Download citation
Download citation
link to html
In the title complex, [Cd(H2O)6](C9H7N4O3S)2, the metal center is six-coordinate, forming an ideal centrosymmetric octa­hedral geometry. A three-dimensional supra­molecular architecture is formed through hydrogen-bonding (O—H...O) and offset π–π stacking inter­actions (distance between pairs of adjacent benzene rings = 3.532 Å and centroid-to-centroid separation = 3.672 Å).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053081/at2446sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053081/at2446Isup2.hkl
Contains datablock I

CCDC reference: 672593

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.025
  • wR factor = 0.068
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.64 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cd1 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.47 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cd1 (2) 2.21 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 9
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Beside the field of molecular chemistry based on the covalent bond, the chemistry of molecular assemblies and of intermolecular bond (Steed et al., 2000) has become a new fascinating area of interest in the last two decades (Subramanian et al., 1994). Efforts have been done to design and construct such kind of assemblies due to their potential multi-dimensional applications in the field of catalysis, non-linear optics, electrical conductivity, molecular recognition, and crystal engineering (Chen et al.,1993; Desiraju,1995). Recently, we have concentrated our attention on using H2L (synthesized from 1-(4-hydroxyphenyl)-5-mercaptotetrazole as bridging spacer to obtain polynuclear complexes of transition-metal. Here, the synthesis and crystal structure of [Cd(H2O)6](HL)2, (I), is presented.

The neutral compound consists of one [Cd(H2O)6]2+ cation and two HL- anions, as shown in Fig. 1, in which the complex has a crystallographic center with the Zn atom situated at the center of (0. 1/2, 0). In the cations, the Cd atom is surrounded by six aqua ligands, exhibiting an ideal octahedral geometry·On the other hand, the bond lengths within the mercaptotetrazole segment exhibit the expected pattern of four long bonds [S(1)—C(7), N(1)—N(2), N(3)—N(4) and C(7)—N(1)] and two short bonds [N(2)—N(3) and C(7)—N(4)] on the whole. As shown in Fig. 2, there exist offset-panel π-π stacking interactions. The distance between the two adjacent benzene rings is 3.532 Å (centroid separation is 3.672 Å). Also intermolecular O—H···O, O—H···N hydrogen bonds are observed. Thus, all of the hydrogen bonding interactions makes the title compound extend into a three-dimensional supramolecular framework as well as the offset-panel π-π stacking interactions (Zhang et al.,2007).

Related literature top

For related literature, see: Chen & Suslick (1993); Desiraju et al.(1995); Steed & Atwood (2000); Subramanian & Zaworotko (1994); Zhang et al.(2007); Zhou et al. (1998)

Experimental top

The synthesis of legand H2L was prepared according to the literature (Zhou, 1998). The compound were prepared by mixing 1:2 molar ratio of cadmium chloridate and H2L in ethanol-water(1:1,16 ml). The mixture was refluxed at 323 K for 2 h with stirring, then filtered and left to stand at the room temperature. Well shaped crystals suitable for X-ray analyses were obtained by slow evaporation of the filtrate in ca 40–50% yields within about a week.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and their positions were refined isotropically, with O—H distances fixed by O—H = 0.85 (2) Å and H···H = 1.30 (2) Å, their displacement parameters were set to 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids plotted at 30% probability level. [The atoms labelled with 'A' are related to the center of inversion].
[Figure 2] Fig. 2. Packing diagram for the title compound. The O—H···O hydrogen bonds and O—H···N interactions are depicted by dashed lines.
Hexaaquacadmium(II) bis{[1-(4-hydroxyphenyl)-1H-tetrazol-5-ylsulfanyl]acetate} top
Crystal data top
[Cd(H2O)6](C9H7N4O3S)2Z = 1
Mr = 722.99F(000) = 366
Triclinic, P1Dx = 1.771 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6872 (2) ÅCell parameters from 3100 reflections
b = 7.1478 (2) Åθ = 2.8–26.6°
c = 15.0725 (5) ŵ = 1.04 mm1
α = 98.270 (1)°T = 296 K
β = 97.013 (1)°Sheet, colourless
γ = 105.353 (1)°0.49 × 0.26 × 0.03 mm
V = 677.76 (4) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3099 independent reflections
Radiation source: fine-focus sealed tube3009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.650, Tmax = 0.965k = 98
10159 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.2797P]
where P = (Fo2 + 2Fc2)/3
3099 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.90 e Å3
9 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cd(H2O)6](C9H7N4O3S)2γ = 105.353 (1)°
Mr = 722.99V = 677.76 (4) Å3
Triclinic, P1Z = 1
a = 6.6872 (2) ÅMo Kα radiation
b = 7.1478 (2) ŵ = 1.04 mm1
c = 15.0725 (5) ÅT = 296 K
α = 98.270 (1)°0.49 × 0.26 × 0.03 mm
β = 97.013 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3009 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.965Rint = 0.016
10159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0259 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.90 e Å3
3099 reflectionsΔρmin = 0.25 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.00000.00000.03204 (8)
S10.60568 (7)0.61474 (8)0.29716 (3)0.03853 (12)
O11.1690 (2)0.7681 (3)0.72338 (9)0.0452 (4)
H1B1.06000.71480.74070.068*
O1W0.5334 (2)0.0704 (3)0.14842 (10)0.0492 (4)
H1WA0.629 (4)0.016 (5)0.174 (2)0.088 (12)*
H1WB0.427 (3)0.120 (4)0.1879 (16)0.055 (8)*
O20.1602 (2)0.4141 (2)0.08721 (10)0.0419 (3)
O2W0.7407 (2)0.3043 (2)0.02541 (11)0.0455 (4)
H2WA0.862 (3)0.319 (5)0.049 (2)0.084 (11)*
H2WB0.753 (5)0.375 (4)0.0139 (17)0.064 (9)*
O30.1891 (2)0.4057 (3)0.23510 (11)0.0554 (5)
O3W0.2335 (3)0.1271 (3)0.04036 (11)0.0503 (4)
H3WA0.196 (5)0.150 (5)0.0907 (12)0.072 (10)*
H3WB0.216 (5)0.213 (4)0.0029 (15)0.068 (9)*
N11.0318 (2)0.7871 (2)0.35349 (10)0.0315 (3)
N21.2008 (2)0.8777 (3)0.31828 (12)0.0393 (4)
N31.1337 (3)0.8776 (3)0.23480 (12)0.0420 (4)
N40.9232 (2)0.7909 (3)0.21196 (11)0.0371 (4)
C11.1286 (3)0.7665 (3)0.63276 (12)0.0333 (4)
C21.2963 (3)0.8031 (4)0.58578 (14)0.0421 (5)
H21.43250.82730.61650.050*
C31.2626 (3)0.8040 (3)0.49351 (14)0.0388 (4)
H31.37550.82590.46210.047*
C41.0596 (3)0.7721 (3)0.44788 (12)0.0300 (3)
C50.8922 (3)0.7356 (3)0.49449 (13)0.0366 (4)
H50.75630.71490.46410.044*
C60.9259 (3)0.7297 (3)0.58611 (13)0.0364 (4)
H60.81210.70100.61680.044*
C70.8611 (3)0.7346 (3)0.28689 (12)0.0312 (4)
C80.4890 (3)0.5720 (3)0.17878 (12)0.0347 (4)
H8A0.49920.69710.15910.042*
H8B0.56330.50020.14180.042*
C90.2594 (3)0.4531 (3)0.16719 (13)0.0334 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02480 (10)0.03904 (13)0.02939 (11)0.00194 (8)0.00382 (7)0.01132 (7)
S10.0213 (2)0.0584 (3)0.0299 (2)0.00021 (19)0.00287 (16)0.0122 (2)
O10.0292 (6)0.0662 (10)0.0317 (7)0.0008 (6)0.0009 (5)0.0127 (7)
O1W0.0325 (7)0.0733 (11)0.0293 (7)0.0067 (7)0.0063 (6)0.0097 (7)
O20.0285 (6)0.0553 (9)0.0342 (7)0.0014 (6)0.0026 (5)0.0105 (6)
O2W0.0287 (7)0.0483 (9)0.0515 (9)0.0053 (6)0.0024 (6)0.0218 (7)
O30.0316 (7)0.0843 (13)0.0388 (8)0.0093 (8)0.0050 (6)0.0239 (8)
O3W0.0515 (9)0.0738 (12)0.0351 (8)0.0314 (9)0.0066 (7)0.0157 (8)
N10.0206 (6)0.0382 (8)0.0318 (7)0.0012 (6)0.0054 (5)0.0070 (6)
N20.0250 (7)0.0517 (10)0.0363 (8)0.0001 (7)0.0083 (6)0.0107 (7)
N30.0282 (8)0.0545 (11)0.0391 (9)0.0008 (7)0.0091 (6)0.0135 (8)
N40.0275 (7)0.0481 (10)0.0334 (8)0.0037 (7)0.0067 (6)0.0127 (7)
C10.0280 (8)0.0343 (9)0.0316 (9)0.0002 (7)0.0013 (7)0.0063 (7)
C20.0218 (8)0.0582 (13)0.0396 (10)0.0009 (8)0.0002 (7)0.0123 (9)
C30.0220 (8)0.0528 (12)0.0381 (10)0.0021 (8)0.0063 (7)0.0121 (8)
C40.0239 (8)0.0318 (9)0.0302 (8)0.0014 (7)0.0035 (6)0.0056 (7)
C50.0210 (8)0.0506 (11)0.0351 (9)0.0053 (7)0.0025 (7)0.0093 (8)
C60.0238 (8)0.0468 (11)0.0345 (9)0.0031 (7)0.0056 (7)0.0074 (8)
C70.0237 (8)0.0367 (10)0.0313 (8)0.0044 (7)0.0050 (6)0.0077 (7)
C80.0238 (8)0.0463 (11)0.0292 (8)0.0004 (7)0.0024 (6)0.0114 (7)
C90.0242 (8)0.0394 (10)0.0329 (9)0.0018 (7)0.0029 (6)0.0106 (7)
Geometric parameters (Å, º) top
Cd1—O3Wi2.2635 (15)N1—N21.355 (2)
Cd1—O3W2.2635 (15)N1—C41.435 (2)
Cd1—O1Wi2.2727 (15)N2—N31.283 (2)
Cd1—O1W2.2727 (15)N3—N41.357 (2)
Cd1—O2W2.2857 (15)N4—C71.329 (2)
Cd1—O2Wi2.2857 (15)C1—C21.385 (3)
S1—C71.7327 (18)C1—C61.388 (2)
S1—C81.8064 (18)C2—C31.383 (3)
O1—C11.358 (2)C2—H20.9300
O1—H1B0.8200C3—C41.389 (2)
O1W—H1WA0.823 (17)C3—H30.9300
O1W—H1WB0.830 (16)C4—C51.380 (2)
O2—C91.258 (2)C5—C61.380 (3)
O2W—H2WA0.820 (17)C5—H50.9300
O2W—H2WB0.829 (17)C6—H60.9300
O3—C91.231 (2)C8—C91.520 (2)
O3W—H3WA0.821 (17)C8—H8A0.9700
O3W—H3WB0.815 (17)C8—H8B0.9700
N1—C71.355 (2)
O3Wi—Cd1—O3W180.00 (8)C7—N4—N3105.59 (15)
O3Wi—Cd1—O1Wi90.08 (6)O1—C1—C2118.48 (16)
O3W—Cd1—O1Wi89.92 (6)O1—C1—C6122.23 (17)
O3Wi—Cd1—O1W89.92 (6)C2—C1—C6119.29 (18)
O3W—Cd1—O1W90.08 (6)C3—C2—C1120.47 (17)
O1Wi—Cd1—O1W180.00 (8)C3—C2—H2119.8
O3Wi—Cd1—O2W88.40 (7)C1—C2—H2119.8
O3W—Cd1—O2W91.60 (7)C2—C3—C4119.81 (17)
O1Wi—Cd1—O2W86.15 (6)C2—C3—H3120.1
O1W—Cd1—O2W93.85 (6)C4—C3—H3120.1
O3Wi—Cd1—O2Wi91.60 (7)C5—C4—C3119.86 (17)
O3W—Cd1—O2Wi88.40 (7)C5—C4—N1121.75 (15)
O1Wi—Cd1—O2Wi93.85 (6)C3—C4—N1118.33 (16)
O1W—Cd1—O2Wi86.15 (6)C6—C5—C4120.16 (16)
O2W—Cd1—O2Wi180.00 (6)C6—C5—H5119.9
C7—S1—C897.94 (9)C4—C5—H5119.9
C1—O1—H1B109.5C5—C6—C1120.37 (17)
Cd1—O1W—H1WA128 (2)C5—C6—H6119.8
Cd1—O1W—H1WB119.9 (18)C1—C6—H6119.8
H1WA—O1W—H1WB107 (2)N4—C7—N1108.17 (15)
Cd1—O2W—H2WA120 (2)N4—C7—S1125.73 (14)
Cd1—O2W—H2WB122 (2)N1—C7—S1126.10 (14)
H2WA—O2W—H2WB104 (2)C9—C8—S1108.98 (12)
Cd1—O3W—H3WA127 (2)C9—C8—H8A109.9
Cd1—O3W—H3WB117 (2)S1—C8—H8A109.9
H3WA—O3W—H3WB107 (2)C9—C8—H8B109.9
C7—N1—N2107.85 (15)S1—C8—H8B109.9
C7—N1—C4133.22 (15)H8A—C8—H8B108.3
N2—N1—C4118.86 (14)O3—C9—O2126.70 (18)
N3—N2—N1106.68 (15)O3—C9—C8118.25 (16)
N2—N3—N4111.70 (16)O2—C9—C8115.05 (16)
C7—N1—N2—N30.4 (2)C4—C5—C6—C12.0 (3)
C4—N1—N2—N3177.88 (17)O1—C1—C6—C5177.98 (19)
N1—N2—N3—N40.5 (2)C2—C1—C6—C52.0 (3)
N2—N3—N4—C70.4 (2)N3—N4—C7—N10.1 (2)
O1—C1—C2—C3179.7 (2)N3—N4—C7—S1179.91 (15)
C6—C1—C2—C30.3 (3)N2—N1—C7—N40.2 (2)
C1—C2—C3—C41.4 (3)C4—N1—C7—N4177.15 (18)
C2—C3—C4—C51.3 (3)N2—N1—C7—S1179.80 (14)
C2—C3—C4—N1175.88 (19)C4—N1—C7—S12.9 (3)
C7—N1—C4—C515.7 (3)C8—S1—C7—N47.35 (19)
N2—N1—C4—C5160.95 (19)C8—S1—C7—N1172.63 (17)
C7—N1—C4—C3167.1 (2)C7—S1—C8—C9176.39 (14)
N2—N1—C4—C316.2 (3)S1—C8—C9—O30.1 (2)
C3—C4—C5—C60.4 (3)S1—C8—C9—O2179.79 (15)
N1—C4—C5—C6177.47 (18)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3ii0.821.772.586 (2)174
O1W—H1WB···O1iii0.83 (2)1.95 (2)2.779 (2)177 (3)
O2W—H2WA···O2iv0.82 (2)1.91 (2)2.709 (2)164 (3)
O2W—H2WB···O2v0.83 (2)2.00 (2)2.815 (2)167 (3)
O3W—H3WA···N4v0.82 (2)2.05 (2)2.869 (2)174 (3)
O3W—H3WB···O20.82 (2)1.97 (2)2.788 (2)178 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1, y1, z1; (iv) x+1, y, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(H2O)6](C9H7N4O3S)2
Mr722.99
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.6872 (2), 7.1478 (2), 15.0725 (5)
α, β, γ (°)98.270 (1), 97.013 (1), 105.353 (1)
V3)677.76 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.49 × 0.26 × 0.03
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.650, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
10159, 3099, 3009
Rint0.016
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.00
No. of reflections3099
No. of parameters211
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.90, 0.25

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002).

Selected geometric parameters (Å, º) top
Cd1—O3Wi2.2635 (15)Cd1—O1W2.2727 (15)
Cd1—O3W2.2635 (15)Cd1—O2W2.2857 (15)
Cd1—O1Wi2.2727 (15)Cd1—O2Wi2.2857 (15)
O3Wi—Cd1—O3W180.00 (8)O1Wi—Cd1—O2W86.15 (6)
O3Wi—Cd1—O1Wi90.08 (6)O1W—Cd1—O2W93.85 (6)
O3W—Cd1—O1Wi89.92 (6)O3Wi—Cd1—O2Wi91.60 (7)
O3Wi—Cd1—O1W89.92 (6)O3W—Cd1—O2Wi88.40 (7)
O3W—Cd1—O1W90.08 (6)O1Wi—Cd1—O2Wi93.85 (6)
O1Wi—Cd1—O1W180.00 (8)O1W—Cd1—O2Wi86.15 (6)
O3Wi—Cd1—O2W88.40 (7)O2W—Cd1—O2Wi180.00 (6)
O3W—Cd1—O2W91.60 (7)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3ii0.821.772.586 (2)173.5
O1W—H1WB···O1iii0.830 (16)1.949 (17)2.779 (2)177 (3)
O2W—H2WA···O2iv0.820 (17)1.91 (2)2.709 (2)164 (3)
O2W—H2WB···O2v0.829 (17)2.002 (19)2.815 (2)167 (3)
O3W—H3WA···N4v0.821 (17)2.051 (18)2.869 (2)174 (3)
O3W—H3WB···O20.815 (17)1.974 (17)2.788 (2)178 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1, y1, z1; (iv) x+1, y, z; (v) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds