Download citation
Download citation
link to html
In the title compound, [UO2(C15H11O2)2(C14H14OS)], the UVI atom is coordinated by seven O atoms in a distorted pentagonal–bipyramidal geometry. Both di­phenyl­propane-1,3-dionate systems are nearly planar. The sulfoxide moiety is in a distorted tetrahedral geometry, while its two aromatic rings are nearly orthogonal to one another. The crystal packing is stabilized by two bifurcated hydrogen-bonding interactions involving both uranyl O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010200848X/av1108sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010200848X/av1108Isup2.hkl
Contains datablock I

CCDC reference: 173459

Comment top

The chemistry of adducts of uranyl bis(β-diketonates) with neutral donor ligands is important for understanding the nature of the species extracted during the solvent-extraction separation of the uranyl ion using mixtures of β-diketones and neutral ligands (Ramakrishna & Patil, 1984).

We and several other research groups have isolated many of these compounds in the solid state, and these compounds have been characterized by spectroscopic and elemental analysis methods (Subramaniam & Viswanatha, 1969; Lu et al., 1977; Taylor & Waugh, 1977; Kramer et al., 1980; Nagar et al., 1989; Kannan & Venugopal, 1995; Kannan, Venugopal, Pillai, Droege & Barnes, 1996; Kannan, Venugopal, Pillai, Droege, Barnes & Schlember, 1996; Kannan et al., 1997, 2000, 2001a,b; Kannan & Ferguson, 1997; Kannan, 2000). We have also carried out extensive studies on the structures of these compounds using single-crystal X-ray diffraction methods and their relations with spectroscopic results Please clarify (Kannan, Venugopal, Pillai, Droege & Barnes, 1996; Kannan, Venugopal, Pillai, Droege, Barnes & Schlember, 1996; Kannan et al., 1997, 2000, 2001a,b; Kannan & Ferguson, 1997).

Recently, we have prepared adducts of uranyl bis(β-diketonates) with sulfoxide ligands, and found a stronger shielding effect due to the CH2 H atoms in diphenylmethylene sulfoxide compared with that in methyl-phenylmethylene sulfoxide. However, there are no structural studies to support this spectroscopic observation. As part of our systematic study, we have undertaken the X-ray structure determination of the title compound, (I), at 183 K, and the result is reported here. \sch

The bond lengths and angles in (I) (Fig. 1) are within the normal ranges (Allen et al., 1987). The structure of the molecule shows that the UVI ion is surrounded by seven O atoms in a pentagonal-bipyramidal geometry. Four O atoms (O3, O4, O5 and O6) of the diphenylpropane-1,3-dionato-O,O' (DBM) moieties, together with atom O7 of the sulfoxide, form a pentagon, while the two uranyl O atoms occupy the apices.

The pentagonal plane O3/O4/O5/O6/O7 is distorted from planarity towards a twisted conformation, with a local twofold axis passing through atom O7 and O3···O6. Atom U1 is displaced by 0.0574 (3) Å from the O3/O4/O5/O6/O7 mean plane. The O—U—O bond angles for the pentagon are in the range 70.5 (2)–74.0 (2)°, while the Opentagon—U—Oapex angle is 90.0 (3)°. The average U—Ouranyl distance is 1.792 Å, and the average U—Odiketonate distance is 2.344 Å. These values are acceptable, and agree with the values reported earlier (U—Ouranyl and U—Odiketonate in the ranges 1.727–1.788 Å and 2.308–2.417%A, respectively; Kannan, Venugopal, Pillai, Droege & Barnes, 1996; Kannan, Venugopal, Pillai, Droege, Barnes & Schlember, 1996; Kannan et al., 1997, 2000, 2001b; Kannan & Ferguson, 1997). The U—Osulfoxide bond distance [2.421 (6) Å] is also comparable with that reported earlier for uranyl bis(β-diketonate) sulfoxide complexes [2.375 Å (Kannan, Venugopal, Pillai, Droege, Barnes & Schlember, 1996) and 2.427 Å (Kannan et al., 2000)].

Both diphenylpropane-1,3-dionato-O,O' (DBM) systems in (I) are nearly planar, with their two phenyl rings having slightly different configurations, corresponding to dihedral angles of 13.3 (5) and 30.9 (4)° between them in the two DBM systems. The planarity of the DBM system is due to the CO and C—C conjugation in the propane-1,3-dionato-O,O' moiety joining the two phenyl rings.

The propane-1,3-dionato-O,O' moieties, with the U, also form six-membered rings, O5/O6/C7/C8/C9/U1 and O3/O4/C22/C23/C24/U1, in which atom U1 is displaced by 0.2082 (3) and 0.3121 (3) Å from the O5/O6/C7/C8/C9 and O3/O4/C22/C23/C24 planes, respectively.

The configuration of the two phenylmethylene moieties is conditioned by the distorted tetrahedral geometry of the sulfoxide moiety. The angles subtended at atom S1 are 97.1 (4), 104.8 (4), and 104.9 (4)°, with S1—O7, S1—C37 and S1—C38 distances of 1.527 (6), 1.817 (9) and 1.831 (9) Å, respectively. The O7···C37, O7···C38 and C37···C38 distances are 2.66 (1), 2.67 (1) and 2.73 (1) Å, respectively. The aromatic rings of the two phenylmethylene moieties are nearly orthogonal, with a dihedral angle of 83.2 (4)°.

In the crystal structure of (I), there are hydrogen-bonding interactions involving the two uranyl O atoms, namely C19—H19A···O1, C28—H28A···O1, C38—H38B···O2 and C43—H43A···O2 (Table 2). These interactions link the molecules into a three-dimensional network (Fig. 2) and, along with dipole-dipole and van der Waals interactions, stabilize the noncentrosymmetric crystal packing.

Experimental top

The title compound was prepared and characterized using the method reported by Kannan, Venugopal, Pillai, Droege, Barnes & Schlember (1996). Crystals of (I) suitable for X-ray diffraction analysis were obtained from slow evaporation of a chloform-toluene solution.

Refinement top

The Friedel opposites were not merged and the choice of absolute structure was determined by the Flack parameter (Flack, 1983; Flack & Bernardinelli, 1999, 2000). All six phenyl groups were fitted as regular aromatic rings with C—C distances of 1.390 Å and were refined anistropically. All H atoms were geometrically fixed and allowed to ride on their attached parent C atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing diagram for (I) viewed along the a axis.
(Dibenzylsulfoxido-κO)bis(1,3-diphenylpropane-1,3-dionato- κ2O,O')dioxouranium(VI) top
Crystal data top
[U(C15H11O2)2(C14H14OS)O2]Dx = 1.607 Mg m3
Mr = 946.82Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8192 reflections
a = 12.3178 (1) Åθ = 2.6–28.3°
b = 15.5281 (1) ŵ = 4.25 mm1
c = 20.4617 (1) ÅT = 183 K
V = 3913.75 (4) Å3Block, red
Z = 40.34 × 0.16 × 0.16 mm
F(000) = 1856
Data collection top
Siemens SMART CCD area-detector
diffractometer
9217 independent reflections
Radiation source: fine-focus sealed tube7611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.6°
ω scansh = 1615
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 2014
Tmin = 0.300, Tmax = 0.507l = 2626
23363 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0423P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
9217 reflectionsΔρmax = 2.01 e Å3
352 parametersΔρmin = 3.10 e Å3
0 restraintsAbsolute structure: Flack (1983), 3842 Friedel reflections
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.023 (10)
Crystal data top
[U(C15H11O2)2(C14H14OS)O2]V = 3913.75 (4) Å3
Mr = 946.82Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.3178 (1) ŵ = 4.25 mm1
b = 15.5281 (1) ÅT = 183 K
c = 20.4617 (1) Å0.34 × 0.16 × 0.16 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
9217 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
7611 reflections with I > 2σ(I)
Tmin = 0.300, Tmax = 0.507Rint = 0.092
23363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.121Δρmax = 2.01 e Å3
S = 0.98Δρmin = 3.10 e Å3
9217 reflectionsAbsolute structure: Flack (1983), 3842 Friedel reflections
352 parametersAbsolute structure parameter: 0.023 (10)
0 restraints
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.37242 (2)0.429082 (18)0.016628 (13)0.01416 (8)
S10.13073 (19)0.37490 (12)0.05943 (9)0.0178 (4)
O10.2597 (5)0.4962 (4)0.0382 (3)0.0255 (15)
O20.4814 (5)0.3591 (4)0.0066 (3)0.0234 (14)
O30.4736 (5)0.5562 (4)0.0096 (3)0.0258 (14)
O40.3673 (5)0.4807 (4)0.0913 (3)0.0231 (12)
O50.3001 (5)0.3319 (4)0.0936 (3)0.0269 (15)
O60.4637 (6)0.4472 (5)0.1154 (3)0.0375 (19)
O70.2435 (4)0.3410 (4)0.0425 (3)0.0184 (12)
C10.1487 (5)0.2229 (4)0.1436 (2)0.026 (2)
H10.16400.22070.09910.031*
C20.0590 (5)0.1794 (4)0.1683 (3)0.038 (3)
H20.01430.14820.14040.046*
C30.0362 (4)0.1826 (4)0.2348 (3)0.033 (2)
H30.02380.15350.25140.039*
C40.1030 (5)0.2292 (4)0.2766 (2)0.044 (3)
H40.08770.23140.32100.053*
C50.1927 (5)0.2727 (4)0.2518 (2)0.0230 (19)
H50.23750.30390.27980.028*
C60.2156 (4)0.2695 (3)0.1854 (3)0.0140 (16)
C70.3007 (6)0.3221 (5)0.1558 (4)0.0164 (17)
C80.3774 (9)0.3580 (5)0.1955 (4)0.0268 (19)
H80.37630.34240.23940.032*
C90.4602 (7)0.4184 (6)0.1750 (4)0.0197 (18)
C100.5455 (4)0.4557 (4)0.2209 (3)0.023 (2)
C110.5379 (5)0.4442 (5)0.2882 (3)0.048 (2)
H110.47900.41480.30580.057*
C120.6182 (6)0.4768 (5)0.3290 (2)0.048 (2)
H120.61310.46910.37400.057*
C130.7062 (5)0.5208 (5)0.3026 (3)0.054 (4)
H130.75990.54260.32990.064*
C140.7138 (4)0.5322 (4)0.2354 (4)0.047 (3)
H140.77260.56170.21770.056*
C150.6335 (5)0.4997 (4)0.1945 (2)0.032 (2)
H150.63860.50730.14960.038*
C160.5828 (7)0.6955 (5)0.0592 (3)0.068 (2)
H160.54640.65750.08670.081*
C170.6447 (8)0.7618 (5)0.0855 (3)0.068 (2)
H170.64980.76820.13060.081*
C180.6990 (7)0.8187 (5)0.0444 (4)0.058 (4)
H180.74040.86300.06200.070*
C190.6913 (7)0.8092 (5)0.0230 (3)0.068 (2)
H190.72770.84720.05050.081*
C200.6294 (8)0.7428 (5)0.0493 (2)0.0678 (3)
H200.62430.73650.09440.081*
C210.5751 (7)0.6860 (5)0.0082 (3)0.068 (2)
C220.5089 (6)0.6089 (6)0.0325 (4)0.0176 (16)
C230.4930 (8)0.5974 (5)0.1000 (4)0.023 (2)
H230.52800.63490.12850.027*
C240.4281 (7)0.5332 (5)0.1264 (4)0.0191 (18)
C250.4162 (4)0.5231 (4)0.19876 (19)0.0204 (19)
C260.5006 (4)0.5468 (4)0.2401 (3)0.024 (2)
H260.56440.56940.22280.029*
C270.4898 (4)0.5367 (4)0.3073 (2)0.031 (2)
H270.54630.55250.33490.037*
C280.3945 (5)0.5029 (4)0.3331 (2)0.046 (3)
H280.38730.49610.37810.055*
C290.3101 (4)0.4792 (4)0.2918 (3)0.028 (2)
H290.24640.45660.30910.034*
C300.3209 (4)0.4893 (4)0.2246 (3)0.025 (2)
H300.26440.47350.19690.030*
C310.2081 (5)0.2365 (4)0.1874 (3)0.036 (2)
H310.24450.20930.15330.044*
C320.2473 (5)0.2299 (5)0.2509 (4)0.061 (4)
H320.30980.19830.25930.073*
C330.1930 (7)0.2707 (6)0.3018 (3)0.066 (3)
H330.21920.26630.34430.079*
C340.0995 (7)0.3180 (6)0.2891 (3)0.066 (3)
H340.06320.34530.32320.079*
C350.0604 (5)0.3246 (5)0.2256 (3)0.0657 (16)
H350.00220.35630.21720.079*
C360.1147 (5)0.2839 (4)0.1747 (2)0.0204 (16)
C370.0682 (8)0.2891 (7)0.1064 (4)0.029 (2)
H37A0.00940.29900.10910.035*
H37B0.07970.23460.08430.035*
C380.0515 (7)0.3604 (6)0.0155 (5)0.0234 (18)
H38A0.09410.37940.05270.028*
H38B0.03560.29970.02140.028*
C390.0535 (3)0.4105 (3)0.0132 (3)0.0217 (18)
C400.0537 (4)0.5000 (3)0.0150 (3)0.032 (2)
H400.01160.53010.01570.038*
C410.1516 (5)0.5446 (3)0.0159 (4)0.062 (4)
H410.15170.60440.01710.074*
C420.2492 (4)0.4997 (4)0.0149 (4)0.0501 (18)
H420.31460.52950.01550.060*
C430.2489 (3)0.4102 (4)0.0131 (4)0.0501 (18)
H430.31420.38010.01250.060*
C440.1511 (4)0.3656 (3)0.0123 (4)0.0501 (18)
H440.15090.30570.01110.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01510 (13)0.01480 (12)0.01259 (12)0.00337 (13)0.00159 (13)0.00205 (13)
S10.0176 (9)0.0194 (9)0.0163 (9)0.0005 (9)0.0004 (9)0.0012 (7)
O10.016 (3)0.024 (3)0.037 (4)0.008 (3)0.012 (3)0.014 (3)
O20.021 (3)0.021 (3)0.029 (4)0.001 (2)0.007 (3)0.000 (3)
O30.030 (3)0.026 (3)0.022 (3)0.018 (3)0.001 (3)0.010 (3)
O40.025 (3)0.026 (3)0.018 (3)0.007 (3)0.002 (3)0.003 (2)
O50.027 (4)0.035 (4)0.019 (3)0.018 (3)0.004 (3)0.001 (3)
O60.048 (4)0.046 (5)0.019 (3)0.028 (4)0.010 (3)0.009 (3)
O70.005 (3)0.025 (3)0.025 (3)0.001 (2)0.001 (2)0.000 (3)
C10.035 (6)0.019 (4)0.025 (4)0.013 (4)0.005 (4)0.012 (4)
C20.051 (7)0.031 (6)0.032 (6)0.017 (5)0.012 (5)0.004 (5)
C30.031 (6)0.027 (5)0.041 (6)0.012 (4)0.013 (5)0.006 (5)
C40.089 (10)0.018 (5)0.025 (5)0.007 (5)0.019 (6)0.001 (4)
C50.025 (5)0.019 (5)0.025 (5)0.006 (4)0.002 (4)0.001 (4)
C60.011 (4)0.012 (4)0.018 (4)0.000 (3)0.002 (3)0.003 (3)
C70.013 (4)0.017 (4)0.019 (4)0.002 (3)0.002 (3)0.002 (3)
C80.038 (5)0.027 (5)0.015 (4)0.009 (5)0.002 (5)0.008 (3)
C90.021 (4)0.015 (4)0.022 (4)0.004 (4)0.001 (3)0.001 (4)
C100.017 (4)0.025 (5)0.026 (5)0.004 (3)0.001 (4)0.000 (4)
C110.064 (6)0.058 (6)0.021 (4)0.005 (5)0.010 (4)0.008 (4)
C120.064 (6)0.058 (6)0.021 (4)0.005 (5)0.010 (4)0.008 (4)
C130.014 (5)0.071 (9)0.077 (9)0.001 (5)0.016 (6)0.019 (8)
C140.020 (6)0.059 (8)0.061 (8)0.015 (5)0.014 (5)0.004 (7)
C150.032 (5)0.028 (5)0.036 (5)0.013 (5)0.013 (5)0.001 (4)
C160.120 (6)0.052 (4)0.031 (3)0.049 (4)0.001 (4)0.004 (3)
C170.120 (6)0.052 (4)0.031 (3)0.049 (4)0.001 (4)0.004 (3)
C180.081 (9)0.038 (7)0.056 (8)0.040 (6)0.006 (7)0.002 (6)
C190.120 (6)0.052 (4)0.031 (3)0.049 (4)0.001 (4)0.004 (3)
C200.1198 (6)0.0524 (6)0.0313 (4)0.049 (4)0.001 (4)0.004 (3)
C210.120 (6)0.052 (4)0.031 (3)0.049 (4)0.001 (4)0.004 (3)
C220.015 (3)0.021 (4)0.017 (4)0.001 (3)0.001 (3)0.001 (3)
C230.033 (5)0.017 (4)0.019 (4)0.012 (4)0.000 (4)0.004 (3)
C240.025 (5)0.011 (4)0.021 (4)0.001 (3)0.001 (4)0.003 (3)
C250.028 (5)0.016 (4)0.017 (4)0.003 (3)0.003 (3)0.003 (4)
C260.014 (4)0.034 (6)0.024 (5)0.007 (3)0.001 (3)0.003 (4)
C270.033 (6)0.041 (6)0.019 (5)0.002 (4)0.008 (4)0.005 (4)
C280.090 (10)0.026 (5)0.021 (5)0.005 (6)0.027 (6)0.008 (4)
C290.029 (5)0.027 (5)0.028 (5)0.001 (4)0.011 (4)0.001 (4)
C300.031 (5)0.019 (5)0.026 (5)0.003 (4)0.005 (4)0.004 (4)
C310.025 (5)0.039 (6)0.045 (6)0.002 (4)0.007 (5)0.003 (5)
C320.039 (7)0.065 (9)0.078 (9)0.002 (7)0.027 (7)0.017 (8)
C330.080 (8)0.082 (8)0.035 (5)0.025 (6)0.001 (5)0.000 (5)
C340.080 (8)0.082 (8)0.035 (5)0.025 (6)0.001 (5)0.000 (5)
C350.080 (4)0.082 (4)0.035 (3)0.025 (4)0.001 (3)0.000 (3)
C360.028 (4)0.019 (4)0.015 (3)0.010 (4)0.000 (3)0.006 (3)
C370.031 (5)0.035 (6)0.020 (5)0.019 (4)0.002 (4)0.009 (4)
C380.028 (5)0.026 (5)0.016 (4)0.004 (3)0.000 (4)0.006 (4)
C390.015 (4)0.031 (5)0.019 (4)0.004 (3)0.005 (4)0.000 (4)
C400.044 (6)0.026 (5)0.025 (5)0.001 (4)0.008 (5)0.004 (5)
C410.100 (11)0.048 (7)0.037 (6)0.038 (7)0.000 (8)0.002 (6)
C420.015 (3)0.075 (5)0.060 (4)0.002 (3)0.003 (3)0.004 (4)
C430.015 (3)0.075 (5)0.060 (4)0.002 (3)0.003 (3)0.004 (4)
C440.015 (3)0.075 (5)0.060 (4)0.002 (3)0.003 (3)0.004 (4)
Geometric parameters (Å, º) top
U1—O11.791 (6)C19—C201.3900
U1—O21.792 (6)C19—H190.9300
U1—O62.330 (6)C20—C211.3900
U1—O32.339 (5)C20—H200.9300
U1—O42.351 (5)C21—C221.532 (9)
U1—O52.357 (6)C22—C231.405 (11)
U1—O72.420 (6)C23—C241.387 (11)
S1—O71.525 (6)C23—H230.9300
S1—C371.815 (9)C24—C251.495 (9)
S1—C381.832 (9)C25—C261.3900
O3—C221.265 (9)C25—C301.3900
O4—C241.320 (9)C26—C271.3900
O5—C71.280 (10)C26—H260.9300
O6—C91.300 (10)C27—C281.3900
C1—C21.3900C27—H270.9300
C1—C61.3900C28—C291.3900
C1—H10.9300C28—H280.9300
C2—C31.3900C29—C301.3900
C2—H20.9300C29—H290.9300
C3—C41.3900C30—H300.9300
C3—H30.9300C31—C321.3900
C4—C51.3900C31—C361.3900
C4—H40.9300C31—H310.9300
C5—C61.3900C32—C331.3900
C5—H50.9300C32—H320.9300
C6—C71.461 (9)C33—C341.3900
C7—C81.365 (12)C33—H330.9300
C8—C91.447 (12)C34—C351.3900
C8—H80.9300C34—H340.9300
C9—C101.524 (9)C35—C361.3900
C10—C111.3900C35—H350.9300
C10—C151.3900C36—C371.512 (9)
C11—C121.3900C37—H37A0.9700
C11—H110.9300C37—H37B0.9700
C12—C131.3900C38—C391.510 (9)
C12—H120.9300C38—H38A0.9700
C13—C141.3900C38—H38B0.9700
C13—H130.9300C39—C401.3900
C14—C151.3900C39—C441.3900
C14—H140.9300C40—C411.3900
C15—H150.9300C40—H400.9300
C16—C171.3900C41—C421.3900
C16—C211.3900C41—H410.9300
C16—H160.9300C42—C431.3900
C17—C181.3900C42—H420.9300
C17—H170.9300C43—C441.3900
C18—C191.3900C43—H430.9300
C18—H180.9300C44—H440.9300
O1—U1—O2177.7 (3)C18—C19—H19120.0
O1—U1—O695.1 (3)C20—C19—H19120.0
O2—U1—O686.7 (3)C21—C20—C19120.0
O1—U1—O386.4 (2)C21—C20—H20120.0
O2—U1—O395.5 (2)C19—C20—H20120.0
O6—U1—O372.2 (2)C20—C21—C16120.0
O1—U1—O490.7 (3)C20—C21—C22123.8 (6)
O2—U1—O488.7 (3)C16—C21—C22116.2 (6)
O6—U1—O4141.9 (2)O3—C22—C23122.6 (8)
O3—U1—O470.6 (2)O3—C22—C21117.9 (7)
O1—U1—O585.1 (3)C23—C22—C21119.5 (7)
O2—U1—O594.1 (3)C24—C23—C22123.7 (8)
O6—U1—O571.3 (2)C24—C23—H23118.1
O3—U1—O5141.6 (2)C22—C23—H23118.1
O4—U1—O5146.8 (2)O4—C24—C23123.9 (8)
O1—U1—O786.8 (2)O4—C24—C25114.7 (7)
O2—U1—O790.9 (2)C23—C24—C25121.2 (7)
O6—U1—O7145.0 (2)C26—C25—C30120.0
O3—U1—O7142.7 (2)C26—C25—C24120.1 (5)
O4—U1—O772.8 (2)C30—C25—C24119.9 (5)
O5—U1—O774.0 (2)C25—C26—C27120.0
O7—S1—C37104.7 (4)C25—C26—H26120.0
O7—S1—C38104.7 (4)C27—C26—H26120.0
C37—S1—C3897.3 (4)C28—C27—C26120.0
C22—O3—U1140.5 (5)C28—C27—H27120.0
C24—O4—U1135.0 (5)C26—C27—H27120.0
C7—O5—U1137.5 (5)C27—C28—C29120.0
C9—O6—U1139.2 (6)C27—C28—H28120.0
S1—O7—U1121.1 (3)C29—C28—H28120.0
C2—C1—C6120.0C28—C29—C30120.0
C2—C1—H1120.0C28—C29—H29120.0
C6—C1—H1120.0C30—C29—H29120.0
C1—C2—C3120.0C29—C30—C25120.0
C1—C2—H2120.0C29—C30—H30120.0
C3—C2—H2120.0C25—C30—H30120.0
C4—C3—C2120.0C32—C31—C36120.0
C4—C3—H3120.0C32—C31—H31120.0
C2—C3—H3120.0C36—C31—H31120.0
C5—C4—C3120.0C31—C32—C33120.0
C5—C4—H4120.0C31—C32—H32120.0
C3—C4—H4120.0C33—C32—H32120.0
C4—C5—C6120.0C34—C33—C32120.0
C4—C5—H5120.0C34—C33—H33120.0
C6—C5—H5120.0C32—C33—H33120.0
C5—C6—C1120.0C33—C34—C35120.0
C5—C6—C7122.1 (5)C33—C34—H34120.0
C1—C6—C7117.5 (5)C35—C34—H34120.0
O5—C7—C8123.2 (8)C36—C35—C34120.0
O5—C7—C6118.2 (7)C36—C35—H35120.0
C8—C7—C6118.5 (7)C34—C35—H35120.0
C7—C8—C9125.4 (7)C35—C36—C31120.0
C7—C8—H8117.3C35—C36—C37119.1 (6)
C9—C8—H8117.3C31—C36—C37120.9 (6)
O6—C9—C8121.2 (8)C36—C37—S1111.6 (6)
O6—C9—C10115.2 (7)C36—C37—H37A109.3
C8—C9—C10123.6 (7)S1—C37—H37A109.3
C11—C10—C15120.0C36—C37—H37B109.3
C11—C10—C9121.0 (5)S1—C37—H37B109.3
C15—C10—C9119.0 (5)H37A—C37—H37B108.0
C10—C11—C12120.0C39—C38—S1111.5 (6)
C10—C11—H11120.0C39—C38—H38A109.3
C12—C11—H11120.0S1—C38—H38A109.3
C13—C12—C11120.0C39—C38—H38B109.3
C13—C12—H12120.0S1—C38—H38B109.3
C11—C12—H12120.0H38A—C38—H38B108.0
C14—C13—C12120.0C40—C39—C44120.0
C14—C13—H13120.0C40—C39—C38121.1 (5)
C12—C13—H13120.0C44—C39—C38118.8 (5)
C13—C14—C15120.0C41—C40—C39120.0
C13—C14—H14120.0C41—C40—H40120.0
C15—C14—H14120.0C39—C40—H40120.0
C14—C15—C10120.0C40—C41—C42120.0
C14—C15—H15120.0C40—C41—H41120.0
C10—C15—H15120.0C42—C41—H41120.0
C17—C16—C21120.0C41—C42—C43120.0
C17—C16—H16120.0C41—C42—H42120.0
C21—C16—H16120.0C43—C42—H42120.0
C16—C17—C18120.0C44—C43—C42120.0
C16—C17—H17120.0C44—C43—H43120.0
C18—C17—H17120.0C42—C43—H43120.0
C19—C18—C17120.0C43—C44—C39120.0
C19—C18—H18120.0C43—C44—H44120.0
C17—C18—H18120.0C39—C44—H44120.0
C18—C19—C20120.0
O1—U1—O3—C2299.6 (9)C12—C13—C14—C150.0
O2—U1—O3—C2279.1 (9)C13—C14—C15—C100.0
O6—U1—O3—C22163.8 (9)C11—C10—C15—C140.0
O4—U1—O3—C227.6 (8)C9—C10—C15—C14178.3 (6)
O5—U1—O3—C22177.1 (8)C21—C16—C17—C180.0
O7—U1—O3—C2219.8 (11)C16—C17—C18—C190.0
O1—U1—O4—C24106.9 (8)C17—C18—C19—C200.0
O2—U1—O4—C2475.4 (8)C18—C19—C20—C210.0
O6—U1—O4—C247.6 (9)C19—C20—C21—C160.0
O3—U1—O4—C2421.0 (7)C19—C20—C21—C22177.4 (9)
O5—U1—O4—C24171.0 (6)C17—C16—C21—C200.0
O7—U1—O4—C24166.7 (8)C17—C16—C21—C22177.6 (9)
O1—U1—O5—C780.7 (9)U1—O3—C22—C232.4 (14)
O2—U1—O5—C7101.4 (9)U1—O3—C22—C21180.0 (6)
O6—U1—O5—C716.4 (8)C20—C21—C22—O3172.0 (7)
O3—U1—O5—C72.8 (11)C16—C21—C22—O35.5 (11)
O4—U1—O5—C7164.6 (7)C20—C21—C22—C235.6 (12)
O7—U1—O5—C7168.8 (9)C16—C21—C22—C23176.9 (7)
O1—U1—O6—C979.0 (10)O3—C22—C23—C247.2 (14)
O2—U1—O6—C999.6 (10)C21—C22—C23—C24175.3 (9)
O3—U1—O6—C9163.6 (10)U1—O4—C24—C2324.9 (13)
O4—U1—O6—C9176.8 (8)U1—O4—C24—C25159.4 (5)
O5—U1—O6—C94.0 (9)C22—C23—C24—O45.8 (14)
O7—U1—O6—C912.7 (12)C22—C23—C24—C25178.8 (8)
C37—S1—O7—U1177.3 (4)O4—C24—C25—C26154.5 (6)
C38—S1—O7—U180.9 (4)C23—C24—C25—C2629.7 (10)
O1—U1—O7—S116.1 (4)O4—C24—C25—C3024.9 (9)
O2—U1—O7—S1164.0 (4)C23—C24—C25—C30150.9 (7)
O6—U1—O7—S1110.4 (5)C30—C25—C26—C270.0
O3—U1—O7—S163.7 (5)C24—C25—C26—C27179.4 (6)
O4—U1—O7—S175.7 (4)C25—C26—C27—C280.0
O5—U1—O7—S1101.9 (4)C26—C27—C28—C290.0
C6—C1—C2—C30.0C27—C28—C29—C300.0
C1—C2—C3—C40.0C28—C29—C30—C250.0
C2—C3—C4—C50.0C26—C25—C30—C290.0
C3—C4—C5—C60.0C24—C25—C30—C29179.4 (6)
C4—C5—C6—C10.0C36—C31—C32—C330.0
C4—C5—C6—C7172.4 (6)C31—C32—C33—C340.0
C2—C1—C6—C50.0C32—C33—C34—C350.0
C2—C1—C6—C7172.8 (6)C33—C34—C35—C360.0
U1—O5—C7—C820.8 (14)C34—C35—C36—C310.0
U1—O5—C7—C6159.6 (5)C34—C35—C36—C37177.7 (7)
C5—C6—C7—O5163.3 (6)C32—C31—C36—C350.0
C1—C6—C7—O59.3 (9)C32—C31—C36—C37177.6 (7)
C5—C6—C7—C817.1 (10)C35—C36—C37—S196.2 (7)
C1—C6—C7—C8170.2 (7)C31—C36—C37—S186.1 (7)
O5—C7—C8—C96.9 (15)O7—S1—C37—C3674.1 (7)
C6—C7—C8—C9173.5 (8)C38—S1—C37—C36178.6 (7)
U1—O6—C9—C82.7 (15)O7—S1—C38—C39165.7 (5)
U1—O6—C9—C10179.9 (6)C37—S1—C38—C3987.0 (6)
C7—C8—C9—O63.9 (15)S1—C38—C39—C4068.7 (7)
C7—C8—C9—C10178.9 (8)S1—C38—C39—C44114.2 (5)
O6—C9—C10—C11166.9 (6)C44—C39—C40—C410.0
C8—C9—C10—C1110.5 (10)C38—C39—C40—C41177.1 (7)
O6—C9—C10—C1514.9 (10)C39—C40—C41—C420.0
C8—C9—C10—C15167.8 (7)C40—C41—C42—C430.0
C15—C10—C11—C120.0C41—C42—C43—C440.0
C9—C10—C11—C12178.2 (6)C42—C43—C44—C390.0
C10—C11—C12—C130.0C40—C39—C44—C430.0
C11—C12—C13—C140.0C38—C39—C44—C43177.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.932.483.15 (1)130
C28—H28···O1ii0.932.503.25 (1)138
C38—H38B···O2iii0.972.573.52 (1)166
C43—H43···O2iv0.932.573.44 (1)156
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1, z+1/2; (iii) x1/2, y+1/2, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[U(C15H11O2)2(C14H14OS)O2]
Mr946.82
Crystal system, space groupOrthorhombic, P212121
Temperature (K)183
a, b, c (Å)12.3178 (1), 15.5281 (1), 20.4617 (1)
V3)3913.75 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.25
Crystal size (mm)0.34 × 0.16 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.300, 0.507
No. of measured, independent and
observed [I > 2σ(I)] reflections
23363, 9217, 7611
Rint0.092
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.121, 0.98
No. of reflections9217
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.01, 3.10
Absolute structureFlack (1983), 3842 Friedel reflections
Absolute structure parameter0.023 (10)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.932.483.15 (1)130
C28—H28···O1ii0.932.503.25 (1)138
C38—H38B···O2iii0.972.573.52 (1)166
C43—H43···O2iv0.932.573.44 (1)156
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1, z+1/2; (iii) x1/2, y+1/2, z; (iv) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds