Download citation
Download citation
link to html
In the title mol­ecule, C24H17NO, the mean planes of the two aromatic rings of the biphenyl group make a dihedral angle of 45.0 (8)°. The mean plane of the quinolin-2-yl group makes angles of 18.2 (6) and 61.9 (8)° with the benzene rings closest to and farthest away from the prop-2-en-1-one group, and 7.4 (1)° with the plane of the prop-2-en-1-one group. The structure is stabilized by inter­molecular C—H...O hydrogen-bond inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034721/at2342sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034721/at2342Isup2.hkl
Contains datablock I

CCDC reference: 657801

Key indicators

  • Single-crystal X-ray study
  • T = 203 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.047
  • wR factor = 0.148
  • Data-to-parameter ratio = 24.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C24 H17 N O
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities. Among several organic compounds reported for their non linear optical (NLO) property, chalcone derivatives are noticeable materials for their excellent blue light transmittance and good crystallizability. We have synthesized a new chalcone, (I), and herein report the crystal structure of (I) (Fig. 1).

Intermolecular C—H···O hydrogen bond interactions occur between C18—H18A and O, and stabilize the structure as indicated in the packing diagram (Fig. 2).

Related literature top

For related structures, see: Fischer et al. (2007a,b,c,d,e); Sarojini et al. (2007); Yathirajan et al. (2007). For related literature, see: Fichou et al. (1988); Sarojini et al. (2006).

Experimental top

5 ml of 40% KOH solution was added to a thoroughly stirred solution of 2-acetylquinoline (1.71 g, 0.01 mol) and 4-biphenylaldehyde (1.82 g, 0.01 mol) in 25 ml me thanol. The solution was stirred overnight and filtered. The product obtained was crystallized from acetone/toluene (1:1) mixture (m.p.: 419–421 K). Analysis for C24H17NO: Found (Calculated): C 85.83 (85.94), H 5.07(5.11), N 4.12% (4.18%).

Refinement top

The H atoms were included in the riding model approximation with C—H = 0.94 Å, and with Uiso(H) = 1.18–1.49Ueq(C). The maximum residual electron density peaks of 0.28 and -0.30 e Å3, were located at 0.74 and 0.53Å from the C16 and C11 atoms, respectively.

Structure description top

Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities. Among several organic compounds reported for their non linear optical (NLO) property, chalcone derivatives are noticeable materials for their excellent blue light transmittance and good crystallizability. We have synthesized a new chalcone, (I), and herein report the crystal structure of (I) (Fig. 1).

Intermolecular C—H···O hydrogen bond interactions occur between C18—H18A and O, and stabilize the structure as indicated in the packing diagram (Fig. 2).

For related structures, see: Fischer et al. (2007a,b,c,d,e); Sarojini et al. (2007); Yathirajan et al. (2007). For related literature, see: Fichou et al. (1988); Sarojini et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I), showing atom labeling and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the b axis. Dashed lines indicate C–H···O hydrogen bonds.
(2E)-3-(Biphenyl-4-yl)-1-(quinolin-2-yl)prop-2-en-1-one top
Crystal data top
C24H17NOZ = 2
Mr = 335.39F(000) = 352
Triclinic, P1Dx = 1.293 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9808 (12) ÅCell parameters from 5911 reflections
b = 11.9617 (18) Åθ = 4.6–32.4°
c = 13.2239 (16) ŵ = 0.08 mm1
α = 109.401 (12)°T = 203 K
β = 92.981 (13)°Plate, colourless
γ = 102.967 (15)°0.57 × 0.43 × 0.19 mm
V = 861.3 (3) Å3
Data collection top
Oxford Diffraction Gemini R
diffractometer
5643 independent reflections
Radiation source: fine-focus sealed tube3561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.6°
φ and ω scansh = 87
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1717
Tmin = 0.922, Tmax = 1.000l = 1917
12993 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0888P)2]
where P = (Fo2 + 2Fc2)/3
5643 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C24H17NOγ = 102.967 (15)°
Mr = 335.39V = 861.3 (3) Å3
Triclinic, P1Z = 2
a = 5.9808 (12) ÅMo Kα radiation
b = 11.9617 (18) ŵ = 0.08 mm1
c = 13.2239 (16) ÅT = 203 K
α = 109.401 (12)°0.57 × 0.43 × 0.19 mm
β = 92.981 (13)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
5643 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3561 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 1.000Rint = 0.023
12993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
5643 reflectionsΔρmin = 0.30 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.19597 (14)0.61552 (7)0.49028 (7)0.0421 (2)
N0.24910 (15)0.59911 (7)0.32703 (7)0.0276 (2)
C10.14418 (18)0.64559 (9)0.41063 (8)0.0258 (2)
C20.2344 (2)0.76334 (9)0.49132 (9)0.0325 (2)
H2A0.15370.79200.54970.039*
C30.4399 (2)0.83407 (10)0.48259 (9)0.0353 (3)
H3A0.50340.91190.53570.042*
C40.55752 (19)0.79045 (9)0.39372 (9)0.0315 (2)
C50.7716 (2)0.85790 (11)0.37748 (11)0.0417 (3)
H5A0.83940.93770.42650.050*
C60.8798 (2)0.80849 (12)0.29189 (11)0.0440 (3)
H6A1.02180.85430.28250.053*
C70.7806 (2)0.68917 (11)0.21717 (10)0.0399 (3)
H7A0.85730.65580.15860.048*
C80.5735 (2)0.62167 (11)0.22940 (9)0.0345 (3)
H8A0.50860.54240.17890.041*
C90.45601 (18)0.67022 (9)0.31745 (8)0.0279 (2)
C100.08621 (19)0.56987 (9)0.41909 (8)0.0279 (2)
C110.17124 (19)0.44328 (9)0.34193 (8)0.0283 (2)
H11A0.07620.40930.29230.034*
C120.38345 (18)0.37616 (9)0.34197 (8)0.0272 (2)
H12A0.47480.41510.39080.033*
C130.48699 (17)0.24784 (9)0.27318 (8)0.0245 (2)
C140.36185 (18)0.17609 (9)0.20453 (9)0.0305 (2)
H14A0.20700.21100.20010.037*
C150.46337 (18)0.05480 (9)0.14335 (9)0.0307 (2)
H15A0.37510.00820.09870.037*
C160.69470 (17)0.00094 (8)0.14600 (8)0.0248 (2)
C170.82021 (18)0.07111 (9)0.21369 (8)0.0276 (2)
H17A0.97640.03680.21650.033*
C180.71725 (18)0.19243 (9)0.27675 (8)0.0288 (2)
H18A0.80410.23850.32290.035*
C190.79925 (18)0.13074 (9)0.07668 (8)0.0258 (2)
C200.6782 (2)0.22039 (9)0.06761 (9)0.0330 (2)
H20A0.53130.19870.10820.040*
C210.7720 (2)0.34030 (10)0.00032 (10)0.0381 (3)
H21A0.68920.39950.00470.046*
C220.9867 (2)0.37409 (10)0.06192 (9)0.0368 (3)
H22A1.04770.45530.10950.044*
C231.1119 (2)0.28698 (10)0.05302 (9)0.0344 (2)
H23A1.25930.30950.09330.041*
C241.01799 (19)0.16680 (9)0.01560 (9)0.0304 (2)
H24A1.10320.10830.02120.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0385 (5)0.0370 (4)0.0374 (5)0.0026 (4)0.0143 (4)0.0006 (4)
N0.0268 (5)0.0251 (4)0.0284 (4)0.0029 (4)0.0031 (3)0.0090 (3)
C10.0279 (5)0.0221 (5)0.0249 (5)0.0036 (4)0.0000 (4)0.0077 (4)
C20.0395 (6)0.0263 (5)0.0265 (5)0.0051 (5)0.0028 (4)0.0050 (4)
C30.0388 (6)0.0238 (5)0.0345 (6)0.0006 (5)0.0040 (5)0.0059 (4)
C40.0299 (6)0.0278 (5)0.0349 (6)0.0022 (4)0.0028 (4)0.0132 (4)
C50.0358 (7)0.0335 (6)0.0503 (7)0.0036 (5)0.0038 (5)0.0172 (5)
C60.0304 (6)0.0491 (7)0.0580 (8)0.0000 (5)0.0037 (6)0.0328 (6)
C70.0344 (6)0.0506 (7)0.0440 (7)0.0121 (5)0.0113 (5)0.0269 (6)
C80.0342 (6)0.0367 (6)0.0339 (6)0.0085 (5)0.0056 (5)0.0143 (5)
C90.0265 (5)0.0272 (5)0.0302 (5)0.0030 (4)0.0008 (4)0.0134 (4)
C100.0294 (5)0.0258 (5)0.0259 (5)0.0042 (4)0.0039 (4)0.0074 (4)
C110.0309 (6)0.0249 (5)0.0259 (5)0.0049 (4)0.0064 (4)0.0060 (4)
C120.0286 (5)0.0256 (5)0.0246 (5)0.0056 (4)0.0050 (4)0.0061 (4)
C130.0238 (5)0.0241 (4)0.0251 (5)0.0057 (4)0.0039 (4)0.0081 (4)
C140.0223 (5)0.0297 (5)0.0345 (6)0.0037 (4)0.0070 (4)0.0062 (4)
C150.0253 (5)0.0281 (5)0.0349 (5)0.0080 (4)0.0102 (4)0.0048 (4)
C160.0247 (5)0.0221 (4)0.0266 (5)0.0047 (4)0.0048 (4)0.0082 (4)
C170.0222 (5)0.0262 (5)0.0311 (5)0.0040 (4)0.0069 (4)0.0069 (4)
C180.0261 (5)0.0278 (5)0.0300 (5)0.0085 (4)0.0085 (4)0.0051 (4)
C190.0251 (5)0.0240 (5)0.0270 (5)0.0046 (4)0.0063 (4)0.0079 (4)
C200.0295 (6)0.0280 (5)0.0402 (6)0.0076 (4)0.0029 (5)0.0104 (5)
C210.0422 (7)0.0265 (5)0.0442 (7)0.0107 (5)0.0092 (5)0.0088 (5)
C220.0457 (7)0.0244 (5)0.0325 (6)0.0013 (5)0.0065 (5)0.0049 (4)
C230.0317 (6)0.0328 (5)0.0321 (6)0.0004 (5)0.0012 (4)0.0093 (4)
C240.0293 (6)0.0285 (5)0.0328 (5)0.0073 (4)0.0052 (4)0.0100 (4)
Geometric parameters (Å, º) top
O—C101.2243 (13)C12—H12A0.9400
N—C11.3211 (13)C13—C181.3985 (14)
N—C91.3735 (13)C13—C141.4008 (14)
C1—C21.4192 (14)C14—C151.3791 (15)
C1—C101.5016 (15)C14—H14A0.9400
C2—C31.3612 (16)C15—C161.4024 (14)
C2—H2A0.9400C15—H15A0.9400
C3—C41.4113 (17)C16—C171.3983 (14)
C3—H3A0.9400C16—C191.4836 (14)
C4—C51.4200 (16)C17—C181.3865 (14)
C4—C91.4265 (15)C17—H17A0.9400
C5—C61.3613 (19)C18—H18A0.9400
C5—H5A0.9400C19—C241.3983 (15)
C6—C71.4098 (18)C19—C201.4003 (14)
C6—H6A0.9400C20—C211.3819 (15)
C7—C81.3676 (16)C20—H20A0.9400
C7—H7A0.9400C21—C221.3842 (17)
C8—C91.4165 (15)C21—H21A0.9400
C8—H8A0.9400C22—C231.3918 (17)
C10—C111.4719 (14)C22—H22A0.9400
C11—C121.3410 (14)C23—C241.3869 (15)
C11—H11A0.9400C23—H23A0.9400
C12—C131.4677 (14)C24—H24A0.9400
C1—N—C9117.67 (9)C18—C13—C14117.74 (9)
N—C1—C2123.87 (10)C18—C13—C12119.83 (9)
N—C1—C10117.76 (9)C14—C13—C12122.41 (9)
C2—C1—C10118.36 (9)C15—C14—C13120.71 (10)
C3—C2—C1118.77 (10)C15—C14—H14A119.6
C3—C2—H2A120.6C13—C14—H14A119.6
C1—C2—H2A120.6C14—C15—C16121.78 (9)
C2—C3—C4119.95 (10)C14—C15—H15A119.1
C2—C3—H3A120.0C16—C15—H15A119.1
C4—C3—H3A120.0C17—C16—C15117.47 (9)
C3—C4—C5123.93 (10)C17—C16—C19122.43 (9)
C3—C4—C9117.45 (10)C15—C16—C19120.08 (9)
C5—C4—C9118.61 (11)C18—C17—C16120.84 (9)
C6—C5—C4120.86 (11)C18—C17—H17A119.6
C6—C5—H5A119.6C16—C17—H17A119.6
C4—C5—H5A119.6C17—C18—C13121.44 (9)
C5—C6—C7120.50 (11)C17—C18—H18A119.3
C5—C6—H6A119.8C13—C18—H18A119.3
C7—C6—H6A119.8C24—C19—C20117.87 (9)
C8—C7—C6120.43 (11)C24—C19—C16121.22 (9)
C8—C7—H7A119.8C20—C19—C16120.88 (9)
C6—C7—H7A119.8C21—C20—C19120.80 (10)
C7—C8—C9120.60 (11)C21—C20—H20A119.6
C7—C8—H8A119.7C19—C20—H20A119.6
C9—C8—H8A119.7C20—C21—C22120.66 (10)
N—C9—C8118.72 (10)C20—C21—H21A119.7
N—C9—C4122.27 (10)C22—C21—H21A119.7
C8—C9—C4119.01 (10)C21—C22—C23119.56 (10)
O—C10—C11122.40 (10)C21—C22—H22A120.2
O—C10—C1118.77 (9)C23—C22—H22A120.2
C11—C10—C1118.83 (9)C24—C23—C22119.70 (11)
C12—C11—C10120.39 (9)C24—C23—H23A120.2
C12—C11—H11A119.8C22—C23—H23A120.2
C10—C11—H11A119.8C23—C24—C19121.39 (10)
C11—C12—C13126.36 (9)C23—C24—H24A119.3
C11—C12—H12A116.8C19—C24—H24A119.3
C13—C12—H12A116.8
C9—N—C1—C20.94 (15)C10—C11—C12—C13177.31 (9)
C9—N—C1—C10177.83 (8)C11—C12—C13—C18175.30 (10)
N—C1—C2—C30.65 (16)C11—C12—C13—C146.16 (16)
C10—C1—C2—C3178.11 (9)C18—C13—C14—C150.39 (15)
C1—C2—C3—C40.80 (16)C12—C13—C14—C15178.18 (10)
C2—C3—C4—C5179.59 (10)C13—C14—C15—C160.90 (16)
C2—C3—C4—C91.80 (15)C14—C15—C16—C170.21 (15)
C3—C4—C5—C6177.65 (11)C14—C15—C16—C19178.34 (9)
C9—C4—C5—C60.95 (16)C15—C16—C17—C180.98 (14)
C4—C5—C6—C70.30 (18)C19—C16—C17—C18179.49 (9)
C5—C6—C7—C80.33 (17)C16—C17—C18—C131.51 (16)
C6—C7—C8—C90.28 (16)C14—C13—C18—C170.80 (15)
C1—N—C9—C8179.06 (9)C12—C13—C18—C17179.40 (9)
C1—N—C9—C40.18 (14)C17—C16—C19—C2444.88 (14)
C7—C8—C9—N179.65 (9)C15—C16—C19—C24133.59 (10)
C7—C8—C9—C40.38 (15)C17—C16—C19—C20137.29 (11)
C3—C4—C9—N1.53 (15)C15—C16—C19—C2044.24 (14)
C5—C4—C9—N179.78 (9)C24—C19—C20—C210.50 (15)
C3—C4—C9—C8177.71 (9)C16—C19—C20—C21177.40 (10)
C5—C4—C9—C80.98 (15)C19—C20—C21—C220.79 (17)
N—C1—C10—O173.47 (9)C20—C21—C22—C231.76 (18)
C2—C1—C10—O5.37 (15)C21—C22—C23—C241.41 (17)
N—C1—C10—C116.87 (14)C22—C23—C24—C190.11 (16)
C2—C1—C10—C11174.29 (9)C20—C19—C24—C230.84 (15)
O—C10—C11—C125.32 (16)C16—C19—C24—C23177.06 (9)
C1—C10—C11—C12175.04 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···Oi0.942.513.3222 (13)145
Symmetry code: (i) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H17NO
Mr335.39
Crystal system, space groupTriclinic, P1
Temperature (K)203
a, b, c (Å)5.9808 (12), 11.9617 (18), 13.2239 (16)
α, β, γ (°)109.401 (12), 92.981 (13), 102.967 (15)
V3)861.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.57 × 0.43 × 0.19
Data collection
DiffractometerOxford Diffraction Gemini R
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.922, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12993, 5643, 3561
Rint0.023
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 1.04
No. of reflections5643
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis PRO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···Oi0.942.513.3222 (13)145.1
Symmetry code: (i) x1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds