Download citation
Download citation
link to html
In the cation of the title compound, [Mn(C12H8N2)2(C2H4N2O4)](NO3)2·2H2O, the Mn atom has a distorted octa­hedral coordination formed by six N atoms from one dihydroxy­glyoxime and two 1,10-phenanthroline ligands. In the crystal structure, the components are linked into a three-dimensional framework by O—H...O, C—H...O, C—H...N and O—H...N hydrogen bonds and π–π stacking inter­actions, with a centroid–centroid distance of 3.580 (2) Å (symmetry code: 1 − x, 2 − y, −z).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807035076/at2344sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807035076/at2344Isup2.hkl
Contains datablock I

CCDC reference: 1270870

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.051
  • wR factor = 0.166
  • Data-to-parameter ratio = 13.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for O3 - C25 .. 7.46 su PLAT230_ALERT_2_B Hirshfeld Test Diff for O4 - C26 .. 7.31 su PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C25 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C26 PLAT420_ALERT_2_B D-H Without Acceptor O2 - H2A ... ? PLAT420_ALERT_2_B D-H Without Acceptor O3 - H3A ... ? PLAT420_ALERT_2_B D-H Without Acceptor O4 - H4A ... ? PLAT420_ALERT_2_B D-H Without Acceptor O11 - H11B ... ? PLAT420_ALERT_2_B D-H Without Acceptor O12 - H12A ... ? PLAT420_ALERT_2_B D-H Without Acceptor O12 - H12B ... ?
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT214_ALERT_2_C Atom O10 (Anion/Solvent) ADP max/min Ratio 4.40 prola PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.56 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.76 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - N1 .. 9.10 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - N2 .. 5.85 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - N3 .. 6.74 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - N4 .. 8.51 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - N5 .. 6.44 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - N6 .. 7.74 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Mn1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N7 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N8 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT480_ALERT_4_C Long H...A H-Bond Reported H1A .. N2 .. 2.67 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A .. O3 .. 2.63 Ang. PLAT482_ALERT_4_C Small D-H..A Angle Rep for O2 .. O3 .. 93.00 Deg.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (4) 4.54 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 12
0 ALERT level A = In general: serious problem 10 ALERT level B = Potentially serious problem 18 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 20 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The crystal structure of bis(1,10-phenanthroline-N,N')(dihydroxy glyoxime) copper(II) dinitrate dihydrate, (II), and bis(1,10-phenanthroline-N,N') (dihydroxy glyoxime) cobalt(II) dinitrate dihydrate, (III), has previously been reported (Liu et al., 2007). The crystal structure determination of the title compound, (I), has been carried out in order to elucidate the molecular conformation and to compare it with that of (II) and (III). We report herein the crystal structure of (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The six N atoms of one dihydroxy glyoxime and two 1,10-phenanthroline (phen) ligands are coordinated to the Mn atom, in a distorted octahedral arrangement (Table 1). The dihydroxy glyoxime and two phen ligands are each planar and the phen ligands are nearly perpendicular to each other, with a dihedral angle of 86.94 (7)°, as in (II) and (III).

In the crystal structure, the molecules are linked into a three-dimensional framework (Fig. 2) by O—H···O, C—H···O, C—H···N and O—H···N hydrogen bonds (Table 2). There are π-π stacking interactions between adjacent phen ligands with centroid-centroid distance of 3.580 (2) Å (symmetry code: 1 - x, 2 - y, -z). These π-π stacking interactions and hydrogen bonds lead to a supramolecular network structure (Fig. 2), as in (II) and (III). The three compounds, (I), (II) and (III), are isostructural.

Related literature top

For a related structure, see: Liu et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

Manganese dinitrate hexahydrate (144 mg, 0.5 mmol), phen (198 mg, 1 mmol) and dihydroxy glyoxime (120 mg, 1 mmol) were dissolved in ethanol (15 ml). The mixture was heated for 5 h under reflux with stirring. It was then filtered to give a clear solution, into which diethyl ether vapour was allowed to condense in a closed vessel. After being allowed to stand for a few days at room temperature, some colourless single crystals suitable for X-ray diffraction analysis precipitated.

Refinement top

H atoms of the water molecules were located in a difference synthesis and refined freely. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, O), where x = 1.2 for aromatic H atoms and x = 1.5 for hydroxyl H atoms.

Structure description top

The crystal structure of bis(1,10-phenanthroline-N,N')(dihydroxy glyoxime) copper(II) dinitrate dihydrate, (II), and bis(1,10-phenanthroline-N,N') (dihydroxy glyoxime) cobalt(II) dinitrate dihydrate, (III), has previously been reported (Liu et al., 2007). The crystal structure determination of the title compound, (I), has been carried out in order to elucidate the molecular conformation and to compare it with that of (II) and (III). We report herein the crystal structure of (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The six N atoms of one dihydroxy glyoxime and two 1,10-phenanthroline (phen) ligands are coordinated to the Mn atom, in a distorted octahedral arrangement (Table 1). The dihydroxy glyoxime and two phen ligands are each planar and the phen ligands are nearly perpendicular to each other, with a dihedral angle of 86.94 (7)°, as in (II) and (III).

In the crystal structure, the molecules are linked into a three-dimensional framework (Fig. 2) by O—H···O, C—H···O, C—H···N and O—H···N hydrogen bonds (Table 2). There are π-π stacking interactions between adjacent phen ligands with centroid-centroid distance of 3.580 (2) Å (symmetry code: 1 - x, 2 - y, -z). These π-π stacking interactions and hydrogen bonds lead to a supramolecular network structure (Fig. 2), as in (II) and (III). The three compounds, (I), (II) and (III), are isostructural.

For a related structure, see: Liu et al. (2007). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Solvent molecules have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
(Dihydroxyglyoxime-κ2N,N')bis(1,10-phenanthroline-\k2N,N')manganese(II) dinitrate dihydrate top
Crystal data top
[Mn(C12H8N2)2(C2H4N2O4)](NO3)2·2H2OF(000) = 1428
Mr = 695.47Dx = 1.535 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5592 reflections
a = 13.913 (2) Åθ = 2.1–25.0°
b = 11.998 (5) ŵ = 0.52 mm1
c = 18.131 (3) ÅT = 273 K
β = 96.228 (4)°Prism, colourless
V = 3008.6 (14) Å30.30 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker APEX II area-detector
diffractometer
6179 independent reflections
Radiation source: fine-focus sealed tube3132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 26.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.861, Tmax = 0.912k = 1515
20095 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0806P)2]
where P = (Fo2 + 2Fc2)/3
6179 reflections(Δ/σ)max = 0.001
444 parametersΔρmax = 0.65 e Å3
12 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Mn(C12H8N2)2(C2H4N2O4)](NO3)2·2H2OV = 3008.6 (14) Å3
Mr = 695.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.913 (2) ŵ = 0.52 mm1
b = 11.998 (5) ÅT = 273 K
c = 18.131 (3) Å0.30 × 0.23 × 0.18 mm
β = 96.228 (4)°
Data collection top
Bruker APEX II area-detector
diffractometer
6179 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3132 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.912Rint = 0.041
20095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05112 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.65 e Å3
6179 reflectionsΔρmin = 0.49 e Å3
444 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.77582 (4)0.75577 (4)0.03825 (3)0.03420 (19)
O10.7959 (2)0.9968 (2)0.04742 (16)0.0605 (8)
H1A0.80190.99770.00290.091*
O20.8357 (2)0.6023 (3)0.14815 (18)0.0683 (9)
H2A0.81500.59690.18870.102*
O30.9306 (4)0.7550 (5)0.2469 (3)0.1472 (19)
H3A0.98900.76410.24670.221*
O40.9029 (4)0.9960 (4)0.1826 (4)0.155 (2)
H4A0.95020.98090.21200.233*
O50.7738 (3)0.1306 (3)0.9096 (2)0.0962 (13)
O60.8934 (2)0.0146 (3)0.9287 (2)0.0783 (10)
O70.8897 (4)0.1357 (4)0.8427 (3)0.1356 (19)
O80.7404 (6)0.8835 (8)0.2850 (4)0.219 (4)
O90.6159 (6)0.8842 (6)0.3345 (4)0.209 (3)
O100.6416 (8)1.0073 (6)0.2609 (6)0.388 (11)
O110.5552 (13)0.4230 (13)0.1434 (9)0.574 (14)
O120.695 (2)0.3357 (18)0.2000 (11)0.64 (2)
N10.6533 (2)0.7803 (3)0.0767 (2)0.0492 (9)
N20.7067 (2)0.8181 (3)0.05277 (19)0.0453 (9)
N30.7384 (2)0.6057 (3)0.00436 (19)0.0495 (9)
N40.8938 (2)0.7246 (3)0.00697 (18)0.0459 (9)
N50.8376 (2)0.7049 (3)0.1295 (2)0.0490 (9)
N60.8222 (2)0.8935 (3)0.0762 (2)0.0473 (9)
N70.8510 (3)0.0927 (4)0.8919 (3)0.0713 (12)
N80.6670 (6)0.9299 (9)0.2896 (5)0.155 (4)
C10.6298 (3)0.7618 (4)0.1438 (3)0.0601 (12)
H10.67690.73530.17980.072*
C20.5368 (4)0.7804 (4)0.1633 (3)0.0707 (14)
H20.52360.76780.21180.085*
C30.4665 (3)0.8164 (4)0.1125 (3)0.0666 (14)
H30.40420.82700.12530.080*
C40.4872 (3)0.8374 (3)0.0413 (3)0.0570 (12)
C50.4199 (3)0.8792 (4)0.0160 (3)0.0690 (14)
H50.35610.89140.00740.083*
C60.4483 (4)0.9013 (4)0.0837 (3)0.0729 (15)
H60.40350.92950.12080.088*
C70.5460 (3)0.8824 (4)0.0996 (3)0.0575 (12)
C80.5799 (4)0.9054 (4)0.1654 (3)0.0720 (15)
H80.53820.93440.20430.086*
C90.6765 (4)0.8862 (4)0.1753 (3)0.0742 (15)
H90.69990.90410.22000.089*
C100.7378 (3)0.8397 (3)0.1172 (3)0.0562 (12)
H100.80160.82380.12420.067*
C110.6126 (3)0.8395 (3)0.0444 (2)0.0468 (10)
C120.5836 (3)0.8180 (3)0.0252 (2)0.0459 (10)
C130.6605 (3)0.5457 (4)0.0147 (3)0.0667 (13)
H130.61400.57550.04220.080*
C140.6478 (4)0.4399 (4)0.0147 (3)0.0818 (17)
H140.59310.39930.00650.098*
C150.7135 (4)0.3950 (4)0.0549 (3)0.0762 (15)
H150.70360.32440.07550.091*
C160.7964 (3)0.4549 (3)0.0657 (2)0.0542 (12)
C170.8730 (4)0.4158 (4)0.1057 (3)0.0659 (14)
H170.86700.34630.12850.079*
C180.9528 (4)0.4755 (4)0.1116 (2)0.0607 (13)
H181.00100.44650.13770.073*
C190.9653 (3)0.5827 (4)0.0786 (2)0.0488 (10)
C201.0468 (3)0.6503 (4)0.0802 (2)0.0591 (12)
H201.09870.62620.10430.071*
C211.0498 (3)0.7506 (4)0.0466 (2)0.0591 (12)
H211.10400.79570.04780.071*
C220.9729 (3)0.7873 (3)0.0101 (2)0.0516 (11)
H220.97650.85690.01270.062*
C230.8909 (3)0.6235 (3)0.0409 (2)0.0461 (10)
C240.8064 (3)0.5585 (3)0.0346 (2)0.0463 (10)
C250.8807 (3)0.7818 (4)0.1722 (2)0.0509 (11)
C260.8680 (3)0.8923 (4)0.1413 (3)0.0533 (11)
H11A0.511 (3)0.401 (3)0.111 (3)0.570 (13)*
H12A0.674 (8)0.286 (4)0.228 (5)0.64 (3)*
H11B0.5599 (19)0.4908 (14)0.1538 (16)0.573 (7)*
H12B0.731 (2)0.307 (3)0.1701 (18)0.642 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0323 (3)0.0334 (3)0.0362 (3)0.0025 (3)0.0005 (2)0.0023 (3)
O10.075 (2)0.0436 (17)0.061 (2)0.0081 (14)0.0009 (18)0.0001 (15)
O20.075 (2)0.063 (2)0.066 (2)0.0010 (16)0.0004 (18)0.0183 (17)
O30.143 (4)0.182 (5)0.106 (4)0.004 (4)0.031 (3)0.020 (3)
O40.175 (6)0.125 (4)0.155 (5)0.013 (3)0.026 (4)0.042 (4)
O50.067 (2)0.104 (3)0.120 (3)0.020 (2)0.021 (2)0.006 (2)
O60.078 (2)0.059 (2)0.096 (3)0.0090 (18)0.003 (2)0.018 (2)
O70.134 (4)0.147 (4)0.136 (4)0.028 (3)0.058 (3)0.064 (3)
O80.168 (6)0.293 (10)0.204 (8)0.064 (7)0.058 (6)0.083 (6)
O90.229 (9)0.218 (8)0.175 (7)0.002 (6)0.000 (6)0.022 (6)
O100.55 (2)0.142 (6)0.380 (14)0.070 (8)0.355 (14)0.128 (7)
O110.55 (3)0.76 (3)0.48 (3)0.09 (3)0.39 (2)0.16 (2)
O120.56 (3)0.94 (5)0.40 (3)0.04 (3)0.09 (2)0.40 (3)
N10.048 (2)0.044 (2)0.055 (2)0.0009 (15)0.0006 (18)0.0012 (17)
N20.052 (2)0.039 (2)0.044 (2)0.0024 (15)0.0001 (17)0.0074 (16)
N30.046 (2)0.048 (2)0.054 (2)0.0017 (17)0.0016 (17)0.0013 (18)
N40.046 (2)0.040 (2)0.050 (2)0.0034 (15)0.0021 (16)0.0018 (16)
N50.046 (2)0.047 (2)0.054 (2)0.0020 (16)0.0027 (17)0.0055 (19)
N60.045 (2)0.046 (2)0.050 (2)0.0041 (16)0.0028 (17)0.0006 (17)
N70.063 (3)0.069 (3)0.082 (4)0.006 (2)0.010 (2)0.010 (3)
N80.108 (6)0.245 (12)0.116 (7)0.070 (7)0.031 (5)0.083 (7)
C10.055 (3)0.074 (3)0.052 (3)0.007 (2)0.007 (2)0.009 (3)
C20.061 (3)0.082 (4)0.070 (4)0.006 (3)0.013 (3)0.003 (3)
C30.049 (3)0.068 (3)0.086 (4)0.004 (2)0.022 (3)0.012 (3)
C40.044 (3)0.046 (3)0.079 (4)0.002 (2)0.002 (2)0.010 (2)
C50.048 (3)0.067 (3)0.090 (4)0.007 (2)0.003 (3)0.006 (3)
C60.061 (3)0.061 (3)0.090 (4)0.012 (2)0.022 (3)0.004 (3)
C70.061 (3)0.052 (3)0.057 (3)0.005 (2)0.009 (2)0.003 (2)
C80.077 (4)0.064 (3)0.069 (4)0.012 (3)0.019 (3)0.002 (3)
C90.108 (5)0.058 (3)0.053 (3)0.002 (3)0.005 (3)0.006 (3)
C100.070 (3)0.053 (3)0.045 (3)0.002 (2)0.002 (2)0.003 (2)
C110.047 (3)0.038 (2)0.052 (3)0.0021 (19)0.005 (2)0.001 (2)
C120.042 (2)0.038 (2)0.056 (3)0.0024 (18)0.000 (2)0.003 (2)
C130.055 (3)0.052 (3)0.094 (4)0.009 (2)0.010 (3)0.004 (3)
C140.066 (3)0.054 (3)0.125 (5)0.015 (3)0.012 (3)0.009 (3)
C150.078 (4)0.047 (3)0.101 (5)0.006 (3)0.002 (3)0.015 (3)
C160.064 (3)0.039 (2)0.057 (3)0.005 (2)0.005 (2)0.003 (2)
C170.093 (4)0.053 (3)0.049 (3)0.018 (3)0.005 (3)0.007 (2)
C180.077 (3)0.058 (3)0.046 (3)0.021 (3)0.002 (2)0.006 (2)
C190.050 (3)0.054 (3)0.041 (3)0.013 (2)0.000 (2)0.004 (2)
C200.054 (3)0.073 (3)0.052 (3)0.015 (2)0.012 (2)0.003 (3)
C210.048 (3)0.068 (3)0.062 (3)0.001 (2)0.006 (2)0.003 (3)
C220.044 (3)0.051 (2)0.059 (3)0.000 (2)0.002 (2)0.003 (2)
C230.047 (2)0.046 (2)0.043 (3)0.007 (2)0.0049 (19)0.003 (2)
C240.053 (3)0.042 (2)0.042 (3)0.009 (2)0.002 (2)0.000 (2)
C250.045 (2)0.060 (3)0.046 (3)0.004 (2)0.001 (2)0.002 (2)
C260.052 (3)0.057 (3)0.051 (3)0.002 (2)0.001 (2)0.011 (2)
Geometric parameters (Å, º) top
Mn1—N11.933 (3)C3—C41.376 (6)
Mn1—N21.966 (3)C3—H30.9300
Mn1—N31.955 (3)C4—C51.414 (6)
Mn1—N41.949 (3)C4—C121.421 (5)
Mn1—N51.881 (4)C5—C61.355 (7)
Mn1—N61.877 (3)C5—H50.9300
O1—N61.378 (4)C6—C71.437 (7)
O1—H1A0.8200C6—H60.9300
O2—N51.278 (4)C7—C81.359 (6)
O2—H2A0.8200C7—C111.387 (6)
O3—C251.488 (6)C8—C91.395 (7)
O3—H3A0.8200C8—H80.9300
O4—C261.505 (6)C9—C101.398 (6)
O4—H4A0.8200C9—H90.9300
O5—N71.240 (5)C10—H100.9300
O6—N71.259 (5)C11—C121.390 (6)
O7—N71.207 (5)C13—C141.380 (6)
O8—N81.174 (9)C13—H130.9300
O9—N81.262 (8)C14—C151.342 (6)
O10—N81.104 (11)C14—H140.9300
O11—H11A0.85 (5)C15—C161.390 (6)
O11—H11B0.836 (10)C15—H150.9300
O12—H12A0.86 (8)C16—C241.366 (5)
O12—H12B0.85 (4)C16—C171.432 (6)
N1—C11.313 (5)C17—C181.335 (6)
N1—C121.349 (5)C17—H170.9300
N2—C101.315 (5)C18—C191.420 (6)
N2—C111.358 (5)C18—H180.9300
N3—C131.331 (5)C19—C231.390 (5)
N3—C241.363 (5)C19—C201.397 (6)
N4—C221.340 (5)C20—C211.348 (6)
N4—C231.358 (5)C20—H200.9300
N5—C251.308 (5)C21—C221.389 (5)
N6—C261.280 (5)C21—H210.9300
C1—C21.395 (6)C22—H220.9300
C1—H10.9300C23—C241.427 (5)
C2—C31.339 (7)C25—C261.443 (6)
C2—H20.9300
N1—Mn1—N282.79 (15)C7—C6—H6119.2
N1—Mn1—N392.23 (14)C8—C7—C11116.2 (5)
N1—Mn1—N4175.49 (14)C8—C7—C6124.7 (5)
N1—Mn1—N593.95 (15)C11—C7—C6119.1 (5)
N1—Mn1—N690.86 (14)C7—C8—C9120.7 (5)
N2—Mn1—N389.86 (13)C7—C8—H8119.6
N2—Mn1—N494.46 (14)C9—C8—H8119.6
N2—Mn1—N5175.53 (14)C8—C9—C10119.1 (5)
N2—Mn1—N695.16 (14)C8—C9—H9120.4
N3—Mn1—N484.17 (14)C10—C9—H9120.4
N3—Mn1—N593.32 (15)N2—C10—C9121.0 (5)
N3—Mn1—N6174.40 (14)N2—C10—H10119.5
N4—Mn1—N588.99 (14)C9—C10—H10119.5
N4—Mn1—N692.95 (13)N2—C11—C7124.4 (4)
N5—Mn1—N681.81 (15)N2—C11—C12116.4 (4)
N6—O1—H1A109.5C7—C11—C12119.1 (4)
N5—O2—H2A109.5N1—C12—C11115.6 (4)
C25—O3—H3A109.5N1—C12—C4122.5 (4)
C26—O4—H4A109.5C11—C12—C4121.9 (4)
H11A—O11—H11B120 (3)N3—C13—C14121.0 (5)
H12A—O12—H12B111 (7)N3—C13—H13119.5
C1—N1—C12117.7 (4)C14—C13—H13119.5
C1—N1—Mn1128.8 (3)C15—C14—C13120.9 (5)
C12—N1—Mn1113.4 (3)C15—C14—H14119.6
C10—N2—C11118.5 (4)C13—C14—H14119.6
C10—N2—Mn1130.0 (3)C14—C15—C16119.5 (5)
C11—N2—Mn1111.6 (3)C14—C15—H15120.2
C13—N3—C24118.0 (4)C16—C15—H15120.2
C13—N3—Mn1130.3 (3)C24—C16—C15117.5 (4)
C24—N3—Mn1111.7 (3)C24—C16—C17117.3 (4)
C22—N4—C23117.8 (4)C15—C16—C17125.2 (4)
C22—N4—Mn1130.0 (3)C18—C17—C16122.3 (4)
C23—N4—Mn1112.1 (3)C18—C17—H17118.8
O2—N5—C25122.9 (4)C16—C17—H17118.8
O2—N5—Mn1121.7 (3)C17—C18—C19121.2 (4)
C25—N5—Mn1115.4 (3)C17—C18—H18119.4
C26—N6—O1116.4 (3)C19—C18—H18119.4
C26—N6—Mn1116.5 (3)C23—C19—C20117.0 (4)
O1—N6—Mn1125.9 (3)C23—C19—C18117.5 (4)
O7—N7—O5120.2 (5)C20—C19—C18125.5 (4)
O7—N7—O6119.3 (5)C21—C20—C19119.7 (4)
O5—N7—O6120.3 (5)C21—C20—H20120.1
O10—N8—O8127.0 (11)C19—C20—H20120.1
O10—N8—O9119.7 (11)C20—C21—C22120.7 (4)
O8—N8—O9113.3 (11)C20—C21—H21119.7
N1—C1—C2122.6 (4)C22—C21—H21119.7
N1—C1—H1118.7N4—C22—C21121.4 (4)
C2—C1—H1118.7N4—C22—H22119.3
C3—C2—C1120.4 (5)C21—C22—H22119.3
C3—C2—H2119.8N4—C23—C19123.4 (4)
C1—C2—H2119.8N4—C23—C24115.9 (4)
C2—C3—C4119.5 (5)C19—C23—C24120.7 (4)
C2—C3—H3120.3N3—C24—C16123.1 (4)
C4—C3—H3120.3N3—C24—C23116.0 (4)
C3—C4—C5124.4 (5)C16—C24—C23120.9 (4)
C3—C4—C12117.4 (4)N5—C25—C26112.9 (4)
C5—C4—C12118.2 (5)N5—C25—O3121.7 (4)
C6—C5—C4120.0 (5)C26—C25—O3125.2 (4)
C6—C5—H5120.0N6—C26—C25113.3 (4)
C4—C5—H5120.0N6—C26—O4123.5 (4)
C5—C6—C7121.7 (5)C25—C26—O4123.2 (4)
C5—C6—H6119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.822.672.991 (4)105
O2—H2A···O30.822.632.791 (7)93
C1—H1···N50.932.533.009 (5)112
C13—H13···N10.932.583.037 (6)111
C22—H22···N60.932.583.030 (5)110
O1—H1A···O5i0.822.332.958 (5)134
O1—H1A···O6i0.821.962.674 (5)145
C3—H3···O5ii0.932.543.385 (6)151
C5—H5···O1iii0.932.543.344 (6)145
C18—H18···O2iv0.932.373.225 (6)152
C22—H22···O6v0.932.523.269 (6)137
C15—H15···O5vi0.932.553.361 (6)146
Symmetry codes: (i) x, y+1, z1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z; (iv) x+2, y+1, z; (v) x+2, y+1, z+1; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Mn(C12H8N2)2(C2H4N2O4)](NO3)2·2H2O
Mr695.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)13.913 (2), 11.998 (5), 18.131 (3)
β (°) 96.228 (4)
V3)3008.6 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.30 × 0.23 × 0.18
Data collection
DiffractometerBruker APEX II area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.861, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
20095, 6179, 3132
Rint0.041
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.166, 0.99
No. of reflections6179
No. of parameters444
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.49

Computer programs: APEX2 (Bruker, 2005), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
Mn1—N11.933 (3)Mn1—N41.949 (3)
Mn1—N21.966 (3)Mn1—N51.881 (4)
Mn1—N31.955 (3)Mn1—N61.877 (3)
N1—Mn1—N282.79 (15)N2—Mn1—N695.16 (14)
N1—Mn1—N392.23 (14)N3—Mn1—N484.17 (14)
N1—Mn1—N4175.49 (14)N3—Mn1—N593.32 (15)
N1—Mn1—N593.95 (15)N3—Mn1—N6174.40 (14)
N1—Mn1—N690.86 (14)N4—Mn1—N588.99 (14)
N2—Mn1—N389.86 (13)N4—Mn1—N692.95 (13)
N2—Mn1—N494.46 (14)N5—Mn1—N681.81 (15)
N2—Mn1—N5175.53 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.822.672.991 (4)105
O2—H2A···O30.822.632.791 (7)93
C1—H1···N50.932.533.009 (5)112
C13—H13···N10.932.583.037 (6)111
C22—H22···N60.932.583.030 (5)110
O1—H1A···O5i0.822.332.958 (5)134
O1—H1A···O6i0.821.962.674 (5)145
C3—H3···O5ii0.932.543.385 (6)151
C5—H5···O1iii0.932.543.344 (6)145
C18—H18···O2iv0.932.373.225 (6)152
C22—H22···O6v0.932.523.269 (6)137
C15—H15···O5vi0.932.553.361 (6)146
Symmetry codes: (i) x, y+1, z1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z; (iv) x+2, y+1, z; (v) x+2, y+1, z+1; (vi) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds