Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Ni(H2O)6](C6H6NO3S)2, contains one half-cation and one anion; the Ni atom lies on an inversion centre. In the crystal structure, inter­molecular O—H...O and O—H...S hydrogen bonds result in the formation of a supra­molecular network. The conformation of the anion is stabilized by an intra­molecular C—H...O hydrogen-bonding inter­action.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807054372/at2449sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807054372/at2449Isup2.hkl
Contains datablock I

CCDC reference: 1176496

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.030
  • wR factor = 0.084
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Ni1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1C ... ? PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1D ... ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H3A .. S1 .. 3.18 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H1B .. S1 .. 3.08 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported O3 .. S1 .. 3.92 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported O1 .. S1 .. 3.87 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.16 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 9
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Due to hydrogen-bonding interactions are of critical importance in biological systems, organic materials and coordination chemistry. Hydrogen-bonding is currently the best tools in achieving this goal. (Zaworotko, 1997; Braga & Grepioni, 2000). Supramolecular architectures are of considerable contemporary interest by virtue of their potential applications in various fields. (Moulton & Zaworotko, 2001; Pan et al., 2001; Ma et al., 2001; Prior & Rosseinsky, 2001). We originally attempted to synthesize complexes featuring Sm and Ni metals chains by reaction of the samarium (III) and nickel(II) ions with 4-aminobenzenesulfonic acid ligand. Unfortunately, we obtained only the title compound, (I), and we report herein its crystal structure.

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The title compound, [Ni(H2O)6](C6H6NO3S)2, contains one half-cation and one anion; the Ni atom lies on an inversion centre.

In the crystal structure, intermolecular O—H···O and O—H···S hydrogen bonds (Fig. 2 and Table 2) result in the formation of a supramolecular network structure. The molecular conformation is stabilized by an intramolecular C—H···O hydrogen bonding interaction.

Related literature top

For general background, see: Desiraju (1995, 1997); Braga et al. (1998); Zaworotko (1997); Braga & Grepioni (2000); Moulton & Zaworotko (2001); Pan et al. (2001); Ma et al. (2001); Prior & Rosseinsky (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Samarium (III) nitrate hexahydrate (222.1 mg, 0.5 mmol), nickel nitrate hexahydrate (145.4 mg, 0.5 mmol), 4-aminobenzenesulfonic acid (346.4 mg, 2 mmol), ammonia (0.5 mol/l, 4 ml) and distilled water (10 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small green crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms (for H2O) were located in difference syntheses and refined isotropically. The other H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): 3/2 - x,1/2±y, 1/2 - z].
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Hexaaquanickel(II) bis(4-aminobenzenesulfonate) top
Crystal data top
[Ni(H2O)6](C6H6NO3S)2F(000) = 532
Mr = 511.16Dx = 1.551 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5607 reflections
a = 6.8971 (11) Åθ = 2.3–26.9°
b = 6.301 (2) ŵ = 1.14 mm1
c = 25.2038 (13) ÅT = 273 K
β = 91.971 (4)°Prism, green
V = 1094.7 (5) Å30.50 × 0.37 × 0.20 mm
Z = 2
Data collection top
Bruker APEX-II area-detector
diffractometer
2132 independent reflections
Radiation source: fine-focus sealed tube1848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.3°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.600, Tmax = 0.804k = 77
6665 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.2147P]
where P = (Fo2 + 2Fc2)/3
2132 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.25 e Å3
9 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(H2O)6](C6H6NO3S)2V = 1094.7 (5) Å3
Mr = 511.16Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.8971 (11) ŵ = 1.14 mm1
b = 6.301 (2) ÅT = 273 K
c = 25.2038 (13) Å0.50 × 0.37 × 0.20 mm
β = 91.971 (4)°
Data collection top
Bruker APEX-II area-detector
diffractometer
2132 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1848 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.804Rint = 0.024
6665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0309 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.25 e Å3
2132 reflectionsΔρmin = 0.32 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.04055 (14)
S10.01470 (7)0.60846 (8)0.90519 (2)0.04425 (17)
O10.7236 (3)0.1024 (3)0.04785 (10)0.0765 (6)
O20.5088 (3)0.2884 (3)0.03505 (8)0.0574 (4)
O30.3036 (3)0.1037 (3)0.05313 (10)0.0758 (6)
O40.1555 (2)0.5136 (2)0.93075 (7)0.0569 (4)
O50.0141 (2)0.8392 (3)0.90903 (7)0.0557 (4)
O60.1925 (3)0.5163 (2)0.92401 (8)0.0575 (4)
N10.0317 (5)0.3784 (8)0.67174 (12)0.1314 (14)
H1C0.00550.47110.64750.158*
H1D0.06870.25310.66310.158*
C10.0126 (4)0.4358 (6)0.72949 (11)0.0719 (8)
C20.0463 (4)0.6347 (6)0.74505 (12)0.0763 (9)
H20.08220.73380.71920.092*
C30.0536 (4)0.6918 (5)0.79835 (11)0.0667 (7)
H30.09190.82780.80780.080*
C40.0037 (3)0.5449 (4)0.83690 (9)0.0487 (5)
C50.0528 (4)0.3432 (4)0.82204 (10)0.0624 (6)
H50.08550.24300.84790.075*
C60.0610 (4)0.2898 (5)0.76887 (11)0.0736 (8)
H60.09960.15390.75940.088*
H1A0.748 (4)0.220 (3)0.0517 (10)0.072 (8)*
H2A0.611 (3)0.341 (5)0.0483 (12)0.080 (10)*
H3A0.279 (4)0.226 (3)0.0572 (11)0.074 (9)*
H1B0.810 (4)0.020 (3)0.0580 (12)0.070 (9)*
H2B0.419 (3)0.343 (5)0.0500 (11)0.078 (10)*
H3B0.216 (4)0.026 (4)0.0596 (14)0.083 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0374 (2)0.0301 (2)0.0541 (2)0.00076 (14)0.00152 (15)0.00166 (15)
S10.0426 (3)0.0342 (3)0.0561 (3)0.0005 (2)0.0026 (2)0.0004 (2)
O10.0722 (13)0.0378 (11)0.1161 (17)0.0050 (9)0.0434 (11)0.0003 (11)
O20.0474 (9)0.0412 (9)0.0837 (12)0.0004 (8)0.0051 (9)0.0139 (8)
O30.0768 (13)0.0382 (11)0.1153 (17)0.0002 (10)0.0478 (12)0.0056 (11)
O40.0589 (10)0.0441 (10)0.0666 (10)0.0055 (7)0.0116 (8)0.0015 (7)
O50.0542 (9)0.0347 (8)0.0785 (11)0.0004 (7)0.0047 (8)0.0019 (7)
O60.0565 (9)0.0432 (10)0.0739 (11)0.0039 (7)0.0169 (8)0.0024 (7)
N10.124 (3)0.200 (5)0.0706 (19)0.006 (3)0.0116 (18)0.011 (2)
C10.0546 (14)0.102 (2)0.0588 (16)0.0075 (15)0.0014 (12)0.0007 (15)
C20.0683 (17)0.097 (3)0.0632 (16)0.0087 (16)0.0010 (13)0.0233 (16)
C30.0640 (15)0.0644 (18)0.0721 (17)0.0104 (13)0.0057 (12)0.0141 (14)
C40.0408 (11)0.0482 (13)0.0572 (13)0.0002 (9)0.0011 (9)0.0031 (10)
C50.0747 (16)0.0530 (15)0.0593 (14)0.0099 (12)0.0010 (12)0.0018 (12)
C60.0801 (19)0.075 (2)0.0661 (17)0.0056 (15)0.0043 (14)0.0151 (15)
Geometric parameters (Å, º) top
Ni1—O1i2.0300 (17)O3—H3B0.801 (17)
Ni1—O12.0300 (17)N1—C11.510 (4)
Ni1—O2i2.0207 (17)N1—H1C0.8600
Ni1—O22.0207 (17)N1—H1D0.8600
Ni1—O3i2.0444 (18)C1—C21.379 (5)
Ni1—O32.0445 (18)C1—C61.385 (4)
S1—O41.4487 (17)C2—C31.393 (4)
S1—O61.4512 (17)C2—H20.9300
S1—O51.4571 (18)C3—C41.377 (4)
S1—C41.771 (2)C3—H30.9300
O1—H1A0.765 (16)C4—C51.385 (3)
O1—H1B0.821 (17)C5—C61.385 (4)
O2—H2A0.841 (17)C5—H50.9300
O2—H2B0.810 (17)C6—H60.9300
O3—H3A0.797 (17)
O1i—Ni1—O1180.0H2A—O2—H2B107 (2)
O1i—Ni1—O289.11 (8)Ni1—O3—H3A123 (2)
O1—Ni1—O290.89 (8)Ni1—O3—H3B117 (2)
O1—Ni1—O3i89.08 (10)H3A—O3—H3B114 (3)
O1—Ni1—O390.92 (10)C1—N1—H1C120.0
O2i—Ni1—O2180.0C1—N1—H1D120.0
O2—Ni1—O3i89.32 (8)H1C—N1—H1D120.0
O2—Ni1—O390.67 (8)C2—C1—C6117.8 (3)
O3i—Ni1—O3180.0C2—C1—N1121.9 (3)
O2i—Ni1—O1i90.89 (8)C6—C1—N1120.3 (3)
O1—Ni1—O2i89.11 (8)C1—C2—C3122.0 (3)
O2i—Ni1—O3i90.68 (8)C1—C2—H2119.0
O1i—Ni1—O3i90.92 (10)C3—C2—H2119.0
O2i—Ni1—O389.32 (8)C4—C3—C2119.4 (3)
O1i—Ni1—O389.08 (10)C4—C3—H3120.3
O4—S1—O6111.73 (11)C2—C3—H3120.3
O4—S1—O5112.45 (10)C3—C4—C5119.5 (2)
O6—S1—O5112.22 (10)C3—C4—S1121.0 (2)
O4—S1—C4106.12 (11)C5—C4—S1119.48 (18)
O6—S1—C4106.98 (11)C6—C5—C4120.4 (3)
O5—S1—C4106.86 (11)C6—C5—H5119.8
Ni1—O1—H1A123.1 (19)C4—C5—H5119.8
Ni1—O1—H1B120.7 (19)C5—C6—C1121.0 (3)
H1A—O1—H1B114 (2)C5—C6—H6119.5
Ni1—O2—H2A123 (2)C1—C6—H6119.5
Ni1—O2—H2B125 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O50.932.592.944 (3)103
O3—H3A···S1ii0.80 (2)3.18 (2)3.916 (2)154 (2)
O1—H1B···O5iii0.82 (2)1.98 (2)2.793 (3)173 (3)
O1—H1B···S1iii0.82 (2)3.08 (2)3.867 (2)161 (2)
O2—H2B···O6iv0.81 (2)1.93 (2)2.737 (2)172 (3)
O3—H3B···O5iv0.80 (2)2.00 (2)2.794 (3)169 (4)
O1—H1A···O4v0.77 (2)2.01 (2)2.769 (3)172 (3)
O2—H2A···O4iii0.84 (2)1.91 (2)2.743 (2)172 (3)
O3—H3A···O6ii0.80 (2)1.99 (2)2.776 (3)171 (3)
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(H2O)6](C6H6NO3S)2
Mr511.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)6.8971 (11), 6.301 (2), 25.2038 (13)
β (°) 91.971 (4)
V3)1094.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.50 × 0.37 × 0.20
Data collection
DiffractometerBruker APEX-II area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.600, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
6665, 2132, 1848
Rint0.024
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.10
No. of reflections2132
No. of parameters157
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.32

Computer programs: APEX2 (Bruker, 2005), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Selected geometric parameters (Å, º) top
Ni1—O1i2.0300 (17)Ni1—O22.0207 (17)
Ni1—O12.0300 (17)Ni1—O3i2.0444 (18)
Ni1—O2i2.0207 (17)Ni1—O32.0445 (18)
O1i—Ni1—O1180.0O2i—Ni1—O2180.0
O1i—Ni1—O289.11 (8)O2—Ni1—O3i89.32 (8)
O1—Ni1—O290.89 (8)O2—Ni1—O390.67 (8)
O1—Ni1—O3i89.08 (10)O3i—Ni1—O3180.0
O1—Ni1—O390.92 (10)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O50.932.592.944 (3)103
O3—H3A···S1ii0.797 (17)3.18 (2)3.916 (2)154 (2)
O1—H1B···O5iii0.821 (17)1.976 (18)2.793 (3)173 (3)
O1—H1B···S1iii0.821 (17)3.083 (17)3.867 (2)161 (2)
O2—H2B···O6iv0.810 (17)1.933 (18)2.737 (2)172 (3)
O3—H3B···O5iv0.801 (17)2.004 (19)2.794 (3)169 (4)
O1—H1A···O4v0.765 (16)2.010 (18)2.769 (3)172 (3)
O2—H2A···O4iii0.841 (17)1.909 (18)2.743 (2)172 (3)
O3—H3A···O6ii0.797 (17)1.985 (18)2.776 (3)171 (3)
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds