Download citation
Download citation
link to html
In the title compound, (2-chloro­benzyl)­tris­(pyridine-2-thiol­ato)-κ2N,S2N,SS-tin(IV), [Sn(C7H6Cl)(C5H4NS)3], two of the three pyridine-2-thiol­ato ligands (SPy) are bidentate and one is monodentate. The bonding C atom of the 2-chloro­benzyl group, the S atom of the monodentate SPy and the S and N atoms of the two bidentate SPy ligands form a distorted octahedron around the Sn atom. The three S atoms and the N atom of one of the bidentate SPy ligands occupy the equatorial positions, while the N atom of the second bidentate SPy ligand and the C(CH2) atom are axial. The axial N—Sn—C angle of 157.9 (1)° demonstrates the heavy distortion of the octahedron.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100015146/av1054sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100015146/av1054Isup2.hkl
Contains datablock I

CCDC reference: 158238

Comment top

In mono- and diorganotin(IV) complexes of 2-mercaptopyridine (HSPy) such as RSn(SPy)3 [R is Me or Ph (Huber et al., 1997), or p-tolyl (Schürmann & Huber, 1994)], Ph2Sn(SPy)2 (Schmiedgen et al., 1993) or Ph2SnCl(SPy) (Schmiedgen, Huber, Preut et al., 1994), SPy acts as a bidentate ligand. Thus, the Sn atom achieves coordination numbers of 7, 6 and 5, respectively. In Sn(SPy)4·HSPy, the Sn was found not to be eight-coordinate, as might have been expected, but only six-coordinate, two SPy ligands being bidentate and the other two monodentate (Damude et al., 1990). A study of the structure of the title compound, (I), showed that bidentate and monodentate SPy ligands are present also in this compound, the Sn atom, in contrast with other RSn(SPy)3 compounds, being six-coordinate. \sch

All three SPy ligands of (I) are bonded via S to Sn. The Sn—S bond distances are comparable with the sums of the covalent radii (2.42 Å; Bondi, 1964) and correspond to Sn—S bond distances observed in similar compounds. These were discussed in a previous paper on the structure of n-BuSn(SPym)3 (SPym is 2-mercaptopyrimidine; Schmiedgen, Huber & Schürmann, 1994).

Each of the three Sn—N distances in (I) [2.303 (4)–3.113 (4) Å] is distinctly shorter than the sum of the appropriate van der Waals distances (3.75 Å; Bondi, 1964). However, the Sn—N distances of two of the SPy ligands (average value 2.315 Å) are shorter than in comparable compounds [p-TolSn(SPy)3 2.466 Å (Schürmann & Huber, 1994), MeSn(SPy)3 2.483 Å and PhSn(SPy)3 2.432 Å (Huber et al., 1997), and Ph2Sn(SPy)2 2.667 Å (Schmiedgen et al., 1993)] and indicate, when compared with the sum of the covalent radii (2.15 Å; Bondi, 1964), the existence of Sn—N coordination and the bidentate nature of two of the SPy ligands. The Sn—N distance of the third ligand [3.113 (4) Å] is distinctly longer, thus excluding appreciable coordinative interaction. Accordingly, this ligand shows the shortest of the three Sn—S distances. Therefore, the coordination polyhedron around Sn can be described as a distorted octahedron.

The S—Sn—N bite angles [64.42 (9) and 63.20 (8)°] of the two bidentate ligands are similar to the appropriate angles in Sn(SPy)4·HSPy [64.2 (2) and 65.1 (2)°; Damude et al., 1990] and tend to be larger than in RSn(SPy)3 and Ph2Sn(SPy)2, which contain only bidentate SPy ligands. Intermolecular distances shorter than the sum of the van der Waals radii were not found.

Experimental top

Compound (I) was prepared from o-ClC6H4CH2SnCl3 (2.10 g, 6 mmol) in CHCl3 (100 ml) and NaSPy (2.40 g, 18 mmol) in MeOH (40 ml) at room temperature. Single crystals of (I) (m.p. 446 K) were obtained from a solution in CHCl3 containing some petroleum ether at 243 K. The compound was characterized by elemental analysis and by IR, Mössbauer, NMR and mass spectroscopies (Huber et al., 1997).

Refinement top

All H atoms were were placed in calculated positions using a riding model and refined with common isotropic displacement parameters for the different CH types [Hmethylene C—H 0.99 Å and Uiso 0.031 (9) Å2, and Haromatic C—H 0.95 Å and Uiso 0.039 (3) Å2].

Computing details top

Data collection: P3 Software (Siemens, 1989); cell refinement: P3 Software; data reduction: XDISK in P3 Software; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular view of (I) showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
(2-Chlorobenzyl)tris(pyridine-2-thiolato)-κ2N,S;κ2N,S;κS-tin(IV) top
Crystal data top
[Sn(C5H4NS)3(C7H6Cl)]F(000) = 572
Mr = 574.71Dx = 1.648 Mg m3
Dm = not determined Mg m3
Dm measured by not measured
Triclinic, P1Melting point: 446 K
a = 7.725 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.321 (3) ÅCell parameters from 46 reflections
c = 15.548 (5) Åθ = 7.8–14.8°
α = 80.26 (2)°µ = 1.50 mm1
β = 77.18 (2)°T = 170 K
γ = 74.82 (2)°Plate, light yellow
V = 1158.4 (7) Å30.50 × 0.14 × 0.05 mm
Z = 2
Data collection top
Siemens R3m/V
diffractometer
3216 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.1°, θmin = 2.1°
ω/2θ scansh = 99
Absorption correction: ψ-scan
(XEMP in P3 Software; Siemens, 1989)
k = 1212
Tmin = 0.501, Tmax = 0.928l = 1818
5674 measured reflections6 standard reflections every 300 reflections
4098 independent reflections intensity decay: 1.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073Only H-atom displacement parameters refined
S = 0.94 w = 1/[σ2(Fo2) + (0.0356P)2]
where P = (Fo2 + 2Fc2)/3
4098 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Sn(C5H4NS)3(C7H6Cl)]γ = 74.82 (2)°
Mr = 574.71V = 1158.4 (7) Å3
Triclinic, P1Z = 2
a = 7.725 (3) ÅMo Kα radiation
b = 10.321 (3) ŵ = 1.50 mm1
c = 15.548 (5) ÅT = 170 K
α = 80.26 (2)°0.50 × 0.14 × 0.05 mm
β = 77.18 (2)°
Data collection top
Siemens R3m/V
diffractometer
3216 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(XEMP in P3 Software; Siemens, 1989)
Rint = 0.030
Tmin = 0.501, Tmax = 0.9286 standard reflections every 300 reflections
5674 measured reflections intensity decay: 1.6%
4098 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.073Only H-atom displacement parameters refined
S = 0.94Δρmax = 0.54 e Å3
4098 reflectionsΔρmin = 0.46 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.20040 (4)0.11525 (3)0.231570 (19)0.02082 (9)
Cl10.17558 (17)0.26125 (13)0.47301 (7)0.0387 (3)
C10.3996 (6)0.1684 (4)0.2932 (3)0.0258 (10)
H1A0.40240.11490.35230.031 (9)*
H1B0.52250.14300.25620.031 (9)*
C20.3580 (6)0.3141 (4)0.3039 (3)0.0240 (9)
C30.2588 (6)0.3678 (4)0.3819 (3)0.0289 (10)
C40.2262 (7)0.5051 (5)0.3901 (4)0.0424 (13)
H40.15970.53880.44400.039 (3)*
C50.2904 (7)0.5914 (5)0.3203 (4)0.0503 (15)
H50.26640.68510.32550.039 (3)*
C60.3902 (8)0.5418 (5)0.2421 (4)0.0515 (15)
H60.43560.60120.19380.039 (3)*
C70.4231 (7)0.4055 (5)0.2348 (3)0.0367 (11)
H70.49250.37260.18110.039 (3)*
S10.16289 (17)0.33423 (11)0.11680 (7)0.0307 (3)
C110.0037 (6)0.2652 (4)0.0948 (3)0.0259 (10)
N110.0147 (5)0.1449 (3)0.1441 (2)0.0229 (8)
C130.1301 (6)0.0749 (4)0.1318 (3)0.0295 (10)
H130.13450.00960.16670.039 (3)*
C140.2408 (6)0.1224 (4)0.0707 (3)0.0309 (10)
H140.32030.07130.06210.039 (3)*
C150.2347 (7)0.2478 (5)0.0209 (3)0.0389 (12)
H150.31250.28320.02120.039 (3)*
C160.1165 (7)0.3207 (5)0.0324 (3)0.0335 (11)
H160.11210.40610.00110.039 (3)*
S20.03111 (17)0.02880 (10)0.35238 (7)0.0294 (3)
C210.1058 (6)0.1292 (4)0.3775 (3)0.0234 (9)
N210.0560 (5)0.2330 (3)0.3204 (2)0.0234 (8)
C230.1466 (6)0.3612 (4)0.3308 (3)0.0290 (10)
H230.10990.43270.28970.039 (3)*
C240.2912 (6)0.3911 (5)0.3996 (3)0.0355 (11)
H240.35510.48210.40610.039 (3)*
C250.3417 (7)0.2853 (5)0.4593 (3)0.0386 (12)
H250.44030.30460.50770.039 (3)*
C260.2521 (6)0.1533 (5)0.4499 (3)0.0319 (10)
H260.28730.08100.49060.039 (3)*
S30.36519 (16)0.05588 (11)0.12786 (7)0.0299 (3)
C310.5427 (6)0.1452 (4)0.1845 (3)0.0251 (10)
N310.5215 (5)0.1275 (3)0.2704 (2)0.0282 (8)
C330.6581 (7)0.1918 (4)0.3138 (3)0.0353 (11)
H330.64660.17740.37370.039 (3)*
C340.8151 (7)0.2783 (5)0.2749 (4)0.0399 (12)
H340.90750.32420.30800.039 (3)*
C350.8341 (7)0.2961 (4)0.1877 (3)0.0391 (12)
H350.94100.35430.15970.039 (3)*
C360.6989 (6)0.2299 (4)0.1407 (3)0.0336 (11)
H360.71080.24130.08010.039 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02592 (17)0.01750 (14)0.02055 (15)0.00754 (12)0.00535 (12)0.00115 (10)
Cl10.0390 (7)0.0516 (7)0.0264 (6)0.0108 (6)0.0050 (5)0.0081 (5)
C10.028 (2)0.026 (2)0.028 (2)0.0081 (19)0.009 (2)0.0085 (18)
C20.027 (2)0.022 (2)0.025 (2)0.0077 (19)0.0062 (19)0.0058 (17)
C30.029 (3)0.031 (2)0.032 (2)0.006 (2)0.013 (2)0.0066 (19)
C40.030 (3)0.040 (3)0.064 (4)0.001 (2)0.020 (3)0.023 (3)
C50.040 (3)0.022 (2)0.097 (5)0.005 (2)0.031 (3)0.011 (3)
C60.062 (4)0.039 (3)0.066 (4)0.030 (3)0.023 (3)0.004 (3)
C70.041 (3)0.035 (3)0.041 (3)0.020 (2)0.012 (2)0.000 (2)
S10.0421 (7)0.0249 (6)0.0299 (6)0.0168 (5)0.0131 (5)0.0060 (4)
C110.032 (3)0.024 (2)0.022 (2)0.008 (2)0.004 (2)0.0025 (17)
N110.030 (2)0.0206 (17)0.0178 (17)0.0098 (16)0.0026 (16)0.0008 (14)
C130.038 (3)0.029 (2)0.024 (2)0.015 (2)0.002 (2)0.0018 (18)
C140.035 (3)0.033 (2)0.031 (2)0.016 (2)0.011 (2)0.0026 (19)
C150.042 (3)0.051 (3)0.025 (2)0.010 (3)0.015 (2)0.004 (2)
C160.042 (3)0.031 (2)0.028 (2)0.010 (2)0.013 (2)0.0064 (19)
S20.0379 (7)0.0196 (5)0.0287 (6)0.0090 (5)0.0035 (5)0.0028 (4)
C210.023 (2)0.027 (2)0.022 (2)0.0090 (19)0.0065 (18)0.0009 (17)
N210.027 (2)0.0194 (18)0.0241 (18)0.0053 (16)0.0060 (16)0.0006 (14)
C230.034 (3)0.024 (2)0.032 (2)0.005 (2)0.014 (2)0.0037 (19)
C240.033 (3)0.031 (3)0.042 (3)0.002 (2)0.010 (2)0.014 (2)
C250.025 (3)0.053 (3)0.035 (3)0.005 (2)0.000 (2)0.013 (2)
C260.028 (3)0.039 (3)0.027 (2)0.008 (2)0.001 (2)0.002 (2)
S30.0347 (7)0.0287 (6)0.0283 (6)0.0045 (5)0.0079 (5)0.0107 (5)
C310.031 (2)0.021 (2)0.026 (2)0.012 (2)0.004 (2)0.0050 (17)
N310.035 (2)0.0222 (18)0.0284 (19)0.0065 (17)0.0062 (17)0.0046 (15)
C330.043 (3)0.027 (2)0.035 (3)0.009 (2)0.011 (2)0.006 (2)
C340.035 (3)0.027 (2)0.055 (3)0.004 (2)0.015 (3)0.006 (2)
C350.027 (3)0.023 (2)0.056 (3)0.002 (2)0.009 (2)0.008 (2)
C360.034 (3)0.024 (2)0.037 (3)0.007 (2)0.008 (2)0.009 (2)
Geometric parameters (Å, º) top
Sn1—C12.205 (4)N11—C131.345 (5)
Sn1—N112.303 (4)C13—C141.364 (6)
Sn1—N212.324 (3)C14—C151.397 (6)
Sn1—N313.113 (4)C15—C161.382 (6)
Sn1—S12.6264 (13)S2—C211.749 (4)
Sn1—S22.5362 (13)C21—N211.351 (5)
Sn1—S32.4931 (13)C21—C261.410 (6)
Sn1—Cl14.2240 (17)N21—C231.342 (5)
Cl1—C31.752 (5)C23—C241.374 (6)
C1—C21.483 (5)C24—C251.388 (7)
C2—C31.400 (6)C25—C261.373 (6)
C2—C71.401 (6)S3—C311.762 (5)
C3—C41.395 (6)C31—N311.347 (5)
C4—C51.373 (8)C31—C361.403 (6)
C5—C61.386 (8)N31—C331.343 (6)
C6—C71.382 (7)C33—C341.387 (7)
S1—C111.744 (4)C34—C351.368 (7)
C11—N111.357 (5)C35—C361.374 (7)
C11—C161.397 (6)
C1—Sn1—N11157.88 (13)C4—C5—C6120.0 (5)
C1—Sn1—N2195.32 (14)C7—C6—C5119.6 (5)
N11—Sn1—N2179.50 (12)C6—C7—C2122.4 (5)
C1—Sn1—S3109.11 (12)C11—S1—Sn180.98 (14)
N11—Sn1—S380.55 (9)N11—C11—C16120.5 (4)
N21—Sn1—S3154.28 (9)N11—C11—S1113.2 (3)
C1—Sn1—S2105.75 (12)C16—C11—S1126.3 (3)
N11—Sn1—S291.50 (9)C13—N11—C11120.7 (4)
N21—Sn1—S264.42 (9)C13—N11—Sn1136.8 (3)
S3—Sn1—S2100.16 (5)C11—N11—Sn1102.6 (3)
C1—Sn1—S195.13 (12)N11—C13—C14121.6 (4)
N11—Sn1—S163.20 (8)C13—C14—C15118.5 (4)
N21—Sn1—S185.79 (9)C16—C15—C14120.6 (4)
S3—Sn1—S199.49 (5)C15—C16—C11118.1 (4)
S2—Sn1—S1144.61 (4)C21—S2—Sn182.38 (14)
C1—Sn1—N3166.36 (13)N21—C21—C26120.7 (4)
N11—Sn1—N31131.87 (10)N21—C21—S2113.2 (3)
N21—Sn1—N31133.72 (10)C26—C21—S2126.1 (3)
S3—Sn1—N3155.35 (7)C23—N21—C21120.6 (4)
S2—Sn1—N3179.66 (8)C23—N21—Sn1139.3 (3)
S1—Sn1—N31135.52 (7)C21—N21—Sn199.9 (2)
C1—Sn1—Cl145.37 (12)N21—C23—C24121.4 (4)
N11—Sn1—Cl1131.76 (9)C23—C24—C25118.4 (4)
N21—Sn1—Cl152.54 (9)C26—C25—C24121.3 (4)
S3—Sn1—Cl1146.40 (4)C25—C26—C21117.5 (4)
S2—Sn1—Cl173.82 (4)C31—S3—Sn199.95 (14)
S1—Sn1—Cl1103.82 (4)N31—C31—C36122.3 (4)
N31—Sn1—Cl191.20 (7)N31—C31—S3117.1 (3)
C3—Cl1—Sn168.99 (14)C36—C31—S3120.6 (3)
C2—C1—Sn1113.3 (3)C33—N31—C31117.8 (4)
C3—C2—C7116.3 (4)C33—N31—Sn1152.9 (3)
C3—C2—C1123.4 (4)C31—N31—Sn185.4 (2)
C7—C2—C1120.3 (4)N31—C33—C34122.9 (5)
C4—C3—C2121.7 (4)C35—C34—C33118.6 (5)
C4—C3—Cl1118.4 (4)C34—C35—C36120.2 (4)
C2—C3—Cl1119.9 (3)C35—C36—C31118.3 (4)
C5—C4—C3120.0 (5)
C1—Sn1—Cl1—C355.8 (2)S3—Sn1—S2—C21160.02 (14)
N11—Sn1—Cl1—C393.93 (19)S1—Sn1—S2—C2137.23 (16)
N21—Sn1—Cl1—C3101.19 (19)N31—Sn1—S2—C21148.28 (15)
S3—Sn1—Cl1—C3104.95 (17)Cl1—Sn1—S2—C2153.97 (14)
S2—Sn1—Cl1—C3171.07 (16)Sn1—S2—C21—N213.0 (3)
S1—Sn1—Cl1—C327.67 (16)Sn1—S2—C21—C26175.5 (4)
N31—Sn1—Cl1—C3110.06 (17)C26—C21—N21—C231.0 (6)
N11—Sn1—C1—C228.2 (6)S2—C21—N21—C23179.5 (3)
N21—Sn1—C1—C246.9 (3)C26—C21—N21—Sn1175.3 (3)
S3—Sn1—C1—C2141.2 (3)S2—C21—N21—Sn13.2 (3)
S2—Sn1—C1—C2111.8 (3)C1—Sn1—N21—C2372.5 (4)
S1—Sn1—C1—C239.3 (3)N11—Sn1—N21—C2385.8 (4)
N31—Sn1—C1—C2177.3 (3)S3—Sn1—N21—C23125.5 (4)
Cl1—Sn1—C1—C265.1 (3)S2—Sn1—N21—C23177.4 (5)
Sn1—C1—C2—C394.4 (4)S1—Sn1—N21—C2322.3 (4)
Sn1—C1—C2—C787.5 (4)N31—Sn1—N21—C23134.6 (4)
C7—C2—C3—C40.2 (6)Cl1—Sn1—N21—C2388.7 (4)
C1—C2—C3—C4178.4 (4)C1—Sn1—N21—C21102.6 (3)
C7—C2—C3—Cl1178.6 (3)N11—Sn1—N21—C2199.1 (3)
C1—C2—C3—Cl10.5 (6)S3—Sn1—N21—C2159.4 (3)
Sn1—Cl1—C3—C4150.6 (4)S2—Sn1—N21—C212.3 (2)
Sn1—Cl1—C3—C230.5 (3)S1—Sn1—N21—C21162.6 (2)
C2—C3—C4—C50.7 (7)N31—Sn1—N21—C2140.6 (3)
Cl1—C3—C4—C5179.6 (4)Cl1—Sn1—N21—C2186.4 (2)
C3—C4—C5—C61.1 (8)C21—N21—C23—C240.5 (6)
C4—C5—C6—C70.5 (8)Sn1—N21—C23—C24174.0 (3)
C5—C6—C7—C20.5 (8)N21—C23—C24—C250.5 (7)
C3—C2—C7—C60.8 (7)C23—C24—C25—C260.9 (7)
C1—C2—C7—C6179.1 (4)C24—C25—C26—C210.4 (7)
C1—Sn1—S1—C11174.37 (18)N21—C21—C26—C250.6 (6)
N11—Sn1—S1—C110.96 (17)S2—C21—C26—C25178.9 (3)
N21—Sn1—S1—C1179.39 (17)C1—Sn1—S3—C3133.41 (18)
S3—Sn1—S1—C1175.24 (15)N11—Sn1—S3—C31167.15 (16)
S2—Sn1—S1—C1147.73 (16)N21—Sn1—S3—C31127.6 (2)
N31—Sn1—S1—C11124.52 (17)S2—Sn1—S3—C3177.32 (14)
Cl1—Sn1—S1—C11129.14 (14)S1—Sn1—S3—C31132.26 (14)
Sn1—S1—C11—N111.6 (3)N31—Sn1—S3—C317.53 (16)
Sn1—S1—C11—C16179.8 (4)Cl1—Sn1—S3—C311.31 (16)
C16—C11—N11—C132.1 (6)Sn1—S3—C31—N3116.3 (3)
S1—C11—N11—C13176.6 (3)Sn1—S3—C31—C36163.3 (3)
C16—C11—N11—Sn1179.4 (3)C36—C31—N31—C331.5 (6)
S1—C11—N11—Sn11.8 (3)S3—C31—N31—C33178.1 (3)
C1—Sn1—N11—C13170.8 (4)C36—C31—N31—Sn1166.8 (4)
N21—Sn1—N11—C1392.6 (4)S3—C31—N31—Sn112.8 (3)
S3—Sn1—N11—C1371.0 (4)C1—Sn1—N31—C3322.7 (6)
S2—Sn1—N11—C1329.0 (4)N11—Sn1—N31—C33172.3 (6)
S1—Sn1—N11—C13176.8 (4)N21—Sn1—N31—C3351.1 (7)
N31—Sn1—N11—C1348.4 (4)S3—Sn1—N31—C33160.2 (7)
Cl1—Sn1—N11—C1398.5 (4)S2—Sn1—N31—C3389.7 (6)
C1—Sn1—N11—C1111.2 (5)S1—Sn1—N31—C3394.9 (6)
N21—Sn1—N11—C1189.3 (3)Cl1—Sn1—N31—C3316.4 (6)
S3—Sn1—N11—C11107.0 (3)C1—Sn1—N31—C31127.7 (3)
S2—Sn1—N11—C11153.0 (2)N11—Sn1—N31—C3137.2 (3)
S1—Sn1—N11—C111.3 (2)N21—Sn1—N31—C31158.5 (2)
N31—Sn1—N11—C11129.6 (2)S3—Sn1—N31—C319.8 (2)
Cl1—Sn1—N11—C1183.5 (3)S2—Sn1—N31—C31119.9 (2)
C11—N11—C13—C140.7 (6)S1—Sn1—N31—C3155.6 (3)
Sn1—N11—C13—C14178.5 (3)Cl1—Sn1—N31—C31166.8 (2)
N11—C13—C14—C151.0 (7)C31—N31—C33—C342.3 (6)
C13—C14—C15—C161.2 (7)Sn1—N31—C33—C34148.5 (5)
C14—C15—C16—C110.2 (7)N31—C33—C34—C351.8 (7)
N11—C11—C16—C151.9 (7)C33—C34—C35—C360.5 (7)
S1—C11—C16—C15176.7 (4)C34—C35—C36—C310.2 (7)
C1—Sn1—S2—C2186.64 (18)N31—C31—C36—C350.3 (6)
N11—Sn1—S2—C2179.35 (16)S3—C31—C36—C35179.3 (3)
N21—Sn1—S2—C211.75 (16)

Experimental details

Crystal data
Chemical formula[Sn(C5H4NS)3(C7H6Cl)]
Mr574.71
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)7.725 (3), 10.321 (3), 15.548 (5)
α, β, γ (°)80.26 (2), 77.18 (2), 74.82 (2)
V3)1158.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.50 × 0.14 × 0.05
Data collection
DiffractometerSiemens R3m/V
diffractometer
Absorption correctionψ-scan
(XEMP in P3 Software; Siemens, 1989)
Tmin, Tmax0.501, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
5674, 4098, 3216
Rint0.030
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.073, 0.94
No. of reflections4098
No. of parameters273
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.54, 0.46

Computer programs: P3 Software (Siemens, 1989), XDISK in P3 Software, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXL97 and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Sn1—C12.205 (4)Sn1—S12.6264 (13)
Sn1—N112.303 (4)Sn1—S22.5362 (13)
Sn1—N212.324 (3)Sn1—S32.4931 (13)
Sn1—N313.113 (4)Sn1—Cl14.2240 (17)
C1—Sn1—N11157.88 (13)S2—Sn1—S1144.61 (4)
N21—Sn1—S3154.28 (9)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds