Download citation
Download citation
link to html
The asymmetric unit of the title compound, C13H11BrN2O2, contains two independent mol­ecules. In one mol­ecule, the dihedral angle between the two ring planes is 28.10 (3)°; in the other, it is 28.90 (3)°. Inter­molecular N—H...O hydrogen bonds link the mol­ecules to form a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807040081/at2374sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807040081/at2374Isup2.hkl
Contains datablock I

CCDC reference: 660295

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.041
  • wR factor = 0.104
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.95 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 300 Deg. PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.00 Ratio PLAT245_ALERT_2_C U(iso) H4A Smaller than U(eq) N4 by ... 0.02 AngSq
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In order to establish control over the preparation of crystalline solid materials so that their architecture and properties are predictable (Belloni et al., 2005; Tynan et al., 2005; Parashar et al., 1988), the synthesis of new and designed crystal structures has become a major strand of modern chemistry. Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of the active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al.,2001). As part of an investigation of the coordination properties of Shiff bases functioning as ligands, we report the synthesis and crystal structure of the title compound, (I).

In the structure of the title molecule (I) (Fig. 1), the geometric parameters are normal. In the one molecule of the unit, the furan ring (C2—C5/O1) is approximately planar, with a maximum deviation from the mean plane of 0.0023 (2) Å for atom O1, as are the benzene group (C8—C13) is approximately planar, with a maximum deviation from the mean plane of 0.0060 (5) Å. The dihedral angle between these two planes is 28.10 (3)°. In the other molecule of the unit, the furan ring (C15—C18/O3) is approximately planar, with a maximum deviation from the mean plane of 0.0019 (2) Å for atom O3, as are the benzene group (C21—C26) is approximately planar, with a maximum deviation from the mean plane of 0.0069 (4) Å. The dihedral angle between these two planes is 28.90 (3)°. Intermolecular N—H···O hydrogen bonds link the molecules to form a three-dimensional network, as illustraed in Fig.2 and Table 1.

Related literature top

For general background, see: Belloni et al. (2005); Kahwa et al. (1986); Parashar et al. (1988); Santos et al. (2001); Tynan et al. (2005).

Experimental top

An anhydrous ethanol solution (50 ml) of 4-bromobenzohydrazide (2.14 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 5-methylfuran-2-carbaldehyde (1.10 g, 10 mmol), and the mixture was stirred at 350 K for 6 h under N2, whereupon a red precipitate appeared. The product was isolated, recrystallized from anhydrous ethanol and then dried in vacuo to give pure compound (I) in 91% yield. Red single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an anhydrous ethanol solution.

Refinement top

The N-bound H atom was located in a difference Fourier map and refined freely. C-bound H atoms were included in calculated positions, with C—H = 0.93 (aromatic) or 0.96 Å (methyl), and refined using a riding model, with Uiso(H) = 1.2Ueq(C) for aromatic H or 1.5Ueq(C) for methyl H atoms.

Structure description top

In order to establish control over the preparation of crystalline solid materials so that their architecture and properties are predictable (Belloni et al., 2005; Tynan et al., 2005; Parashar et al., 1988), the synthesis of new and designed crystal structures has become a major strand of modern chemistry. Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of the active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al.,2001). As part of an investigation of the coordination properties of Shiff bases functioning as ligands, we report the synthesis and crystal structure of the title compound, (I).

In the structure of the title molecule (I) (Fig. 1), the geometric parameters are normal. In the one molecule of the unit, the furan ring (C2—C5/O1) is approximately planar, with a maximum deviation from the mean plane of 0.0023 (2) Å for atom O1, as are the benzene group (C8—C13) is approximately planar, with a maximum deviation from the mean plane of 0.0060 (5) Å. The dihedral angle between these two planes is 28.10 (3)°. In the other molecule of the unit, the furan ring (C15—C18/O3) is approximately planar, with a maximum deviation from the mean plane of 0.0019 (2) Å for atom O3, as are the benzene group (C21—C26) is approximately planar, with a maximum deviation from the mean plane of 0.0069 (4) Å. The dihedral angle between these two planes is 28.90 (3)°. Intermolecular N—H···O hydrogen bonds link the molecules to form a three-dimensional network, as illustraed in Fig.2 and Table 1.

For general background, see: Belloni et al. (2005); Kahwa et al. (1986); Parashar et al. (1988); Santos et al. (2001); Tynan et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The structure of the title molecule (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I). Hydrogen bonds are indicated by dashed lines.
(E)-4-Bromo-N'-[(5-methylfuran-2-yl)methylene]benzohydrazide top
Crystal data top
C13H11BrN2O2Z = 4
Mr = 307.15F(000) = 616
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0276 (13) ÅCell parameters from 2664 reflections
b = 10.0734 (16) Åθ = 3.3–26.4°
c = 16.458 (3) ŵ = 3.21 mm1
α = 105.166 (3)°T = 294 K
β = 94.668 (3)°Block, red
γ = 90.576 (3)°0.20 × 0.18 × 0.16 mm
V = 1279.6 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4482 independent reflections
Radiation source: fine-focus sealed tube3125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.566, Tmax = 0.628k = 1111
6684 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0417P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4482 reflectionsΔρmax = 0.50 e Å3
336 parametersΔρmin = 0.64 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0259 (15)
Crystal data top
C13H11BrN2O2γ = 90.576 (3)°
Mr = 307.15V = 1279.6 (4) Å3
Triclinic, P1Z = 4
a = 8.0276 (13) ÅMo Kα radiation
b = 10.0734 (16) ŵ = 3.21 mm1
c = 16.458 (3) ÅT = 294 K
α = 105.166 (3)°0.20 × 0.18 × 0.16 mm
β = 94.668 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4482 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3125 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.628Rint = 0.036
6684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.50 e Å3
4482 reflectionsΔρmin = 0.64 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44683 (6)0.33727 (4)0.10793 (2)0.06531 (18)
Br20.82935 (6)0.82934 (4)0.09703 (2)0.06943 (19)
O10.9618 (3)0.5777 (2)0.77720 (14)0.0454 (6)
O20.6940 (4)0.2664 (2)0.49922 (14)0.0668 (8)
O30.6924 (3)1.0721 (2)0.78316 (13)0.0468 (6)
O40.8046 (4)0.7674 (2)0.49693 (14)0.0661 (8)
N10.8312 (4)0.5044 (3)0.60515 (17)0.0454 (7)
N20.7656 (4)0.4902 (3)0.52273 (17)0.0455 (7)
N30.7319 (4)1.0057 (3)0.60812 (16)0.0450 (7)
N40.7522 (4)0.9927 (3)0.52433 (17)0.0456 (7)
C11.0508 (6)0.5719 (4)0.9199 (2)0.0724 (12)
H1A1.07580.63470.97460.109*
H1B1.14250.51180.90660.109*
H1C0.95130.51830.92010.109*
C21.0243 (5)0.6503 (4)0.8557 (2)0.0492 (9)
C31.0466 (5)0.7819 (4)0.8572 (3)0.0625 (11)
H31.08760.85240.90360.075*
C40.9965 (5)0.7946 (4)0.7760 (3)0.0588 (10)
H40.99760.87490.75820.071*
C50.9472 (4)0.6694 (3)0.7295 (2)0.0447 (8)
C60.8793 (4)0.6266 (3)0.6434 (2)0.0457 (9)
H60.86970.69300.61340.055*
C70.7004 (4)0.3704 (3)0.4743 (2)0.0431 (8)
C80.6356 (4)0.3699 (3)0.3872 (2)0.0381 (8)
C90.5169 (4)0.2708 (3)0.3442 (2)0.0464 (9)
H90.47540.20920.37150.056*
C100.4596 (4)0.2615 (3)0.2627 (2)0.0464 (9)
H100.37910.19450.23460.056*
C110.5224 (4)0.3526 (3)0.2223 (2)0.0423 (8)
C120.6365 (4)0.4532 (3)0.2634 (2)0.0462 (9)
H120.67510.51580.23590.055*
C130.6945 (4)0.4622 (3)0.3451 (2)0.0468 (9)
H130.77380.53040.37290.056*
C140.6697 (6)1.0567 (4)0.9257 (2)0.0773 (13)
H14A0.66491.11580.98150.116*
H14B0.77121.00670.92320.116*
H14C0.57540.99300.91220.116*
C150.6659 (5)1.1406 (4)0.8640 (2)0.0516 (9)
C160.6427 (5)1.2732 (4)0.8694 (2)0.0571 (10)
H160.62331.34110.91780.068*
C170.6530 (5)1.2912 (3)0.7882 (2)0.0537 (10)
H170.64101.37310.77260.064*
C180.6834 (4)1.1680 (3)0.7377 (2)0.0427 (8)
C190.7053 (4)1.1292 (3)0.6498 (2)0.0450 (8)
H190.70011.19720.62090.054*
C200.7872 (4)0.8710 (3)0.4727 (2)0.0430 (8)
C210.8010 (4)0.8691 (3)0.3830 (2)0.0372 (8)
C220.8982 (4)0.7703 (3)0.3355 (2)0.0437 (8)
H220.95680.71070.36110.052*
C230.9093 (4)0.7592 (3)0.2514 (2)0.0454 (9)
H230.97570.69320.21990.054*
C240.8203 (4)0.8474 (3)0.2142 (2)0.0424 (8)
C250.7257 (4)0.9477 (3)0.2597 (2)0.0487 (9)
H250.66821.00760.23390.058*
C260.7172 (4)0.9581 (3)0.3436 (2)0.0452 (9)
H260.65391.02650.37510.054*
H4A0.755 (3)1.0683 (18)0.5062 (16)0.029 (8)*
H2A0.767 (4)0.566 (2)0.5041 (19)0.050 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0881 (3)0.0599 (3)0.0407 (3)0.0095 (2)0.0034 (2)0.00281 (18)
Br20.1012 (4)0.0675 (3)0.0386 (3)0.0067 (2)0.0212 (2)0.00751 (19)
O10.0665 (16)0.0364 (13)0.0347 (13)0.0082 (11)0.0074 (12)0.0106 (11)
O20.122 (3)0.0350 (14)0.0487 (17)0.0049 (14)0.0062 (15)0.0197 (12)
O30.0699 (16)0.0367 (13)0.0333 (13)0.0042 (11)0.0134 (11)0.0058 (10)
O40.120 (2)0.0339 (14)0.0502 (17)0.0105 (14)0.0149 (15)0.0183 (12)
N10.063 (2)0.0404 (17)0.0360 (17)0.0135 (14)0.0060 (14)0.0143 (13)
N20.071 (2)0.0333 (16)0.0354 (17)0.0097 (14)0.0035 (15)0.0154 (13)
N30.065 (2)0.0402 (17)0.0318 (16)0.0005 (14)0.0102 (14)0.0123 (13)
N40.078 (2)0.0289 (15)0.0347 (17)0.0030 (14)0.0160 (15)0.0135 (13)
C10.117 (4)0.067 (3)0.034 (2)0.008 (2)0.002 (2)0.016 (2)
C20.064 (2)0.046 (2)0.035 (2)0.0087 (17)0.0072 (18)0.0044 (16)
C30.077 (3)0.046 (2)0.055 (3)0.0001 (19)0.009 (2)0.0002 (19)
C40.073 (3)0.039 (2)0.064 (3)0.0021 (18)0.003 (2)0.0158 (19)
C50.051 (2)0.039 (2)0.047 (2)0.0103 (16)0.0066 (17)0.0159 (17)
C60.055 (2)0.039 (2)0.047 (2)0.0092 (16)0.0057 (18)0.0181 (17)
C70.061 (2)0.0298 (18)0.041 (2)0.0099 (16)0.0175 (17)0.0102 (16)
C80.050 (2)0.0268 (17)0.0392 (19)0.0098 (15)0.0139 (16)0.0088 (15)
C90.058 (2)0.0315 (18)0.054 (2)0.0066 (16)0.0196 (19)0.0145 (17)
C100.052 (2)0.0310 (18)0.052 (2)0.0043 (15)0.0082 (18)0.0035 (17)
C110.050 (2)0.0394 (19)0.0337 (19)0.0127 (16)0.0098 (16)0.0014 (15)
C120.062 (2)0.042 (2)0.038 (2)0.0022 (17)0.0073 (18)0.0149 (16)
C130.054 (2)0.044 (2)0.041 (2)0.0036 (16)0.0040 (17)0.0090 (17)
C140.131 (4)0.065 (3)0.037 (2)0.010 (3)0.017 (2)0.011 (2)
C150.074 (3)0.046 (2)0.032 (2)0.0007 (18)0.0108 (18)0.0027 (16)
C160.075 (3)0.045 (2)0.045 (2)0.0040 (19)0.015 (2)0.0027 (18)
C170.072 (3)0.037 (2)0.054 (2)0.0098 (17)0.015 (2)0.0099 (17)
C180.054 (2)0.0362 (19)0.041 (2)0.0020 (15)0.0132 (17)0.0140 (16)
C190.062 (2)0.037 (2)0.040 (2)0.0011 (16)0.0106 (17)0.0139 (16)
C200.057 (2)0.0327 (19)0.042 (2)0.0011 (15)0.0071 (17)0.0142 (16)
C210.048 (2)0.0266 (16)0.0378 (19)0.0003 (14)0.0104 (16)0.0084 (14)
C220.053 (2)0.0297 (17)0.050 (2)0.0050 (15)0.0070 (17)0.0119 (15)
C230.052 (2)0.0341 (18)0.047 (2)0.0051 (15)0.0142 (17)0.0022 (16)
C240.053 (2)0.0409 (19)0.0308 (18)0.0043 (16)0.0123 (16)0.0019 (15)
C250.063 (2)0.044 (2)0.041 (2)0.0154 (17)0.0097 (18)0.0128 (16)
C260.058 (2)0.0387 (19)0.039 (2)0.0147 (16)0.0120 (17)0.0088 (16)
Geometric parameters (Å, º) top
Br1—C111.897 (3)C9—C101.361 (5)
Br2—C241.896 (3)C9—H90.9300
O1—C21.359 (4)C10—C111.380 (5)
O1—C51.360 (4)C10—H100.9300
O2—C71.222 (3)C11—C121.358 (5)
O3—C151.363 (4)C12—C131.367 (5)
O3—C181.367 (4)C12—H120.9300
O4—C201.217 (3)C13—H130.9300
N1—C61.268 (4)C14—C151.480 (5)
N1—N21.385 (4)C14—H14A0.9600
N2—C71.335 (4)C14—H14B0.9600
N2—H2A0.890 (10)C14—H14C0.9600
N3—C191.283 (4)C15—C161.331 (5)
N3—N41.374 (3)C16—C171.403 (5)
N4—C201.343 (4)C16—H160.9300
N4—H4A0.889 (10)C17—C181.339 (4)
C1—C21.479 (5)C17—H170.9300
C1—H1A0.9600C18—C191.423 (4)
C1—H1B0.9600C19—H190.9300
C1—H1C0.9600C20—C211.483 (4)
C2—C31.329 (5)C21—C221.385 (4)
C3—C41.403 (5)C21—C261.386 (4)
C3—H30.9300C22—C231.370 (5)
C4—C51.330 (5)C22—H220.9300
C4—H40.9300C23—C241.379 (5)
C5—C61.429 (5)C23—H230.9300
C6—H60.9300C24—C251.368 (5)
C7—C81.484 (5)C25—C261.366 (4)
C8—C91.381 (5)C25—H250.9300
C8—C131.396 (4)C26—H260.9300
C2—O1—C5106.3 (3)C11—C12—H12120.1
C15—O3—C18106.1 (2)C13—C12—H12120.1
C6—N1—N2113.3 (3)C12—C13—C8120.5 (3)
C7—N2—N1121.7 (3)C12—C13—H13119.8
C7—N2—H2A122 (2)C8—C13—H13119.8
N1—N2—H2A116 (2)C15—C14—H14A109.5
C19—N3—N4113.6 (3)C15—C14—H14B109.5
C20—N4—N3121.1 (3)H14A—C14—H14B109.5
C20—N4—H4A119.8 (18)C15—C14—H14C109.5
N3—N4—H4A118.7 (18)H14A—C14—H14C109.5
C2—C1—H1A109.5H14B—C14—H14C109.5
C2—C1—H1B109.5C16—C15—O3110.1 (3)
H1A—C1—H1B109.5C16—C15—C14133.9 (3)
C2—C1—H1C109.5O3—C15—C14115.9 (3)
H1A—C1—H1C109.5C15—C16—C17107.1 (3)
H1B—C1—H1C109.5C15—C16—H16126.4
C3—C2—O1109.8 (3)C17—C16—H16126.4
C3—C2—C1133.7 (4)C18—C17—C16106.8 (3)
O1—C2—C1116.5 (3)C18—C17—H17126.6
C2—C3—C4107.2 (3)C16—C17—H17126.6
C2—C3—H3126.4C17—C18—O3109.8 (3)
C4—C3—H3126.4C17—C18—C19129.9 (3)
C5—C4—C3106.5 (3)O3—C18—C19120.3 (3)
C5—C4—H4126.7N3—C19—C18123.7 (3)
C3—C4—H4126.7N3—C19—H19118.2
C4—C5—O1110.2 (3)C18—C19—H19118.2
C4—C5—C6129.2 (3)O4—C20—N4122.6 (3)
O1—C5—C6120.6 (3)O4—C20—C21121.4 (3)
N1—C6—C5124.4 (3)N4—C20—C21116.0 (3)
N1—C6—H6117.8C22—C21—C26118.3 (3)
C5—C6—H6117.8C22—C21—C20118.3 (3)
O2—C7—N2122.8 (3)C26—C21—C20123.4 (3)
O2—C7—C8121.3 (3)C23—C22—C21121.0 (3)
N2—C7—C8115.9 (3)C23—C22—H22119.5
C9—C8—C13118.2 (3)C21—C22—H22119.5
C9—C8—C7119.0 (3)C22—C23—C24118.8 (3)
C13—C8—C7122.8 (3)C22—C23—H23120.6
C10—C9—C8121.3 (3)C24—C23—H23120.6
C10—C9—H9119.3C25—C24—C23121.7 (3)
C8—C9—H9119.3C25—C24—Br2119.1 (3)
C9—C10—C11119.1 (3)C23—C24—Br2119.2 (2)
C9—C10—H10120.4C26—C25—C24118.7 (3)
C11—C10—H10120.4C26—C25—H25120.6
C12—C11—C10121.0 (3)C24—C25—H25120.6
C12—C11—Br1119.7 (3)C25—C26—C21121.5 (3)
C10—C11—Br1119.3 (3)C25—C26—H26119.2
C11—C12—C13119.8 (3)C21—C26—H26119.2
C6—N1—N2—C7176.3 (3)C7—C8—C13—C12176.8 (3)
C19—N3—N4—C20177.5 (3)C18—O3—C15—C160.4 (4)
C5—O1—C2—C30.5 (4)C18—O3—C15—C14179.9 (3)
C5—O1—C2—C1179.7 (3)O3—C15—C16—C170.6 (4)
O1—C2—C3—C40.2 (5)C14—C15—C16—C17179.9 (5)
C1—C2—C3—C4179.2 (4)C15—C16—C17—C180.5 (5)
C2—C3—C4—C50.3 (5)C16—C17—C18—O30.2 (4)
C3—C4—C5—O10.6 (4)C16—C17—C18—C19179.8 (4)
C3—C4—C5—C6177.6 (4)C15—O3—C18—C170.1 (4)
C2—O1—C5—C40.7 (4)C15—O3—C18—C19179.8 (3)
C2—O1—C5—C6178.0 (3)N4—N3—C19—C18178.9 (3)
N2—N1—C6—C5178.2 (3)C17—C18—C19—N3179.0 (4)
C4—C5—C6—N1177.9 (4)O3—C18—C19—N30.9 (5)
O1—C5—C6—N11.2 (5)N3—N4—C20—O40.9 (5)
N1—N2—C7—O20.2 (5)N3—N4—C20—C21178.2 (3)
N1—N2—C7—C8179.6 (3)O4—C20—C21—C2226.4 (5)
O2—C7—C8—C923.0 (5)N4—C20—C21—C22154.5 (3)
N2—C7—C8—C9157.2 (3)O4—C20—C21—C26151.4 (3)
O2—C7—C8—C13154.3 (3)N4—C20—C21—C2627.7 (5)
N2—C7—C8—C1325.5 (5)C26—C21—C22—C231.1 (5)
C13—C8—C9—C100.8 (5)C20—C21—C22—C23176.8 (3)
C7—C8—C9—C10176.7 (3)C21—C22—C23—C240.6 (5)
C8—C9—C10—C110.4 (5)C22—C23—C24—C251.9 (5)
C9—C10—C11—C121.8 (5)C22—C23—C24—Br2178.1 (2)
C9—C10—C11—Br1178.5 (2)C23—C24—C25—C261.3 (5)
C10—C11—C12—C132.0 (5)Br2—C24—C25—C26178.7 (3)
Br1—C11—C12—C13178.2 (3)C24—C25—C26—C210.5 (5)
C11—C12—C13—C80.9 (5)C22—C21—C26—C251.7 (5)
C9—C8—C13—C120.5 (5)C20—C21—C26—C25176.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2i0.89 (1)2.09 (1)2.929 (3)157 (2)
N2—H2A···O40.89 (1)2.09 (1)2.950 (3)163 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H11BrN2O2
Mr307.15
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.0276 (13), 10.0734 (16), 16.458 (3)
α, β, γ (°)105.166 (3), 94.668 (3), 90.576 (3)
V3)1279.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.21
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.566, 0.628
No. of measured, independent and
observed [I > 2σ(I)] reflections
6684, 4482, 3125
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.02
No. of reflections4482
No. of parameters336
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.64

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2i0.889 (10)2.089 (14)2.929 (3)157 (2)
N2—H2A···O40.890 (10)2.088 (14)2.950 (3)163 (3)
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds