Download citation
Download citation
link to html
The title compound, C28H32N4O6, crystallizes with one half-mol­ecule in the asymmetric unit and the other half generated by an inversion centre. The compound has a crown structure and is an important inter­mediate for the synthesis of biologically active 1,7-dioxa-4,10-diaza­cyclo­dodecane derivatives. Inter­molecular π–π stacking inter­actions, with a perpendicular distance of 3.57 Å, involving the planar phthalimide groups and weak C—H...O hydrogen bonds are present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807035805/at2349sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807035805/at2349Isup2.hkl
Contains datablock I

CCDC reference: 659101

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • R factor = 0.051
  • wR factor = 0.105
  • Data-to-parameter ratio = 14.5

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Artificial nucleases have attracted extensive attention due to their potential applications in the fields of molecular biological technology and drug development (Aoki & Kimura, 2004; Chin & Morrow, 1994). The derivatives of aza-crown ethers, such as 1,7-dioxa-4,10-diazacyclododecane and 1,4,7-triazacyclononane exhibit excellent ability to cleave nucleic acids (Sheng, Lu, Chen et al., 2007; Sheng, Lu, Zhang et al., 2007), phosphodiesters, dipeptides and proteins (Kassai et al., 2004). The title compound, (I), is an important intermediate for the synthesis of artificial nucleases 1,7-dioxa-4,10-diazacyclododecane derivatives containing diaminoethyl double side arms, and (I) itself might be a DNA intercalation reagent.

The title molecule (I) is symmetric with an inversion centre imposed at the mid-point of the 1,7-dioxa-4,10-diazacyclododecane ring [symmetry code: (a) 1 - x, 1 - y, -z], (Fig. 1). In the title molecule (I), (Fig. 2), the intermolecular ππ stacking interaction of the planar phthalimide groups and weak intermolecular C—H···O hydrogen bonds effectively stabilize the crystal structure.

Related literature top

For related literature, see: Aoki & Kimura (2004); Chin & Morrow (1994); Kassai et al. (2004); Sheng, Lu, Chen et al. (2007); Sheng, Lu, Zhang et al. (2007).

Experimental top

The title compound (I) was synthesized according to the literature procedure (Sheng, Lu, Chen et al., 2007; Sheng, Lu, Zhang et al., 2007). A stirred solution of 1,7-dioxa-4,10-diazacyclododecane (0.26 g, 0.0015 mol), N-(2-bromoethyl)phthalimide (0.80 g, 0.0031 mol), and anhydrous potassium carbonate (0.50 g) in dry CHCl3 (25 ml) was heated at 348 K for 12 h. The mixture was then allowed to cool to room temperature and filtered. The filtrate was concentrated under reduced pressure to give a brown oil and purified by silica gel chromatographic column (chloroform/methanol, 2/1 then 1/2) to obtain the title compound (I) as a colourless solid (0.68 mg, 0.0013 mol, yield: 87%, m.p. 481–482 K). Colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.1H NMR (CDCl3 ): δ (p.p.m) 2.58 (t, 8H, 4NCH2), 2.73 (t, 4H, 2NCH2), 3.44 (t, 8H, 4OCH2), 3.72 (t, 4H, 2CONCH2 ), 7.68–7.72 (m, 4H, 2ArH), 7.80–7.84 (m, 4H, 2ArH). 13C NMR (CDCl3): δ (p.p.m) 36.18 (NCH2), 53.82 (NCH2), 55.33 (NCH2), 69.65 (OCH2), 123.50 (Ar C), 132.6 (Ar C), 134.24 (Ar C), 168.79 (C=O). ESI-MS m/z [M+H]+ calcd. 525.2, found 525.3.

Refinement top

H atoms were located geometrically and allowed to ride on their parent atoms with C—H distances of 0.93–0.97 Å and Uiso=1.2Ueq of the parent atoms.

Structure description top

Artificial nucleases have attracted extensive attention due to their potential applications in the fields of molecular biological technology and drug development (Aoki & Kimura, 2004; Chin & Morrow, 1994). The derivatives of aza-crown ethers, such as 1,7-dioxa-4,10-diazacyclododecane and 1,4,7-triazacyclononane exhibit excellent ability to cleave nucleic acids (Sheng, Lu, Chen et al., 2007; Sheng, Lu, Zhang et al., 2007), phosphodiesters, dipeptides and proteins (Kassai et al., 2004). The title compound, (I), is an important intermediate for the synthesis of artificial nucleases 1,7-dioxa-4,10-diazacyclododecane derivatives containing diaminoethyl double side arms, and (I) itself might be a DNA intercalation reagent.

The title molecule (I) is symmetric with an inversion centre imposed at the mid-point of the 1,7-dioxa-4,10-diazacyclododecane ring [symmetry code: (a) 1 - x, 1 - y, -z], (Fig. 1). In the title molecule (I), (Fig. 2), the intermolecular ππ stacking interaction of the planar phthalimide groups and weak intermolecular C—H···O hydrogen bonds effectively stabilize the crystal structure.

For related literature, see: Aoki & Kimura (2004); Chin & Morrow (1994); Kassai et al. (2004); Sheng, Lu, Chen et al. (2007); Sheng, Lu, Zhang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along the b axis.
N,N'-[(1,7-Dioxa-4,10-diazacyclododecane-2,10-diyl)diethylene]diphthalimide top
Crystal data top
C28H32N4O6F(000) = 552
Mr = 520.58Dx = 1.356 Mg m3
Monoclinic, P21/cMelting point = 481–482 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.014 (13) ÅCell parameters from 778 reflections
b = 8.986 (11) Åθ = 2.9–27.8°
c = 13.688 (16) ŵ = 0.10 mm1
β = 109.746 (18)°T = 293 K
V = 1275 (3) Å3Block, colourless
Z = 20.32 × 0.26 × 0.24 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2494 independent reflections
Radiation source: sealed tube1517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1213
Tmin = 0.97, Tmax = 0.98k = 117
6537 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
2494 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C28H32N4O6V = 1275 (3) Å3
Mr = 520.58Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.014 (13) ŵ = 0.10 mm1
b = 8.986 (11) ÅT = 293 K
c = 13.688 (16) Å0.32 × 0.26 × 0.24 mm
β = 109.746 (18)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2494 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1517 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.98Rint = 0.038
6537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
2494 reflectionsΔρmin = 0.14 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81133 (17)0.6171 (2)0.02553 (16)0.0498 (5)
C20.82852 (16)0.4587 (2)0.04563 (16)0.0461 (5)
C30.8035 (2)0.3817 (3)0.13666 (17)0.0634 (7)
H30.77310.43040.20030.076*
C40.8245 (2)0.2308 (3)0.1318 (2)0.0750 (8)
H40.80780.17670.19290.090*
C50.8703 (2)0.1582 (3)0.0370 (2)0.0708 (7)
H50.88220.05560.03550.085*
C60.89907 (18)0.2366 (2)0.05674 (18)0.0556 (6)
H60.93270.18890.12050.067*
C70.87551 (15)0.3861 (2)0.04999 (15)0.0417 (5)
C80.88977 (15)0.4992 (2)0.13198 (16)0.0418 (5)
C90.82979 (18)0.7656 (2)0.13443 (18)0.0568 (6)
H9A0.88590.84320.12480.068*
H9B0.85600.74420.20810.068*
C100.69116 (18)0.8226 (2)0.09738 (17)0.0518 (6)
H10A0.68150.89290.14810.062*
H10B0.67540.87590.03260.062*
C110.5977 (2)0.6286 (2)0.17576 (16)0.0502 (5)
H11A0.55230.68690.21210.060*
H11B0.68670.61850.22100.060*
C120.5374 (2)0.4770 (2)0.15272 (18)0.0537 (6)
H12A0.52280.43710.21370.064*
H12B0.45510.48290.09680.064*
C130.5746 (2)0.2413 (2)0.08825 (17)0.0521 (5)
H13A0.50140.22010.11020.063*
H13B0.64070.16750.11940.063*
C140.53382 (18)0.2294 (2)0.02717 (17)0.0480 (5)
H14A0.59700.27980.05050.058*
H14B0.53310.12530.04600.058*
N10.59403 (14)0.70666 (16)0.08141 (12)0.0379 (4)
N20.84659 (13)0.63336 (18)0.08047 (13)0.0448 (4)
O10.77458 (15)0.71729 (19)0.08768 (13)0.0729 (5)
O20.93177 (13)0.48408 (17)0.22508 (11)0.0560 (4)
O30.62317 (12)0.38433 (15)0.12362 (12)0.0519 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0270 (9)0.0660 (15)0.0500 (12)0.0038 (9)0.0045 (8)0.0156 (11)
C20.0245 (8)0.0677 (14)0.0449 (12)0.0007 (9)0.0101 (7)0.0073 (10)
C30.0420 (12)0.103 (2)0.0427 (14)0.0035 (12)0.0111 (10)0.0027 (13)
C40.0454 (13)0.111 (2)0.0666 (18)0.0093 (14)0.0164 (12)0.0300 (16)
C50.0402 (12)0.0697 (16)0.097 (2)0.0149 (11)0.0160 (12)0.0222 (15)
C60.0365 (11)0.0597 (15)0.0636 (15)0.0130 (9)0.0077 (10)0.0019 (11)
C70.0229 (8)0.0530 (12)0.0459 (12)0.0027 (8)0.0075 (7)0.0031 (9)
C80.0247 (9)0.0514 (12)0.0434 (12)0.0034 (8)0.0038 (8)0.0068 (9)
C90.0347 (10)0.0470 (12)0.0717 (16)0.0077 (9)0.0043 (10)0.0061 (11)
C100.0445 (10)0.0342 (11)0.0661 (15)0.0044 (9)0.0047 (10)0.0070 (9)
C110.0548 (12)0.0544 (12)0.0392 (12)0.0031 (10)0.0128 (9)0.0081 (9)
C120.0537 (12)0.0525 (13)0.0614 (15)0.0063 (10)0.0280 (10)0.0123 (11)
C130.0474 (12)0.0410 (12)0.0539 (12)0.0009 (9)0.0013 (9)0.0086 (9)
C140.0378 (10)0.0407 (11)0.0597 (13)0.0065 (8)0.0087 (9)0.0017 (9)
N10.0335 (7)0.0322 (8)0.0414 (9)0.0012 (6)0.0038 (6)0.0020 (7)
N20.0294 (7)0.0478 (10)0.0484 (10)0.0025 (7)0.0014 (7)0.0052 (8)
O10.0615 (10)0.0836 (12)0.0632 (10)0.0006 (9)0.0074 (8)0.0369 (9)
O20.0483 (8)0.0700 (10)0.0383 (9)0.0018 (7)0.0002 (6)0.0065 (7)
O30.0364 (7)0.0480 (8)0.0637 (10)0.0032 (6)0.0073 (6)0.0101 (7)
Geometric parameters (Å, º) top
C1—O11.211 (3)C9—H9B0.9700
C1—N21.377 (3)C10—N11.456 (3)
C1—C21.474 (3)C10—H10A0.9700
C2—C31.369 (3)C10—H10B0.9700
C2—C71.396 (3)C11—N11.458 (3)
C3—C41.373 (4)C11—C121.502 (3)
C3—H30.9300C11—H11A0.9700
C4—C51.386 (4)C11—H11B0.9700
C4—H40.9300C12—O31.414 (3)
C5—C61.403 (3)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—C71.366 (3)C13—O31.414 (3)
C6—H60.9300C13—C141.493 (3)
C7—C81.483 (3)C13—H13A0.9700
C8—O21.207 (3)C13—H13B0.9700
C8—N21.396 (3)C14—N1i1.469 (3)
C9—N21.443 (3)C14—H14A0.9700
C9—C101.526 (3)C14—H14B0.9700
C9—H9A0.9700N1—C14i1.469 (3)
O1—C1—N2124.7 (2)C9—C10—H10B108.7
O1—C1—C2128.4 (2)H10A—C10—H10B107.6
N2—C1—C2106.92 (17)N1—C11—C12111.88 (18)
C3—C2—C7120.9 (2)N1—C11—H11A109.2
C3—C2—C1131.2 (2)C12—C11—H11A109.2
C7—C2—C1107.86 (19)N1—C11—H11B109.2
C2—C3—C4118.5 (2)C12—C11—H11B109.2
C2—C3—H3120.8H11A—C11—H11B107.9
C4—C3—H3120.8O3—C12—C11107.63 (18)
C3—C4—C5120.8 (2)O3—C12—H12A110.2
C3—C4—H4119.6C11—C12—H12A110.2
C5—C4—H4119.6O3—C12—H12B110.2
C4—C5—C6121.2 (3)C11—C12—H12B110.2
C4—C5—H5119.4H12A—C12—H12B108.5
C6—C5—H5119.4O3—C13—C14111.77 (17)
C7—C6—C5116.9 (2)O3—C13—H13A109.3
C7—C6—H6121.5C14—C13—H13A109.3
C5—C6—H6121.5O3—C13—H13B109.3
C6—C7—C2121.7 (2)C14—C13—H13B109.3
C6—C7—C8130.9 (2)H13A—C13—H13B107.9
C2—C7—C8107.45 (19)N1i—C14—C13113.66 (17)
O2—C8—N2125.02 (19)N1i—C14—H14A108.8
O2—C8—C7128.8 (2)C13—C14—H14A108.8
N2—C8—C7106.20 (19)N1i—C14—H14B108.8
N2—C9—C10113.16 (16)C13—C14—H14B108.8
N2—C9—H9A108.9H14A—C14—H14B107.7
C10—C9—H9A108.9C10—N1—C11114.34 (16)
N2—C9—H9B108.9C10—N1—C14i109.05 (16)
C10—C9—H9B108.9C11—N1—C14i111.77 (16)
H9A—C9—H9B107.8C1—N2—C8111.53 (17)
N1—C10—C9114.29 (18)C1—N2—C9125.97 (18)
N1—C10—H10A108.7C8—N2—C9122.20 (19)
C9—C10—H10A108.7C13—O3—C12114.87 (17)
N1—C10—H10B108.7
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2ii0.932.503.244 (5)137
C9—H9B···O20.972.472.874 (4)105
Symmetry code: (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC28H32N4O6
Mr520.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.014 (13), 8.986 (11), 13.688 (16)
β (°) 109.746 (18)
V3)1275 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.97, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
6537, 2494, 1517
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.106, 1.03
No. of reflections2494
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.503.244 (5)137
C9—H9B···O20.972.472.874 (4)105
Symmetry code: (i) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds