metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m198-m199

Bis{6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diyl­bis­(imino­methyl­ene)]diphenolato(1.5−)-κ4O,N,N′,O′}erbium(III)

aSchool of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bBeilun Entry–Exit Inspection and Quarantine Bureau of China, Ningbo Zhejiang, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: xht161006@hhit.edu.cn

(Received 14 November 2008; accepted 12 January 2009; online 17 January 2009)

In the title compound, [Er(C18H22.5N2O4)2], the Er atom is located on a twofold rotation axis and is eight-coordinated by four O atoms and four N atoms from two symmetry-related 6,6′-dimethoxy-2,2′-(ethane-1,2-diyldiiminodimethylene)diphenolate(1.5−) ligands. Due to disorder of one phenolate H atom with half-occupation, the overall charge of one tetradentate ligand is −1.5. The ligand molecules are stabilised by intramolecular N—H⋯O and O—H⋯O hydrogen bonds and are linked into a chain parallel to the a axis by a C—H⋯O hydrogen bond. Neighbouring chains are connected by van der Waals forces, resulting in a three-dimensional network.

Related literature

For related structures, see: Liu et al. (2007[Liu, Y.-F., Xia, H.-T., Wang, D.-Q. & Yang, S.-P. (2007). Acta Cryst. E63, m484-m486.]); Xia et al. (2006[Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5864-o5865.]). For isotypic structures, see: Xia et al. (2009a[Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2009a). Acta Cryst. E65, m200.], 2009b[Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2009b). Acta Cryst. E65, m201.]).

[Scheme 1]

Experimental

Crystal data
  • [Er(C18H22.5N2O4)2]

  • Mr = 829.02

  • Orthorhombic, I b a 2

  • a = 11.1542 (10) Å

  • b = 21.958 (2) Å

  • c = 14.1751 (15) Å

  • V = 3471.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 298 (2) K

  • 0.20 × 0.15 × 0.14 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.637, Tmax = 0.723

  • 7986 measured reflections

  • 3007 independent reflections

  • 2199 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.162

  • S = 1.06

  • 3007 reflections

  • 224 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −1.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1400 Friedel pairs

  • Flack parameter: 0.02 (5)

Table 1
Selected bond lengths (Å)

Er1—O3i 2.202 (6)
Er1—O3 2.202 (6)
Er1—O1 2.203 (6)
Er1—O1i 2.203 (6)
Er1—N2 2.595 (8)
Er1—N2i 2.595 (8)
Er1—N1i 2.628 (8)
Er1—N1 2.628 (8)
Symmetry code: (i) -x+2, -y+2, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O4ii 0.96 2.70 3.49 (3) 140
N2—H2⋯O2i 0.91 2.34 3.230 (10) 166
N1—H1C⋯O4i 0.91 2.59 3.462 (12) 162
O1—H1⋯O2 0.82 2.21 2.646 (9) 113
Symmetry codes: (i) -x+2, -y+2, z; (ii) -x+3, -y+2, z.

Data collection: SMART (Siemens, 1996[Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Diamine derivatives are potentially multidentate ligands. We have recently reported the crystal structure (C18H24O2N4) (II) (Xia et al., 2006) which is the ligand of the title compound and a complex [Ce(C18H22N2O4)2] (III) (Liu et al., 2007). We report here the crystal structure of new rare earth complex (I).

In the title complex (I), the coordination environment of the Er atom and coordination modes of (I) ligands to ErIII ion is in agreement with the complexes reported above (Fig. 1). The average bond lengths of between the Erbium center oxygen atoms are 2.203 (6)Å and nitrogen atom are 2.612 (8) Å, longer than the 2.199 (4)Å and shorter than the 2.624 (4)Å of complexes (III), respectively. The dihedral angles between phenyl ring (C2-C7 ring) and anotother phenyl ring are 42.20 (28)°(C10—C15 ring), 42.29 (26)°(C2A—C7A ring) and 15.47 (43)°(C10A—C15A ring) [symmetry codes: (A) 2 - x, 2 - y, z].

In (I), the Er atom is eight-coordinated by four O atoms and four N atoms from two 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol. The molecules are linked into a chain parallel to the a axis by one C—H···O hydrogen bond. Neighbouring chains are connected by van der Waals forces, resulting in a three-dimensional network.

Related literature top

For related structures, see: Liu et al. (2007); Xia et al. (2006). For isotypic structures, see: Xia et al. (2009a,b).

Experimental top

A solution of 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene) diphenol (0.328 g, 2 mmol) in ethanol (20 ml), and then a solution of Er(NO3)3.6H2O (0.461 g, 1 mmol) in ethanol (10 ml) was added. The reaction mixture was stirred for 3 h in the air and then filtered. X-ray quality crystals of (I) were obtained by evaporation of an ethanol solution.

Refinement top

The space group was uniquely assigned from the systematic absences. All H atoms were located in difference Fourier maps. H atoms bonded to C, O and N atoms were treated as riding atoms, with C—H distances of 0.93 Å (aryl), 0.96 Å (methyl), 0.97Å (methylene) and N—H distances of 0.90 Å (amino), Uiso(H) = 1.2Ueq(aryl, methylene, NH) or 1.5Ueq(C) (methyl or OH). The H1 bonded to O1 is disordered and were refined with the occupancies ties to 0.5.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are at the 30% probability level. For clarity, H atoms have been omitted. [symmetry codes: (A) 2 - x, 2 - y, z].
[Figure 2] Fig. 2. A larger portion of the crystal structure of (I), showing the formation of a hydrogen-bonded chain built from C—H···O. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds [symmetry codes: (A) 2 - x, 2 - y, z; (B) 3 - x, 2 - y, 2, z; (C) -1 + x, y, z].
Bis{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(iminomethylene)]diphenolato(1.5-)- κ4O,N,N',O'}erbium(III) top
Crystal data top
[Er(C18H22.5N2O4)2]F(000) = 1684
Mr = 829.02Dx = 1.586 Mg m3
Orthorhombic, Iba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 4129 reflections
a = 11.1542 (10) Åθ = 2.9–25.7°
b = 21.958 (2) ŵ = 2.48 mm1
c = 14.1751 (15) ÅT = 298 K
V = 3471.8 (6) Å3Block, brown
Z = 40.20 × 0.15 × 0.14 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3007 independent reflections
Radiation source: fine-focus sealed tube2199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1310
Tmin = 0.637, Tmax = 0.723k = 2026
7986 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.1143P)2 + 1.9553P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3007 reflectionsΔρmax = 0.75 e Å3
224 parametersΔρmin = 1.42 e Å3
1 restraintAbsolute structure: Flack (1983), 1400 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
[Er(C18H22.5N2O4)2]V = 3471.8 (6) Å3
Mr = 829.02Z = 4
Orthorhombic, Iba2Mo Kα radiation
a = 11.1542 (10) ŵ = 2.48 mm1
b = 21.958 (2) ÅT = 298 K
c = 14.1751 (15) Å0.20 × 0.15 × 0.14 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3007 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2199 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.723Rint = 0.031
7986 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.162Δρmax = 0.75 e Å3
S = 1.06Δρmin = 1.42 e Å3
3007 reflectionsAbsolute structure: Flack (1983), 1400 Freidel pairs
224 parametersAbsolute structure parameter: 0.02 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er11.00001.00000.0158 (2)0.0342 (2)
O10.9418 (5)1.0681 (3)0.1202 (4)0.0297 (13)
H10.99191.09550.12090.045*0.50
O20.9141 (6)1.1865 (3)0.0933 (5)0.0479 (18)
O31.1356 (6)0.9653 (3)0.0834 (5)0.0389 (16)
O41.3687 (7)0.9386 (4)0.0660 (7)0.065 (3)
N10.7906 (7)0.9657 (4)0.0823 (6)0.040 (2)
H1C0.73580.98380.04390.048*
N20.9283 (8)0.8957 (4)0.0492 (6)0.043 (2)
H20.96730.86700.01460.052*
C10.7624 (12)0.9901 (6)0.1789 (10)0.049 (3)
H1A0.69060.97060.20290.058*
H1B0.82790.98090.22160.058*
C20.7440 (9)1.0568 (5)0.1748 (7)0.042 (3)
C30.8366 (9)1.0926 (5)0.1404 (7)0.039 (3)
C40.8159 (9)1.1552 (5)0.1290 (7)0.041 (2)
C50.7089 (10)1.1808 (6)0.1508 (8)0.051 (3)
H50.69571.22230.14290.061*
C60.6169 (10)1.1415 (7)0.1866 (9)0.056 (3)
H60.54281.15820.20210.067*
C70.6330 (9)1.0854 (7)0.1977 (9)0.057 (3)
H70.57081.06180.22160.068*
C80.8935 (13)1.2474 (5)0.0637 (10)0.064 (3)
H8A0.81121.25190.04510.095*
H8B0.94471.25670.01120.095*
H8C0.91071.27470.11490.095*
C90.9606 (16)0.8829 (7)0.1469 (9)0.061 (4)
H9A0.94550.91840.18600.073*
H9B0.91350.84920.17090.073*
C101.0949 (14)0.8668 (6)0.1482 (8)0.054 (3)
C111.1731 (11)0.9109 (5)0.1134 (7)0.043 (3)
C121.2992 (13)0.8958 (6)0.1052 (8)0.056 (3)
C131.3345 (14)0.8375 (6)0.1369 (9)0.063 (4)
H131.41490.82640.13330.076*
C141.2544 (16)0.7976 (7)0.1721 (10)0.070 (4)
H141.28040.75900.18970.084*
C151.1369 (14)0.8120 (6)0.1826 (9)0.066 (4)
H151.08500.78520.21280.079*
C161.4901 (11)0.9202 (11)0.0443 (19)0.092 (7)
H16A1.53260.95380.01670.139*
H16B1.52980.90780.10130.139*
H16C1.48850.88680.00070.139*
C170.7704 (9)0.9017 (5)0.0703 (9)0.051 (3)
H17A0.68760.89200.08490.061*
H17B0.82160.87890.11270.061*
C180.7979 (11)0.8845 (5)0.0316 (10)0.052 (3)
H18A0.77920.84190.04220.063*
H18B0.74980.90890.07430.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.0382 (3)0.0267 (3)0.0377 (3)0.0000 (2)0.0000.000
O10.018 (3)0.033 (4)0.038 (3)0.003 (3)0.005 (3)0.004 (3)
O20.053 (4)0.035 (4)0.055 (4)0.009 (3)0.001 (3)0.007 (3)
O30.056 (4)0.026 (4)0.034 (4)0.014 (3)0.011 (3)0.001 (3)
O40.055 (5)0.055 (6)0.085 (7)0.019 (4)0.031 (4)0.023 (5)
N10.031 (4)0.038 (5)0.052 (5)0.009 (4)0.007 (4)0.012 (4)
N20.051 (6)0.026 (4)0.052 (5)0.003 (4)0.024 (4)0.003 (4)
C10.041 (6)0.055 (8)0.050 (7)0.002 (5)0.001 (5)0.017 (5)
C20.032 (5)0.048 (7)0.046 (6)0.008 (5)0.005 (4)0.005 (5)
C30.036 (6)0.045 (7)0.036 (6)0.005 (5)0.009 (4)0.003 (5)
C40.043 (6)0.041 (6)0.040 (5)0.010 (5)0.008 (5)0.004 (5)
C50.046 (6)0.051 (7)0.055 (7)0.018 (6)0.003 (5)0.006 (5)
C60.042 (7)0.066 (9)0.060 (8)0.019 (6)0.007 (5)0.007 (6)
C70.036 (6)0.071 (10)0.063 (8)0.006 (6)0.015 (5)0.010 (7)
C80.079 (9)0.025 (6)0.087 (9)0.003 (6)0.010 (7)0.008 (6)
C90.086 (9)0.045 (8)0.052 (8)0.001 (7)0.019 (7)0.007 (6)
C100.084 (9)0.036 (6)0.043 (6)0.015 (6)0.005 (6)0.003 (5)
C110.063 (8)0.041 (7)0.024 (6)0.021 (6)0.007 (5)0.010 (5)
C120.076 (9)0.047 (7)0.045 (6)0.029 (7)0.021 (6)0.011 (6)
C130.084 (10)0.051 (9)0.056 (8)0.034 (8)0.022 (7)0.011 (6)
C140.104 (12)0.049 (8)0.057 (8)0.024 (8)0.011 (7)0.003 (7)
C150.105 (12)0.045 (8)0.047 (7)0.019 (7)0.005 (7)0.011 (6)
C160.060 (10)0.089 (15)0.128 (17)0.026 (7)0.030 (8)0.031 (13)
C170.037 (6)0.040 (7)0.075 (10)0.011 (5)0.017 (6)0.013 (6)
C180.057 (7)0.023 (6)0.076 (8)0.016 (5)0.029 (6)0.011 (5)
Geometric parameters (Å, º) top
Er1—O3i2.202 (6)C5—C61.433 (19)
Er1—O32.202 (6)C5—H50.9300
Er1—O12.203 (6)C6—C71.254 (19)
Er1—O1i2.203 (6)C6—H60.9300
Er1—N22.595 (8)C7—H70.9300
Er1—N2i2.595 (8)C8—H8A0.9600
Er1—N1i2.628 (8)C8—H8B0.9600
Er1—N12.628 (8)C8—H8C0.9600
O1—C31.321 (12)C9—C101.54 (2)
O1—H10.8200C9—H9A0.9700
O2—C41.389 (13)C9—H9B0.9700
O2—C81.419 (14)C10—C151.379 (17)
O3—C111.334 (13)C10—C111.394 (19)
O4—C121.340 (16)C11—C121.450 (17)
O4—C161.446 (16)C12—C131.412 (17)
N1—C171.433 (14)C13—C141.35 (2)
N1—C11.504 (16)C13—H130.9300
N1—H1C0.9094C14—C151.36 (2)
N2—C91.458 (16)C14—H140.9300
N2—C181.495 (15)C15—H150.9300
N2—H20.9105C16—H16A0.9600
C1—C21.479 (15)C16—H16B0.9600
C1—H1A0.9700C16—H16C0.9600
C1—H1B0.9700C17—C181.523 (17)
C2—C31.387 (15)C17—H17A0.9700
C2—C71.426 (15)C17—H17B0.9700
C3—C41.404 (15)C18—H18A0.9700
C4—C51.355 (15)C18—H18B0.9700
O3i—Er1—O3100.6 (4)C5—C4—C3121.7 (11)
O3i—Er1—O189.5 (2)O2—C4—C3113.4 (8)
O3—Er1—O1150.1 (2)C4—C5—C6117.5 (12)
O3i—Er1—O1i150.1 (2)C4—C5—H5121.3
O3—Er1—O1i89.5 (2)C6—C5—H5121.3
O1—Er1—O1i95.6 (3)C7—C6—C5122.2 (11)
O3i—Er1—N282.4 (3)C7—C6—H6118.9
O3—Er1—N271.3 (3)C5—C6—H6118.9
O1—Er1—N2138.4 (3)C6—C7—C2121.9 (12)
O1i—Er1—N274.3 (2)C6—C7—H7119.1
O3i—Er1—N2i71.3 (3)C2—C7—H7119.1
O3—Er1—N2i82.4 (3)O2—C8—H8A109.5
O1—Er1—N2i74.3 (2)O2—C8—H8B109.5
O1i—Er1—N2i138.4 (3)H8A—C8—H8B109.5
N2—Er1—N2i138.4 (4)O2—C8—H8C109.5
O3i—Er1—N1i137.8 (3)H8A—C8—H8C109.5
O3—Er1—N1i73.6 (2)H8B—C8—H8C109.5
O1—Er1—N1i80.0 (2)N2—C9—C10107.3 (10)
O1i—Er1—N1i72.0 (2)N2—C9—H9A110.3
N2—Er1—N1i130.8 (3)C10—C9—H9A110.3
N2i—Er1—N1i66.5 (3)N2—C9—H9B110.3
O3i—Er1—N173.6 (2)C10—C9—H9B110.3
O3—Er1—N1137.8 (3)H9A—C9—H9B108.5
O1—Er1—N172.0 (2)C15—C10—C11121.3 (13)
O1i—Er1—N180.0 (2)C15—C10—C9122.4 (12)
N2—Er1—N166.5 (3)C11—C10—C9116.4 (10)
N2i—Er1—N1130.8 (3)O3—C11—C10122.6 (10)
N1i—Er1—N1138.0 (4)O3—C11—C12118.9 (11)
C3—O1—Er1133.1 (6)C10—C11—C12118.4 (11)
C3—O1—H1107.7O4—C12—C13127.4 (13)
Er1—O1—H1107.7O4—C12—C11115.7 (10)
C4—O2—C8116.5 (9)C13—C12—C11116.9 (14)
C11—O3—Er1136.7 (7)C14—C13—C12121.5 (14)
C12—O4—C16115.7 (13)C14—C13—H13119.3
C17—N1—C1115.1 (9)C12—C13—H13119.3
C17—N1—Er1112.2 (6)C13—C14—C15121.9 (13)
C1—N1—Er1114.2 (7)C13—C14—H14119.0
C17—N1—H1C104.5C15—C14—H14119.0
C1—N1—H1C104.4C14—C15—C10119.6 (14)
Er1—N1—H1C105.0C14—C15—H15120.2
C9—N2—C18111.6 (10)C10—C15—H15120.2
C9—N2—Er1115.5 (8)O4—C16—H16A109.5
C18—N2—Er1112.7 (6)O4—C16—H16B109.5
C9—N2—H2105.1H16A—C16—H16B109.5
C18—N2—H2105.1O4—C16—H16C109.5
Er1—N2—H2105.8H16A—C16—H16C109.5
C2—C1—N1110.2 (9)H16B—C16—H16C109.5
C2—C1—H1A109.6N1—C17—C18108.9 (9)
N1—C1—H1A109.6N1—C17—H17A109.9
C2—C1—H1B109.6C18—C17—H17A109.9
N1—C1—H1B109.6N1—C17—H17B109.9
H1A—C1—H1B108.1C18—C17—H17B109.9
C3—C2—C7118.5 (11)H17A—C17—H17B108.3
C3—C2—C1118.1 (10)N2—C18—C17108.3 (8)
C7—C2—C1123.2 (10)N2—C18—H18A110.0
O1—C3—C2120.5 (10)C17—C18—H18A110.0
O1—C3—C4121.3 (9)N2—C18—H18B110.0
C2—C3—C4118.2 (9)C17—C18—H18B110.0
C5—C4—O2124.9 (10)H18A—C18—H18B108.4
O3i—Er1—O1—C333.8 (8)Er1—O1—C3—C264.0 (13)
O3—Er1—O1—C3144.6 (8)Er1—O1—C3—C4116.8 (9)
O1i—Er1—O1—C3116.7 (9)C7—C2—C3—O1178.5 (10)
N2—Er1—O1—C344.0 (10)C1—C2—C3—O16.0 (15)
N2i—Er1—O1—C3104.5 (9)C7—C2—C3—C40.7 (15)
N1i—Er1—O1—C3172.7 (9)C1—C2—C3—C4174.8 (10)
N1—Er1—O1—C339.1 (8)C8—O2—C4—C510.6 (15)
O3i—Er1—O3—C11106.2 (10)C8—O2—C4—C3168.9 (10)
O1—Er1—O3—C11145.9 (9)O1—C3—C4—C5179.0 (10)
O1i—Er1—O3—C1145.5 (10)C2—C3—C4—C50.2 (16)
N2—Er1—O3—C1128.1 (9)O1—C3—C4—O21.5 (14)
N2i—Er1—O3—C11175.4 (10)C2—C3—C4—O2179.3 (9)
N1i—Er1—O3—C11116.9 (10)O2—C4—C5—C6179.7 (10)
N1—Er1—O3—C1129.0 (11)C3—C4—C5—C60.2 (17)
O3i—Er1—N1—C17107.2 (7)C4—C5—C6—C70 (2)
O3—Er1—N1—C1719.4 (8)C5—C6—C7—C20 (2)
O1—Er1—N1—C17157.9 (7)C3—C2—C7—C60.9 (18)
O1i—Er1—N1—C1758.7 (7)C1—C2—C7—C6174.4 (13)
N2—Er1—N1—C1718.5 (6)C18—N2—C9—C10154.4 (9)
N2i—Er1—N1—C17153.1 (7)Er1—N2—C9—C1075.2 (10)
N1i—Er1—N1—C17107.1 (7)N2—C9—C10—C15122.1 (13)
O3i—Er1—N1—C1119.5 (7)N2—C9—C10—C1158.5 (14)
O3—Er1—N1—C1152.8 (6)Er1—O3—C11—C1052.0 (14)
O1—Er1—N1—C124.5 (7)Er1—O3—C11—C12124.9 (10)
O1i—Er1—N1—C174.7 (7)C15—C10—C11—O3177.0 (10)
N2—Er1—N1—C1151.9 (7)C9—C10—C11—O32.4 (16)
N2i—Er1—N1—C173.6 (8)C15—C10—C11—C126.0 (17)
N1i—Er1—N1—C126.3 (6)C9—C10—C11—C12174.5 (9)
O3i—Er1—N2—C969.5 (9)C16—O4—C12—C137.5 (19)
O3—Er1—N2—C934.5 (9)C16—O4—C12—C11170.7 (12)
O1—Er1—N2—C9150.1 (8)O3—C11—C12—O40.9 (14)
O1i—Er1—N2—C9129.4 (9)C10—C11—C12—O4176.1 (11)
N2i—Er1—N2—C919.2 (8)O3—C11—C12—C13179.3 (10)
N1i—Er1—N2—C981.1 (9)C10—C11—C12—C132.3 (15)
N1—Er1—N2—C9144.9 (9)O4—C12—C13—C14177.5 (12)
O3i—Er1—N2—C1860.3 (7)C11—C12—C13—C140.7 (17)
O3—Er1—N2—C18164.3 (7)C12—C13—C14—C153 (2)
O1—Er1—N2—C1820.2 (8)C13—C14—C15—C106 (2)
O1i—Er1—N2—C18100.8 (7)C11—C10—C15—C148 (2)
N2i—Er1—N2—C18110.7 (7)C9—C10—C15—C14172.5 (12)
N1i—Er1—N2—C18149.1 (6)C1—N1—C17—C18177.7 (9)
N1—Er1—N2—C1815.1 (6)Er1—N1—C17—C1849.4 (9)
C17—N1—C1—C2159.7 (9)C9—N2—C18—C17177.3 (10)
Er1—N1—C1—C268.3 (10)Er1—N2—C18—C1745.5 (9)
N1—C1—C2—C358.1 (13)N1—C17—C18—N263.8 (10)
N1—C1—C2—C7117.1 (12)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O4ii0.962.703.49 (3)140
N2—H2···O2i0.912.343.230 (10)166
N1—H1C···O4i0.912.593.462 (12)162
O1—H1···O20.822.212.646 (9)113
Symmetry codes: (i) x+2, y+2, z; (ii) x+3, y+2, z.

Experimental details

Crystal data
Chemical formula[Er(C18H22.5N2O4)2]
Mr829.02
Crystal system, space groupOrthorhombic, Iba2
Temperature (K)298
a, b, c (Å)11.1542 (10), 21.958 (2), 14.1751 (15)
V3)3471.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.20 × 0.15 × 0.14
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.637, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
7986, 3007, 2199
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.162, 1.06
No. of reflections3007
No. of parameters224
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 1.42
Absolute structureFlack (1983), 1400 Freidel pairs
Absolute structure parameter0.02 (5)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Er1—O3i2.202 (6)Er1—N22.595 (8)
Er1—O32.202 (6)Er1—N2i2.595 (8)
Er1—O12.203 (6)Er1—N1i2.628 (8)
Er1—O1i2.203 (6)Er1—N12.628 (8)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O4ii0.962.703.49 (3)140.2
N2—H2···O2i0.912.343.230 (10)166.2
N1—H1C···O4i0.912.593.462 (12)161.9
O1—H1···O20.822.212.646 (9)113.1
Symmetry codes: (i) x+2, y+2, z; (ii) x+3, y+2, z.
 

Acknowledgements

We acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, Y.-F., Xia, H.-T., Wang, D.-Q. & Yang, S.-P. (2007). Acta Cryst. E63, m484–m486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens. (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5864–o5865.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2009a). Acta Cryst. E65, m200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2009b). Acta Cryst. E65, m201.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m198-m199
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds