C6H4SO3)8.24H2O (Sakane et al., 1998).

A way of connecting SbVS4 tetrahedra to transition metal cations (TMC), based on our results obtained recently with thioantimonates(III), has been established Added text OK?. Using the tetradentate ligand tren [tren is tris(2-aminoethyl)amine], together with Co and Ni, we have prepared neutral compounds such as [Co(tren)]Sb2S5 and [Co(tren)]Sb4S8 (Stähler & Bensch, 2001a), the chain-like [Sb2S42-] anion in [Ni(tren)]Sb2S4 and a layered compound, [Co(tren)]Sb2S4 (Stähler & Bensch, 2001b). In these compounds, the tetradentate ligand leaves one or two sites at the TMC free, and these sites are used to form bonds to S atoms of the thioantimonate(III) anions. Applying the very successful method presented for thioantimonates(III), we synthesized the title new and unusual thioantimonate(V) compound, [PAH][Ni(tren)SbS4], (I), with an [SbVS4]3- anion acting as a bidentate ligand. \sch

The structure of (I) is composed of PAH+ cations and [Ni(tren)SbS4]- anions (Fig. 1). The Ni2+ ion is surrounded by four N atoms of the tren ligand and two S atoms of the [SbVS4]3- anion, to form a distorted octahedron (NiN4S2). The Ni—N distances range from 2.0876 (19) to 2.116 (2) Å, with N—Ni—N angles between 82.47 (9) and 162.13 (9)° (Table 1). The two Ni—S distances of 2.4359 (12) and 2.6936 (9) Å are significantly different. It can be assumed that geometrical reasons are responsible for the long Ni—S2 bond. The S1—Ni—N1 [176.65 (5)°] and S2—Ni—N2 [178.31 (6)°] angles deviate slightly from the ideal value of 180°. The SbVS4 tetrahedron is only moderately distorted, with Sb—S distances and S—Sb—S angles in the ranges 2.3071 (10)–2.3467 (8) Å and 98.54 (4)–115.66 (3)°, respectively (see Table 1). These values are in the normal range for [SbVS4]3- anions (Mereiter et al., 1979; Hanko & Kanatzidis, 1998; Sakane et al., 1998).

The anionic part of the structure of (I) may be viewed as being composed of an [NiN4]2+ cation sharing two S atoms with the [SbVS4]3- anion, thus yielding the final [Ni(tren)SbS4]- anion. These anions are stacked along the a axis (Fig. 2) and the PAH+ cations are located near the [SbVS4]3- anion. The C—N bond distance in PAH+ is in the normal range for a primary amine [C7—N5 1.465 (3) Å].

In (I), a hydrogen-bond network (Table 2) is observed which may contribute significantly to the stability of the compound. There are three short intermolecular contacts, involving atoms S1 [H2N2···S1i and H1N4···S1i; symmetry code: (i) 1 - x, 1 - y, 1 - z Please check added symmetry code] and S4 [H1N2···S4iii; symmetry code: (iii) x - 1, y, z Please check added symmetry code] of the [SbVS4]3- tetrahedron and the H atoms of the tren ligand, with H···S distances in the range 2.54–2.62 Å. Four H···S contacts are observed between the PAH+ cation and atoms S1, S3, S3ii and S4iii [symmetry code: (ii) 1 - x, 2 - y, 1 - z Please check added symmetry code], with H···S distances in the range 2.46–2.75 Å; the corresponding angles are in the range 120.2–173.2°.

Experimental top

Compound (I) was obtained in nearly 30% yield by the reaction of [Ni(tren)2]Cl2 (Ellermeier et al., 2002) (0.211 g, 0.5 mmol), Sb (0.121 g, 1 mmol) and S (0.096 g, 3 mmol) in an aqueous solution of PA (5 ml; 99%, Merck Chemical). The mixture was heated in a Teflon-lined steel autoclave with an inner volume of 30 ml for 6 d at 413 K, and then cooled to room temperature within 3 h. After washing with water and drying under vacuum, turquoise crystals of (I) were obtained. The compound is stable in air and in water.

Refinement top

The H atoms were positioned with idealized geometry and refined with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(Namine, Cmethylene) and 1.5Ueq(Nammonium, Cmethyl) Please check added text] using a riding model, with C—H distances of 0.97 Å and N—H distances in the range 0.89–0.90 Å.

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: CIFTAB in SHELXL97.

Figures top
[Figure 1] Fig. 1. The PAH+ cation and [Ni(tren)SbS4]- anion in (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The arrangement of the cations and anions in (I). The H atoms of the tren ligands have been omitted for clarity. S, Ni and Sb atoms are not visible individually - may they be removed from the shading key?
propylammonium tris(2-aminoethyl)amine-1κ4N-di-µ-thio-1:2κ4S-dithio- 2κ2S-antimony(V)nickel(II) top
Crystal data top
(C3H10N)[NiSbS4(C6H18N4)]Z = 2
Mr = 515.06F(000) = 520
Triclinic, P1Dx = 1.782 Mg m3
a = 7.5707 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.303 (2) ÅCell parameters from 24 reflections
c = 12.605 (3) Åθ = 20–29°
α = 63.98 (3)°µ = 2.82 mm1
β = 84.49 (3)°T = 293 K
γ = 82.26 (3)°Polyhedron, turquoise
V = 959.7 (3) Å30.5 × 0.2 × 0.1 mm
Data collection top
Philips PW1100 four-circle
diffractometer
3940 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 28.0°, θmin = 2.7°
ω/θ scansh = 09
Absorption correction: ψ scan
[X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)]
k = 1414
Tmin = 0.513, Tmax = 0.720l = 1616
4967 measured reflections3 standard reflections every 120 min
4625 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0217P)2 + 0.3866P]
where P = (Fo2 + 2Fc2)/3
4625 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
(C3H10N)[NiSbS4(C6H18N4)]γ = 82.26 (3)°
Mr = 515.06V = 959.7 (3) Å3
Triclinic, P1Z = 2
a = 7.5707 (15) ÅMo Kα radiation
b = 11.303 (2) ŵ = 2.82 mm1
c = 12.605 (3) ÅT = 293 K
α = 63.98 (3)°0.5 × 0.2 × 0.1 mm
β = 84.49 (3)°
Data collection top
Philips PW1100 four-circle
diffractometer
3940 reflections with I > 2σ(I)
Absorption correction: ψ scan
[X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)]
Rint = 0.013
Tmin = 0.513, Tmax = 0.7203 standard reflections every 120 min
4967 measured reflections intensity decay: none
4625 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.02Δρmax = 0.71 e Å3
4625 reflectionsΔρmin = 0.47 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb0.742414 (18)0.688104 (13)0.664750 (12)0.02788 (4)
S10.50536 (7)0.66644 (5)0.56963 (5)0.03326 (11)
S20.74095 (9)0.48688 (6)0.83310 (5)0.04205 (14)
S30.66770 (8)0.87578 (6)0.69651 (6)0.03942 (13)
S41.00701 (9)0.70430 (7)0.55436 (7)0.05046 (17)
Ni0.48115 (4)0.44435 (3)0.72600 (2)0.02841 (6)
N10.4546 (3)0.24846 (18)0.85448 (16)0.0336 (4)
N20.2759 (2)0.40871 (19)0.64784 (17)0.0343 (4)
H1N20.19870.48210.61740.041*
H2N20.32150.38840.58850.041*
N30.3009 (3)0.4915 (2)0.8435 (2)0.0454 (5)
H1N30.34930.54490.86610.055*
H2N30.20000.53530.80650.055*
N40.6884 (3)0.34876 (19)0.65835 (17)0.0356 (4)
H1N40.66780.36820.58300.043*
H2N40.79270.37840.65890.043*
N50.2448 (3)0.9160 (2)0.5848 (2)0.0554 (6)
H1N50.24360.98550.51450.083*
H2N50.18620.85410.58220.083*
H3N50.35700.88330.60360.083*
C10.3142 (3)0.1939 (2)0.8194 (2)0.0407 (5)
H1A0.24970.13740.89000.049*
H1B0.37130.13930.78160.049*
C20.1819 (3)0.2989 (2)0.7360 (2)0.0403 (5)
H2C0.12020.26060.69650.048*
H2D0.09380.33170.78050.048*
C30.4072 (4)0.2608 (3)0.9662 (2)0.0495 (6)
H3C0.51110.27980.99320.059*
H3D0.37030.17771.02640.059*
C40.2577 (4)0.3703 (3)0.9490 (2)0.0537 (7)
H4C0.14680.34320.93870.064*
H4D0.24280.38781.01820.064*
C50.6309 (3)0.1740 (2)0.8547 (2)0.0435 (6)
H5A0.62070.07980.89790.052*
H5B0.71450.19740.89430.052*
C60.7005 (3)0.2050 (2)0.7291 (2)0.0434 (6)
H6A0.82370.16750.72980.052*
H6B0.63070.16590.69460.052*
C70.1582 (4)0.9571 (3)0.6741 (2)0.0458 (6)
H7A0.03650.99410.65270.055*
H7B0.22091.02560.67570.055*
C80.1566 (4)0.8429 (3)0.7949 (3)0.0546 (7)
H8A0.27840.80750.81700.066*
H8B0.09680.77350.79260.066*
C90.0626 (5)0.8839 (4)0.8875 (3)0.0732 (10)
H9A0.06430.80860.96320.110*
H9B0.05880.91750.86670.110*
H9C0.12280.95150.89110.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb0.02684 (7)0.02500 (7)0.03242 (8)0.00593 (5)0.00283 (5)0.01175 (5)
S10.0359 (3)0.0306 (3)0.0342 (3)0.0063 (2)0.0094 (2)0.0124 (2)
S20.0574 (4)0.0314 (3)0.0347 (3)0.0092 (3)0.0119 (3)0.0086 (2)
S30.0431 (3)0.0343 (3)0.0478 (3)0.0044 (2)0.0035 (3)0.0236 (3)
S40.0350 (3)0.0443 (3)0.0669 (4)0.0051 (3)0.0136 (3)0.0222 (3)
Ni0.03015 (14)0.02492 (13)0.03024 (14)0.00574 (10)0.00185 (11)0.01107 (11)
N10.0397 (10)0.0288 (9)0.0316 (9)0.0091 (8)0.0022 (8)0.0107 (8)
N20.0328 (9)0.0335 (9)0.0380 (10)0.0033 (7)0.0045 (8)0.0161 (8)
N30.0497 (12)0.0418 (11)0.0533 (13)0.0079 (9)0.0037 (10)0.0286 (10)
N40.0349 (10)0.0368 (10)0.0364 (10)0.0048 (8)0.0002 (8)0.0168 (8)
N50.0561 (14)0.0413 (12)0.0570 (14)0.0014 (10)0.0110 (11)0.0140 (11)
C10.0445 (13)0.0332 (12)0.0484 (14)0.0152 (10)0.0007 (11)0.0183 (11)
C20.0333 (12)0.0431 (13)0.0512 (14)0.0117 (10)0.0000 (10)0.0248 (11)
C30.0708 (18)0.0461 (14)0.0300 (12)0.0207 (13)0.0038 (12)0.0121 (11)
C40.0690 (19)0.0578 (17)0.0445 (15)0.0209 (14)0.0175 (13)0.0315 (13)
C50.0455 (14)0.0281 (11)0.0473 (14)0.0008 (10)0.0117 (11)0.0063 (10)
C60.0407 (13)0.0329 (12)0.0564 (15)0.0035 (10)0.0029 (11)0.0208 (11)
C70.0493 (14)0.0362 (12)0.0507 (15)0.0046 (11)0.0056 (12)0.0169 (11)
C80.0427 (14)0.0486 (15)0.0565 (17)0.0048 (12)0.0064 (12)0.0072 (13)
C90.091 (3)0.078 (2)0.0515 (18)0.038 (2)0.0005 (17)0.0218 (17)
Geometric parameters (Å, º) top
Sb—S12.3467 (8)N5—H3N50.8900
Sb—S22.3333 (12)C1—C21.518 (4)
Sb—S32.3150 (8)C1—H1A0.9700
Sb—S42.3071 (10)C1—H1B0.9700
S1—Ni2.4359 (12)C2—H2C0.9700
S2—Ni2.6936 (9)C2—H2D0.9700
Ni—N12.116 (2)C3—C41.514 (4)
Ni—N22.0876 (19)C3—H3C0.9700
Ni—N32.109 (2)C3—H3D0.9700
Ni—N42.110 (2)C4—H4C0.9700
N1—C51.478 (3)C4—H4D0.9700
N1—C31.482 (3)C5—C61.520 (4)
N1—C11.487 (3)C5—H5A0.9700
N2—C21.469 (3)C5—H5B0.9700
N2—H1N20.9000C6—H6A0.9700
N2—H2N20.9000C6—H6B0.9700
N3—C41.480 (4)C7—C81.504 (4)
N3—H1N30.9000C7—H7A0.9700
N3—H2N30.9000C7—H7B0.9700
N4—C61.466 (3)C8—C91.520 (5)
N4—H1N40.9000C8—H8A0.9700
N4—H2N40.9000C8—H8B0.9700
N5—C71.465 (3)C9—H9A0.9600
N5—H1N50.8900C9—H9B0.9600
N5—H2N50.8900C9—H9C0.9600
S1—Sb—S298.54 (4)N1—C1—H1A108.8
S1—Sb—S3107.58 (3)C2—C1—H1A108.8
S1—Sb—S4111.90 (3)N1—C1—H1B108.8
S2—Sb—S3115.66 (3)C2—C1—H1B108.8
S2—Sb—S4112.23 (4)H1A—C1—H1B107.7
S3—Sb—S4110.31 (4)N2—C2—C1109.87 (19)
Sb—S1—Ni89.83 (4)N2—C2—H2C109.7
Sb—S2—Ni84.10 (4)C1—C2—H2C109.7
N1—Ni—N283.09 (8)N2—C2—H2D109.7
N1—Ni—N382.47 (9)C1—C2—H2D109.7
N1—Ni—N482.55 (8)H2C—C2—H2D108.2
N2—Ni—N392.28 (8)N1—C3—C4110.8 (2)
N2—Ni—N495.54 (8)N1—C3—H3C109.5
N3—Ni—N4162.13 (9)C4—C3—H3C109.5
N1—Ni—S1176.65 (5)N1—C3—H3D109.5
N2—Ni—S193.94 (6)C4—C3—H3D109.5
N3—Ni—S199.24 (7)H3C—C3—H3D108.1
N4—Ni—S196.23 (6)N3—C4—C3109.4 (2)
N1—Ni—S295.67 (6)N3—C4—H4C109.8
N2—Ni—S2178.31 (6)C3—C4—H4C109.8
N3—Ni—S286.41 (7)N3—C4—H4D109.8
N4—Ni—S285.43 (6)C3—C4—H4D109.8
S1—Ni—S287.33 (4)H4C—C4—H4D108.2
C5—N1—C3113.3 (2)N1—C5—C6110.57 (19)
C5—N1—C1110.91 (19)N1—C5—H5A109.5
C3—N1—C1112.9 (2)C6—C5—H5A109.5
C5—N1—Ni105.42 (14)N1—C5—H5B109.5
C3—N1—Ni104.69 (14)C6—C5—H5B109.5
C1—N1—Ni109.13 (14)H5A—C5—H5B108.1
C2—N2—Ni110.05 (14)N4—C6—C5109.6 (2)
C2—N2—H1N2109.6N4—C6—H6A109.7
Ni—N2—H1N2109.6C5—C6—H6A109.7
C2—N2—H2N2109.6N4—C6—H6B109.7
Ni—N2—H2N2109.6C5—C6—H6B109.7
H1N2—N2—H2N2108.2H6A—C6—H6B108.2
C4—N3—Ni110.89 (16)N5—C7—C8111.6 (2)
C4—N3—H1N3109.5N5—C7—H7A109.3
Ni—N3—H1N3109.5C8—C7—H7A109.3
C4—N3—H2N3109.5N5—C7—H7B109.3
Ni—N3—H2N3109.5C8—C7—H7B109.3
H1N3—N3—H2N3108.0H7A—C7—H7B108.0
C6—N4—Ni110.73 (15)C7—C8—C9112.0 (3)
C6—N4—H1N4109.5C7—C8—H8A109.2
Ni—N4—H1N4109.5C9—C8—H8A109.2
C6—N4—H2N4109.5C7—C8—H8B109.2
Ni—N4—H2N4109.5C9—C8—H8B109.2
H1N4—N4—H2N4108.1H8A—C8—H8B107.9
C7—N5—H1N5109.5C8—C9—H9A109.5
C7—N5—H2N5109.5C8—C9—H9B109.5
H1N5—N5—H2N5109.5H9A—C9—H9B109.5
C7—N5—H3N5109.5C8—C9—H9C109.5
H1N5—N5—H3N5109.5H9A—C9—H9C109.5
H2N5—N5—H3N5109.5H9B—C9—H9C109.5
N1—C1—C2113.89 (19)
S4—Sb—S1—S10.00 (6)S1—Ni—N1—C3147.5 (9)
S3—Sb—S1—S10.00 (5)S1—Ni—N1—C3147.5 (9)
S3—Sb—S1—S10.00 (5)S2—Ni—N1—C359.04 (16)
S2—Sb—S1—S10.00 (5)N2—Ni—N1—C11.25 (15)
S4—Sb—S1—Ni114.50 (4)N3—Ni—N1—C194.48 (16)
S3—Sb—S1—Ni124.17 (3)N4—Ni—N1—C195.29 (16)
S3—Sb—S1—Ni124.17 (3)S1—Ni—N1—C126.5 (11)
S2—Sb—S1—Ni3.71 (2)S1—Ni—N1—C126.5 (11)
S1—Sb—S1—Ni0 (6)S2—Ni—N1—C1179.91 (14)
S4—Sb—S2—Ni114.59 (3)N3—Ni—N2—C261.63 (16)
S3—Sb—S2—Ni117.64 (3)N4—Ni—N2—C2102.28 (16)
S3—Sb—S2—Ni117.64 (3)N1—Ni—N2—C220.50 (15)
S1—Sb—S2—Ni3.37 (2)S1—Ni—N2—C2161.06 (14)
S1—Sb—S2—Ni3.37 (2)S1—Ni—N2—C2161.06 (14)
S4—Sb—S3—S30.00 (19)S2—Ni—N2—C222.4 (19)
S2—Sb—S3—S30.00 (18)N2—Ni—N3—C484.27 (19)
S1—Sb—S3—S30.00 (17)N4—Ni—N3—C431.7 (4)
S1—Sb—S3—S30.00 (17)N1—Ni—N3—C41.54 (18)
S1—S1—Ni—N20.00 (7)S1—Ni—N3—C4178.63 (17)
Sb—S1—Ni—N2177.94 (6)S1—Ni—N3—C4178.63 (17)
S1—S1—Ni—N30.00 (7)S2—Ni—N3—C494.66 (18)
Sb—S1—Ni—N389.10 (7)N2—Ni—N4—C680.39 (17)
S1—S1—Ni—N40.00 (7)N3—Ni—N4—C635.1 (3)
Sb—S1—Ni—N481.92 (6)N1—Ni—N4—C61.88 (16)
S1—S1—Ni—N10.0 (2)S1—Ni—N4—C6174.98 (15)
Sb—S1—Ni—N1150.3 (10)S1—Ni—N4—C6174.98 (15)
Sb—S1—Ni—S10 (6)S2—Ni—N4—C698.21 (16)
S1—S1—Ni—S20.00 (7)C5—N1—C1—C2138.4 (2)
Sb—S1—Ni—S23.18 (2)C3—N1—C1—C293.2 (3)
Sb—S2—Ni—N2142.0 (19)Ni—N1—C1—C222.7 (2)
Sb—S2—Ni—N3102.66 (7)Ni—N2—C2—C137.8 (2)
Sb—S2—Ni—N493.25 (6)N1—C1—C2—N240.7 (3)
Sb—S2—Ni—N1175.28 (6)C5—N1—C3—C4162.6 (2)
Sb—S2—Ni—S13.22 (2)C1—N1—C3—C470.3 (3)
Sb—S2—Ni—S13.22 (2)Ni—N1—C3—C448.2 (2)
N2—Ni—N1—C5120.43 (15)Ni—N3—C4—C323.9 (3)
N3—Ni—N1—C5146.34 (16)N1—C3—C4—N349.2 (3)
N4—Ni—N1—C523.89 (15)C3—N1—C5—C6160.0 (2)
S1—Ni—N1—C592.7 (10)C1—N1—C5—C671.9 (2)
S1—Ni—N1—C592.7 (10)Ni—N1—C5—C646.1 (2)
S2—Ni—N1—C560.73 (15)Ni—N4—C6—C527.1 (2)
N2—Ni—N1—C3119.81 (17)N1—C5—C6—N450.0 (3)
N3—Ni—N1—C326.57 (16)N5—C7—C8—C9178.5 (3)
N4—Ni—N1—C3143.65 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S4i0.902.563.445 (2)170
N2—H2N2···S1ii0.902.543.431 (2)172
N4—H1N4···S1ii0.902.623.428 (2)150
N5—H1N5···S3iii0.892.503.347 (3)159
N5—H2N5···S4i0.892.463.348 (3)173
N5—H3N5···S30.892.703.515 (3)152
N5—H3N5···S10.892.753.284 (3)120
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula(C3H10N)[NiSbS4(C6H18N4)]
Mr515.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5707 (15), 11.303 (2), 12.605 (3)
α, β, γ (°)63.98 (3), 84.49 (3), 82.26 (3)
V3)959.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.82
Crystal size (mm)0.5 × 0.2 × 0.1
Data collection
DiffractometerPhilips PW1100 four-circle
diffractometer
Absorption correctionψ scan
[X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)]
Tmin, Tmax0.513, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
4967, 4625, 3940
Rint0.013
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.050, 1.02
No. of reflections4625
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.47

Computer programs: DIF4 (Stoe & Cie, 1992), DIF4, REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), CIFTAB in SHELXL97.

Selected geometric parameters (Å, º) top
Sb—S12.3467 (8)Ni—N12.116 (2)
Sb—S22.3333 (12)Ni—N22.0876 (19)
Sb—S32.3150 (8)Ni—N32.109 (2)
Sb—S42.3071 (10)Ni—N42.110 (2)
S1—Ni2.4359 (12)N5—C71.465 (3)
S2—Ni2.6936 (9)
S1—Sb—S298.54 (4)N2—Ni—N495.54 (8)
S1—Sb—S3107.58 (3)N3—Ni—N4162.13 (9)
S1—Sb—S4111.90 (3)N1—Ni—S1176.65 (5)
S2—Sb—S3115.66 (3)N2—Ni—S193.94 (6)
S2—Sb—S4112.23 (4)N3—Ni—S199.24 (7)
S3—Sb—S4110.31 (4)N4—Ni—S196.23 (6)
Sb—S1—Ni89.83 (4)N1—Ni—S295.67 (6)
Sb—S2—Ni84.10 (4)N2—Ni—S2178.31 (6)
N1—Ni—N283.09 (8)N3—Ni—S286.41 (7)
N1—Ni—N382.47 (9)N4—Ni—S285.43 (6)
N1—Ni—N482.55 (8)S1—Ni—S287.33 (4)
N2—Ni—N392.28 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S4i0.902.563.445 (2)170
N2—H2N2···S1ii0.902.543.431 (2)172
N4—H1N4···S1ii0.902.623.428 (2)150
N5—H1N5···S3iii0.892.503.347 (3)159
N5—H2N5···S4i0.892.463.348 (3)173
N5—H3N5···S30.892.703.515 (3)152
N5—H3N5···S10.892.753.284 (3)120
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds