Download citation
Download citation
link to html
In the title compound, C20H18N2O6S2, all bond lengths and angles are within normal ranges. The configuration around central N atom is almost planar; the r.m.s. deviation for the fitted atoms is 0.0218 Å. The electron-withdrawing effect of the S atom is observed in this structure, i.e. the ortho-meta-para C-C-C angles in the attached rings are greater than 120°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705307X/at2445sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705307X/at2445Isup2.hkl
Contains datablock I

CCDC reference: 667469

Key indicators

  • Single-crystal X-ray study
  • T = 278 K
  • Mean [sigma](C-C)= 0.004 Å
  • R factor = 0.054
  • wR factor = 0.135
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The sulfonamide group is present in many bioactive compounds and be used as protecting group (Krishnaiah et al., 1995; Patani & Lavoie, 1996). Some crystal structures involving sulfonamide groups have been published, including a recent report from our labratory (Yan, et al., 2007). As an extension of this research, we report the synthesis and the crystal structure of C20H18N2O6S2 (I), namely N,N-bis(toluene-4-sulfonylamino)-3-nitroaniline.

In (I) (Fig. 1), all bond lengths and angles show normal values (Allen et al., 1987) and are unremarkable when compared with those found in our previous report (Yan, et al., 2007). The three independent benzene rings C2—C7 (P1), C9—C14 (P2) and C15—C20 (P3) are essentially planar with r.m.s. deviation of 0.0029 Å, 0.0091 Å and 0.0041 Å, respectively. The dihedral angles P1/P2, P1/P3 and P2/P3 are 41.74 (14), 31.82 (14) and 19.50 (14)°, respectively. The bond angles of C4—C3—C2 and C6—C7—C2 should be more than 120°. The experimental results are 121.1 (3)° and 121.6 (3)°, respectively. It shows that the S atoms introduce electron-withdrawing effect (Kazak et al., 2000).

Related literature top

For related literature, see: Allen et al. (1987); Krishnaiah et al. (1995); Patani & Lavoie (1996); Yan et al. (2007); Creaser et al. (2001); Kazak et al. (2000); Yu (2006).

Experimental top

Aqueous NaOH (20 ml, 10%) was added dropwise to a mixture of 4-methylbenzene-1-sulfonyl chloride (10 mmol, 1.905 g) and 3-nitroaniline (5 mmol, 1.38 g) with constant stirring for 4 h. After column chromatography separation with the silica stationary phase and the eluent of petroleum ether and acetic ester with relative proportions (v/v, 5/1), the purified product was dissolved in ethanol and allowed to stand for approximately 8 d until single crystals formed.

Refinement top

The all H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of Csp2—H = 0.93 Å with Uiso = 1.2Ueq(parent atom), Csp3—H = 0.96 Å with Uiso = 1.5Ueq(parent atom).

Structure description top

The sulfonamide group is present in many bioactive compounds and be used as protecting group (Krishnaiah et al., 1995; Patani & Lavoie, 1996). Some crystal structures involving sulfonamide groups have been published, including a recent report from our labratory (Yan, et al., 2007). As an extension of this research, we report the synthesis and the crystal structure of C20H18N2O6S2 (I), namely N,N-bis(toluene-4-sulfonylamino)-3-nitroaniline.

In (I) (Fig. 1), all bond lengths and angles show normal values (Allen et al., 1987) and are unremarkable when compared with those found in our previous report (Yan, et al., 2007). The three independent benzene rings C2—C7 (P1), C9—C14 (P2) and C15—C20 (P3) are essentially planar with r.m.s. deviation of 0.0029 Å, 0.0091 Å and 0.0041 Å, respectively. The dihedral angles P1/P2, P1/P3 and P2/P3 are 41.74 (14), 31.82 (14) and 19.50 (14)°, respectively. The bond angles of C4—C3—C2 and C6—C7—C2 should be more than 120°. The experimental results are 121.1 (3)° and 121.6 (3)°, respectively. It shows that the S atoms introduce electron-withdrawing effect (Kazak et al., 2000).

For related literature, see: Allen et al. (1987); Krishnaiah et al. (1995); Patani & Lavoie (1996); Yan et al. (2007); Creaser et al. (2001); Kazak et al. (2000); Yu (2006).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and the atomic numbering.
3-Nitro-N,N-bis(p-tolylsulfonyl)aniline top
Crystal data top
C20H18N2O6S2F(000) = 1856
Mr = 446.48Dx = 1.457 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3381 reflections
a = 25.7789 (9) Åθ = 2.5–25.0°
b = 9.7238 (7) ŵ = 0.30 mm1
c = 16.4653 (8) ÅT = 278 K
β = 99.507 (1)°Blcok, colourless
V = 4070.7 (4) Å30.41 × 0.29 × 0.26 mm
Z = 8
Data collection top
Bruker APEX area-detector
diffractometer
3607 independent reflections
Radiation source: fine-focus sealed tube3249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 3028
Tmin = 0.886, Tmax = 0.926k = 1111
10446 measured reflectionsl = 1319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.057P)2 + 4.9858P]
where P = (Fo2 + 2Fc2)/3
3607 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H18N2O6S2V = 4070.7 (4) Å3
Mr = 446.48Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.7789 (9) ŵ = 0.30 mm1
b = 9.7238 (7) ÅT = 278 K
c = 16.4653 (8) Å0.41 × 0.29 × 0.26 mm
β = 99.507 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
3607 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3249 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.926Rint = 0.025
10446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.15Δρmax = 0.38 e Å3
3607 reflectionsΔρmin = 0.29 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34132 (3)0.03077 (7)0.05542 (4)0.0478 (2)
S20.29039 (3)0.01230 (7)0.20435 (4)0.0471 (2)
O10.31699 (8)0.0994 (2)0.04417 (15)0.0689 (6)
O20.33162 (8)0.1314 (2)0.00784 (12)0.0633 (6)
O30.31436 (8)0.1187 (2)0.21575 (15)0.0674 (6)
O40.29099 (8)0.1039 (2)0.27150 (12)0.0622 (6)
O50.45481 (10)0.4127 (3)0.30077 (16)0.0813 (7)
O60.43517 (11)0.6151 (3)0.2557 (2)0.0969 (9)
N10.32225 (8)0.1017 (2)0.13871 (14)0.0455 (5)
N20.42661 (11)0.4927 (3)0.25742 (18)0.0634 (7)
C10.57602 (13)0.0289 (4)0.1548 (2)0.0845 (12)
H1A0.58900.09890.12230.127*
H1B0.58380.05370.21200.127*
H1C0.59270.05720.14650.127*
C20.51728 (11)0.0150 (3)0.12921 (18)0.0570 (8)
C30.48381 (12)0.1222 (3)0.1399 (2)0.0617 (8)
H30.49780.20450.16250.074*
C40.43021 (11)0.1092 (3)0.11752 (18)0.0536 (7)
H40.40810.18180.12540.064*
C50.40961 (10)0.0117 (3)0.08350 (16)0.0431 (6)
C60.44203 (11)0.1200 (3)0.07136 (19)0.0537 (7)
H60.42800.20150.04780.064*
C70.49557 (12)0.1052 (3)0.0948 (2)0.0620 (8)
H70.51760.17820.08720.074*
C80.07156 (13)0.0322 (4)0.0105 (2)0.0814 (11)
H8A0.04790.02630.03390.122*
H8B0.05920.12550.00980.122*
H8C0.07310.00310.04470.122*
C90.12544 (11)0.0235 (3)0.06152 (19)0.0551 (7)
C100.14279 (11)0.0960 (3)0.10178 (19)0.0558 (7)
H100.12030.17130.09830.067*
C110.19262 (11)0.1071 (3)0.14717 (19)0.0504 (7)
H110.20350.18840.17450.061*
C120.22587 (10)0.0044 (3)0.15123 (17)0.0423 (6)
C130.20953 (11)0.1263 (3)0.1129 (2)0.0552 (7)
H130.23200.20170.11640.066*
C140.15919 (12)0.1345 (3)0.0691 (2)0.0623 (8)
H140.14770.21720.04400.075*
C150.32900 (10)0.2488 (3)0.14926 (16)0.0413 (6)
C160.37314 (10)0.2977 (3)0.19917 (16)0.0439 (6)
H160.39790.23810.22760.053*
C170.37934 (11)0.4383 (3)0.20555 (17)0.0488 (7)
C180.34264 (13)0.5292 (3)0.1651 (2)0.0578 (8)
H180.34760.62360.17090.069*
C190.29890 (13)0.4776 (3)0.1165 (2)0.0590 (8)
H190.27370.53740.08910.071*
C200.29180 (11)0.3376 (3)0.10773 (17)0.0515 (7)
H200.26210.30300.07410.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0391 (4)0.0508 (4)0.0521 (4)0.0014 (3)0.0031 (3)0.0106 (3)
S20.0430 (4)0.0439 (4)0.0527 (4)0.0060 (3)0.0027 (3)0.0035 (3)
O10.0535 (12)0.0619 (13)0.0912 (16)0.0088 (10)0.0116 (11)0.0322 (12)
O20.0585 (12)0.0803 (15)0.0480 (11)0.0216 (11)0.0003 (9)0.0024 (10)
O30.0549 (12)0.0501 (12)0.0906 (16)0.0005 (10)0.0071 (11)0.0180 (11)
O40.0652 (13)0.0710 (14)0.0502 (12)0.0182 (11)0.0094 (10)0.0056 (10)
O50.0628 (14)0.0954 (19)0.0800 (17)0.0226 (14)0.0046 (13)0.0121 (15)
O60.0918 (19)0.0619 (16)0.139 (2)0.0401 (14)0.0265 (17)0.0284 (15)
N10.0429 (12)0.0388 (12)0.0560 (14)0.0062 (9)0.0114 (10)0.0061 (10)
N20.0565 (16)0.0652 (18)0.0715 (19)0.0204 (14)0.0192 (14)0.0170 (14)
C10.0491 (19)0.119 (3)0.080 (3)0.011 (2)0.0039 (17)0.021 (2)
C20.0439 (15)0.076 (2)0.0498 (17)0.0085 (15)0.0036 (13)0.0135 (15)
C30.0615 (19)0.0579 (19)0.0633 (19)0.0173 (15)0.0029 (15)0.0076 (15)
C40.0518 (16)0.0456 (16)0.0637 (18)0.0020 (12)0.0102 (14)0.0074 (13)
C50.0405 (14)0.0442 (14)0.0447 (14)0.0026 (11)0.0077 (11)0.0005 (11)
C60.0497 (16)0.0452 (16)0.0658 (19)0.0022 (12)0.0081 (14)0.0076 (13)
C70.0480 (17)0.0643 (19)0.075 (2)0.0111 (14)0.0142 (15)0.0034 (16)
C80.0517 (19)0.109 (3)0.080 (2)0.0089 (19)0.0004 (17)0.005 (2)
C90.0436 (15)0.0660 (19)0.0568 (18)0.0067 (14)0.0111 (13)0.0050 (15)
C100.0449 (16)0.0517 (16)0.073 (2)0.0050 (13)0.0157 (14)0.0081 (15)
C110.0493 (16)0.0389 (14)0.0654 (18)0.0048 (12)0.0160 (13)0.0052 (13)
C120.0381 (13)0.0394 (13)0.0504 (15)0.0047 (11)0.0100 (11)0.0003 (11)
C130.0447 (15)0.0406 (15)0.081 (2)0.0020 (12)0.0129 (14)0.0058 (14)
C140.0524 (17)0.0541 (18)0.080 (2)0.0151 (14)0.0096 (16)0.0190 (16)
C150.0406 (13)0.0373 (13)0.0471 (15)0.0035 (10)0.0109 (11)0.0034 (11)
C160.0412 (14)0.0440 (14)0.0471 (15)0.0018 (11)0.0096 (11)0.0002 (12)
C170.0509 (15)0.0477 (15)0.0510 (16)0.0139 (13)0.0183 (13)0.0092 (13)
C180.071 (2)0.0370 (15)0.071 (2)0.0008 (14)0.0272 (17)0.0011 (14)
C190.0645 (19)0.0500 (17)0.0631 (19)0.0145 (14)0.0123 (16)0.0057 (14)
C200.0469 (15)0.0554 (17)0.0514 (16)0.0041 (13)0.0059 (13)0.0022 (13)
Geometric parameters (Å, º) top
S1—O11.411 (2)C7—H70.9300
S1—O21.421 (2)C8—C91.502 (4)
S1—N11.679 (2)C8—H8A0.9600
S1—C51.755 (3)C8—H8B0.9600
S2—O31.415 (2)C8—H8C0.9600
S2—O41.418 (2)C9—C101.375 (4)
S2—N11.700 (2)C9—C141.379 (4)
S2—C121.754 (3)C10—C111.380 (4)
O5—N21.213 (4)C10—H100.9300
O6—N21.211 (3)C11—C121.376 (4)
N1—C151.448 (3)C11—H110.9300
N2—C171.467 (4)C12—C131.376 (4)
C1—C21.509 (4)C13—C141.379 (4)
C1—H1A0.9600C13—H130.9300
C1—H1B0.9600C14—H140.9300
C1—H1C0.9600C15—C161.374 (4)
C2—C71.377 (4)C15—C201.384 (4)
C2—C31.383 (4)C16—C171.378 (4)
C3—C41.376 (4)C16—H160.9300
C3—H30.9300C17—C181.383 (4)
C4—C51.370 (4)C18—C191.366 (5)
C4—H40.9300C18—H180.9300
C5—C61.380 (4)C19—C201.378 (4)
C6—C71.378 (4)C19—H190.9300
C6—H60.9300C20—H200.9300
O1—S1—O2120.07 (14)C9—C8—H8A109.5
O1—S1—N1106.96 (13)C9—C8—H8B109.5
O2—S1—N1106.03 (12)H8A—C8—H8B109.5
O1—S1—C5110.14 (13)C9—C8—H8C109.5
O2—S1—C5108.27 (13)H8A—C8—H8C109.5
N1—S1—C5104.16 (12)H8B—C8—H8C109.5
O3—S2—O4120.91 (14)C10—C9—C14117.9 (3)
O3—S2—N1107.36 (13)C10—C9—C8120.9 (3)
O4—S2—N1103.34 (12)C14—C9—C8121.2 (3)
O3—S2—C12109.90 (12)C9—C10—C11121.8 (3)
O4—S2—C12109.52 (13)C9—C10—H10119.1
N1—S2—C12104.36 (12)C11—C10—H10119.1
C15—N1—S1117.25 (17)C12—C11—C10118.8 (3)
C15—N1—S2119.33 (17)C12—C11—H11120.6
S1—N1—S2123.13 (13)C10—C11—H11120.6
O6—N2—O5123.4 (3)C11—C12—C13121.0 (3)
O6—N2—C17118.6 (3)C11—C12—S2118.9 (2)
O5—N2—C17118.1 (3)C13—C12—S2120.1 (2)
C2—C1—H1A109.5C12—C13—C14118.7 (3)
C2—C1—H1B109.5C12—C13—H13120.7
H1A—C1—H1B109.5C14—C13—H13120.7
C2—C1—H1C109.5C13—C14—C9121.8 (3)
H1A—C1—H1C109.5C13—C14—H14119.1
H1B—C1—H1C109.5C9—C14—H14119.1
C7—C2—C3118.2 (3)C16—C15—C20121.2 (2)
C7—C2—C1120.8 (3)C16—C15—N1119.0 (2)
C3—C2—C1121.0 (3)C20—C15—N1119.8 (2)
C4—C3—C2121.1 (3)C15—C16—C17117.6 (3)
C4—C3—H3119.4C15—C16—H16121.2
C2—C3—H3119.4C17—C16—H16121.2
C5—C4—C3119.5 (3)C16—C17—C18122.4 (3)
C5—C4—H4120.2C16—C17—N2118.5 (3)
C3—C4—H4120.2C18—C17—N2119.1 (3)
C4—C5—C6120.7 (3)C19—C18—C17118.7 (3)
C4—C5—S1120.2 (2)C19—C18—H18120.7
C6—C5—S1119.1 (2)C17—C18—H18120.7
C7—C6—C5118.9 (3)C18—C19—C20120.4 (3)
C7—C6—H6120.6C18—C19—H19119.8
C5—C6—H6120.6C20—C19—H19119.8
C2—C7—C6121.6 (3)C19—C20—C15119.7 (3)
C2—C7—H7119.2C19—C20—H20120.1
C6—C7—H7119.2C15—C20—H20120.1
O1—S1—N1—C15162.34 (19)C10—C11—C12—C131.9 (4)
O2—S1—N1—C1533.1 (2)C10—C11—C12—S2176.7 (2)
C5—S1—N1—C1581.0 (2)O3—S2—C12—C11168.2 (2)
O1—S1—N1—S211.4 (2)O4—S2—C12—C1133.1 (3)
O2—S1—N1—S2140.62 (16)N1—S2—C12—C1177.0 (2)
C5—S1—N1—S2105.25 (16)O3—S2—C12—C1313.3 (3)
O3—S2—N1—C15145.6 (2)O4—S2—C12—C13148.4 (2)
O4—S2—N1—C1516.7 (2)N1—S2—C12—C13101.5 (2)
C12—S2—N1—C1597.8 (2)C11—C12—C13—C140.8 (4)
O3—S2—N1—S140.84 (19)S2—C12—C13—C14177.7 (2)
O4—S2—N1—S1169.69 (15)C12—C13—C14—C91.3 (5)
C12—S2—N1—S175.78 (17)C10—C9—C14—C132.4 (5)
C7—C2—C3—C40.6 (5)C8—C9—C14—C13177.3 (3)
C1—C2—C3—C4179.2 (3)S1—N1—C15—C1696.1 (3)
C2—C3—C4—C50.5 (5)S2—N1—C15—C1689.9 (3)
C3—C4—C5—C60.1 (4)S1—N1—C15—C2082.4 (3)
C3—C4—C5—S1179.4 (2)S2—N1—C15—C2091.6 (3)
O1—S1—C5—C421.6 (3)C20—C15—C16—C170.8 (4)
O2—S1—C5—C4154.7 (2)N1—C15—C16—C17177.7 (2)
N1—S1—C5—C492.8 (2)C15—C16—C17—C181.2 (4)
O1—S1—C5—C6158.9 (2)C15—C16—C17—N2179.0 (2)
O2—S1—C5—C625.8 (3)O6—N2—C17—C16171.6 (3)
N1—S1—C5—C686.8 (2)O5—N2—C17—C169.4 (4)
C4—C5—C6—C70.6 (4)O6—N2—C17—C188.6 (4)
S1—C5—C6—C7178.9 (2)O5—N2—C17—C18170.5 (3)
C3—C2—C7—C60.1 (5)C16—C17—C18—C190.6 (4)
C1—C2—C7—C6179.7 (3)N2—C17—C18—C19179.6 (3)
C5—C6—C7—C20.5 (5)C17—C18—C19—C200.4 (5)
C14—C9—C10—C111.3 (5)C18—C19—C20—C150.7 (5)
C8—C9—C10—C11178.3 (3)C16—C15—C20—C190.1 (4)
C9—C10—C11—C120.7 (4)N1—C15—C20—C19178.6 (2)

Experimental details

Crystal data
Chemical formulaC20H18N2O6S2
Mr446.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)278
a, b, c (Å)25.7789 (9), 9.7238 (7), 16.4653 (8)
β (°) 99.507 (1)
V3)4070.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.41 × 0.29 × 0.26
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.886, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
10446, 3607, 3249
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.15
No. of reflections3607
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002).

Selected bond angles (º) top
C4—C3—C2121.1 (3)C2—C7—C6121.6 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds