Download citation
Download citation
link to html
In the title mol­ecule, C14H14N2O3, the cyclo­hexane ring adopts a chair conformation. The cyano group and methyl groups have axial and equatorial orientations, respectively. The benzene ring has an equatorial orientation. In the crystal structure, the mol­ecules are stabilized by inter­molecular C—H...N hydogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020399/at2280sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020399/at2280Isup2.hkl
Contains datablock I

CCDC reference: 647706

Key indicators

  • Single-crystal X-ray study
  • T = 160 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.056
  • wR factor = 0.163
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT128_ALERT_4_C Non-standard setting of Space group P21/c .... P21/a PLAT230_ALERT_2_C Hirshfeld Test Diff for C3 - C311 .. 6.48 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Related literature were reported by Nagata et al., 1961 and Pandey et al., 2004.

The present X-ray diffraction study was undertaken to determine how the conformation of the system is affected by the substitution of a cyano and methyl groups at position 3 and m-nitrophenyl ring at position 5 of the cyclohexanone. The molecular structure of (I), with atomic numbering scheme is shown in Fig. 1. The cyclohexane ring adopts a chair conformation. The cyano group and the methyl group at position 3 have an axial and equatorial orientations respectively. The phenyl ring at position 5 has an equatorial orientation. The mean plane of atoms C2/C3/C5/C6 and phenyl ring make dihedral angle of 75.97 (6)°. The attached m-nitro group make a 2.4 (3)° tilt with the phenyl ring. In the crystal structure the molecules are stabilized by intermolecular C2–H2B···N311 hydogen bonds (Fig. 2).

Related literature top

For related literature, see: Nagata et al. (1961); Pandey et al. (2004).

Experimental top

A mixture of 3-methyl-5-m-nitrophenylcyclohex-2-enone (4.62 g, 0.02 mol), potassium cyanide (2.6 g, 0.04 mol), ammonium chloride (1.59 g, 0.03 mol), dimethyl formamide (50 ml) and water (2 ml) was heated with stirring for 16–18 h at 353 K. The reaction mixture was cooled to room temperature and poured into water. The product was extracted with CH2Cl2 (3x10 ml) and the organic layer was dried, evaporated and purified by column chromatography (hexane-EtOAc, 4.5:1 v/v). The yield of the isolated product was 3.87 g (75%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.95–0.99 Å and Uiso=1.2 or 1.5 times Ueq(C).

Structure description top

Related literature were reported by Nagata et al., 1961 and Pandey et al., 2004.

The present X-ray diffraction study was undertaken to determine how the conformation of the system is affected by the substitution of a cyano and methyl groups at position 3 and m-nitrophenyl ring at position 5 of the cyclohexanone. The molecular structure of (I), with atomic numbering scheme is shown in Fig. 1. The cyclohexane ring adopts a chair conformation. The cyano group and the methyl group at position 3 have an axial and equatorial orientations respectively. The phenyl ring at position 5 has an equatorial orientation. The mean plane of atoms C2/C3/C5/C6 and phenyl ring make dihedral angle of 75.97 (6)°. The attached m-nitro group make a 2.4 (3)° tilt with the phenyl ring. In the crystal structure the molecules are stabilized by intermolecular C2–H2B···N311 hydogen bonds (Fig. 2).

For related literature, see: Nagata et al. (1961); Pandey et al. (2004).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.
1-Methyl-5-(3-nitrophenyl)-3-oxocyclohexanecarbonitrile top
Crystal data top
C14H14N2O3F(000) = 544
Mr = 258.27Dx = 1.319 Mg m3
Monoclinic, P21/aMelting point: 387 K
Hall symbol: -P 2 y a bMo Kα radiation, λ = 0.71073 Å
a = 12.2284 (3) ÅCell parameters from 3165 reflections
b = 8.0986 (3) Åθ = 2–27.5°
c = 13.1376 (4) ŵ = 0.09 mm1
β = 91.336 (2)°T = 160 K
V = 1300.70 (7) Å3Plate, orange
Z = 40.25 × 0.2 × 0.13 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2055 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.097
Horizontally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = 1515
φ and ω scans with κ offsetsk = 1010
32792 measured reflectionsl = 1717
2968 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0927P)2 + 0.0906P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2968 reflectionsΔρmax = 0.35 e Å3
174 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.060 (7)
Crystal data top
C14H14N2O3V = 1300.70 (7) Å3
Mr = 258.27Z = 4
Monoclinic, P21/aMo Kα radiation
a = 12.2284 (3) ŵ = 0.09 mm1
b = 8.0986 (3) ÅT = 160 K
c = 13.1376 (4) Å0.25 × 0.2 × 0.13 mm
β = 91.336 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2055 reflections with I > 2σ(I)
32792 measured reflectionsRint = 0.097
2968 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
2968 reflectionsΔρmin = 0.29 e Å3
174 parameters
Special details top

Experimental. Solvent used: Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.485 (2) Frames collected: 341 Seconds exposure per frame: 30 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 30.0

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12273 (10)0.92625 (17)0.54801 (9)0.0339 (4)
O53A0.24351 (12)1.0799 (2)0.04547 (11)0.0502 (6)
O53B0.14631 (12)1.2738 (2)0.11608 (11)0.0540 (6)
N530.16554 (13)1.1753 (2)0.04660 (12)0.0376 (6)
N3110.09375 (13)0.5722 (2)0.38559 (16)0.0515 (7)
C10.13526 (12)0.8854 (2)0.45983 (13)0.0249 (5)
C20.16985 (13)0.7131 (2)0.43218 (13)0.0256 (5)
C30.10791 (12)0.6410 (2)0.33822 (13)0.0239 (5)
C40.10443 (13)0.7681 (2)0.25184 (13)0.0243 (5)
C50.05352 (12)0.9313 (2)0.28443 (12)0.0217 (5)
C60.12067 (13)1.0061 (2)0.37311 (13)0.0250 (5)
C310.16269 (16)0.4811 (2)0.30333 (16)0.0358 (6)
C510.03902 (13)1.0541 (2)0.19846 (12)0.0229 (5)
C520.10960 (13)1.0585 (2)0.11632 (13)0.0249 (5)
C530.09084 (14)1.1732 (2)0.03957 (13)0.0279 (5)
C540.00549 (15)1.2825 (2)0.03984 (14)0.0332 (6)
C550.06329 (15)1.2804 (2)0.12226 (15)0.0349 (6)
C560.04613 (14)1.1673 (2)0.20033 (14)0.0295 (6)
C3110.00532 (14)0.6019 (2)0.36614 (15)0.0317 (6)
H2A0.249150.713620.418610.0307*
H2B0.158190.639680.491190.0307*
H4A0.061580.722490.193470.0291*
H4B0.179780.788640.228940.0291*
H50.020870.905940.310330.0260*
H6A0.083311.106260.397880.0299*
H6B0.193391.039370.348670.0299*
H31A0.121510.435340.244990.0537*
H31B0.237820.504830.283440.0537*
H31C0.163760.401010.359250.0537*
H520.169460.984040.113150.0298*
H540.006271.357680.014850.0398*
H550.122241.356560.125280.0419*
H560.093801.167350.256410.0353*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0349 (7)0.0451 (9)0.0217 (7)0.0008 (6)0.0007 (5)0.0026 (6)
O53A0.0420 (8)0.0731 (12)0.0360 (9)0.0045 (8)0.0105 (6)0.0136 (8)
O53B0.0546 (9)0.0728 (12)0.0347 (9)0.0096 (8)0.0010 (7)0.0312 (8)
N530.0368 (9)0.0501 (11)0.0257 (9)0.0121 (8)0.0013 (7)0.0094 (8)
N3110.0284 (9)0.0470 (12)0.0791 (14)0.0042 (8)0.0007 (8)0.0296 (10)
C10.0182 (8)0.0315 (10)0.0249 (10)0.0048 (7)0.0028 (6)0.0012 (8)
C20.0257 (9)0.0268 (10)0.0241 (9)0.0003 (7)0.0023 (7)0.0063 (7)
C30.0203 (8)0.0224 (9)0.0290 (10)0.0018 (7)0.0007 (7)0.0043 (7)
C40.0248 (9)0.0248 (10)0.0232 (9)0.0004 (7)0.0002 (7)0.0025 (7)
C50.0193 (8)0.0225 (9)0.0234 (9)0.0009 (6)0.0026 (6)0.0036 (7)
C60.0270 (9)0.0227 (10)0.0252 (9)0.0017 (7)0.0006 (7)0.0011 (7)
C310.0365 (10)0.0266 (10)0.0440 (12)0.0046 (8)0.0059 (8)0.0010 (9)
C510.0234 (8)0.0226 (9)0.0226 (9)0.0039 (7)0.0030 (7)0.0025 (7)
C520.0231 (9)0.0265 (10)0.0249 (9)0.0041 (7)0.0021 (7)0.0039 (7)
C530.0309 (9)0.0309 (10)0.0218 (9)0.0104 (8)0.0029 (7)0.0046 (8)
C540.0417 (11)0.0281 (10)0.0292 (10)0.0055 (8)0.0092 (8)0.0065 (8)
C550.0374 (10)0.0306 (11)0.0365 (11)0.0061 (8)0.0058 (8)0.0057 (8)
C560.0279 (9)0.0299 (10)0.0306 (10)0.0012 (8)0.0014 (7)0.0022 (8)
C3110.0275 (10)0.0263 (10)0.0410 (11)0.0012 (8)0.0049 (8)0.0112 (8)
Geometric parameters (Å, º) top
O1—C11.218 (2)C53—C541.369 (2)
O53A—N531.227 (2)C54—C551.387 (3)
O53B—N531.231 (2)C55—C561.387 (3)
N53—C531.471 (2)C2—H2A0.9900
N311—C3111.143 (2)C2—H2B0.9900
C1—C21.505 (2)C4—H4A0.9900
C1—C61.509 (2)C4—H4B0.9900
C2—C31.548 (2)C5—H51.0000
C3—C41.532 (2)C6—H6A0.9900
C3—C311.533 (2)C6—H6B0.9900
C3—C3111.475 (2)C31—H31A0.9800
C4—C51.527 (2)C31—H31B0.9800
C5—C61.534 (2)C31—H31C0.9800
C5—C511.512 (2)C52—H520.9500
C51—C521.398 (2)C54—H540.9500
C51—C561.388 (2)C55—H550.9500
C52—C531.386 (2)C56—H560.9500
O1···C31i3.265 (2)H4A···C522.9700
O1···C5ii3.323 (2)H4A···H31A2.5300
O1···C6ii3.221 (2)H4A···O53Bv2.7200
O53A···C55iii3.387 (2)H4A···H54v2.5100
O1···H2Ai2.8300H4B···C522.7600
O1···H31Bi2.8400H4B···H6B2.5700
O1···H5ii2.6400H4B···H31B2.5100
O1···H6Aii2.6500H4B···H522.2000
O1···H56ii2.7100H4B···O53Bxiii2.6200
O1···H31Ci2.8600H5···C3112.5700
O53A···H522.4200H5···H562.4000
O53A···H55iii2.8000H5···O1ii2.6400
O53B···H542.4100H6A···C563.0500
O53B···H4Biv2.6200H6A···O1ii2.6500
O53B···H52iv2.8200H6B···H4B2.5700
O53B···H4Av2.7200H6B···N311viii2.7900
N311···C2vi3.441 (2)H31A···C55xiv3.0200
N311···H2Bvii2.5000H31A···C56xiv3.0300
N311···H2Avi2.6300H31A···H4A2.5300
N311···H6Bvi2.7900H31B···H2A2.4500
C2···N311viii3.441 (2)H31B···H4B2.5100
C5···O1ii3.323 (2)H31B···O1ix2.8400
C6···O1ii3.221 (2)H31B···H56viii2.5200
C31···O1ix3.265 (2)H31C···H2B2.6000
C55···O53Ax3.387 (2)H31C···O1ix2.8600
C4···H522.6600H52···O53A2.4200
C52···H4A2.9700H52···C42.6600
C52···H4B2.7600H52···H4B2.2000
C54···H54xi2.9300H52···O53Bxiii2.8200
C55···H31Axii3.0200H54···O53B2.4100
C56···H6A3.0500H54···C54xi2.9300
C56···H31Axii3.0300H54···H4Av2.5100
C311···H52.5700H54···H54xi2.3400
H2A···H31B2.4500H55···O53Ax2.8000
H2A···O1ix2.8300H56···H52.4000
H2A···N311viii2.6300H56···O1ii2.7100
H2B···H31C2.6000H56···H31Bvi2.5200
H2B···N311vii2.5000
O53A—N53—O53B123.51 (16)C3—C2—H2B109.00
O53A—N53—C53118.66 (15)H2A—C2—H2B108.00
O53B—N53—C53117.83 (15)C3—C4—H4B109.00
O1—C1—C2121.58 (15)C3—C4—H4A109.00
O1—C1—C6121.81 (15)H4A—C4—H4B108.00
C2—C1—C6116.58 (14)C5—C4—H4A109.00
C1—C2—C3114.03 (13)C5—C4—H4B109.00
C2—C3—C4110.00 (13)C51—C5—H5107.00
C2—C3—C31110.37 (13)C4—C5—H5107.00
C2—C3—C311109.12 (14)C6—C5—H5107.00
C4—C3—C31110.54 (14)C1—C6—H6B109.00
C4—C3—C311108.57 (13)C1—C6—H6A109.00
C31—C3—C311108.20 (14)H6A—C6—H6B108.00
C3—C4—C5112.24 (14)C5—C6—H6A109.00
C4—C5—C6109.90 (13)C5—C6—H6B109.00
C4—C5—C51113.67 (13)H31A—C31—H31B109.00
C6—C5—C51111.03 (13)C3—C31—H31A109.00
C1—C6—C5111.68 (13)C3—C31—H31B109.00
C5—C51—C52121.98 (14)C3—C31—H31C109.00
C5—C51—C56119.74 (14)H31A—C31—H31C109.00
C52—C51—C56118.28 (15)H31B—C31—H31C109.00
C51—C52—C53118.94 (15)C51—C52—H52121.00
N53—C53—C52118.18 (15)C53—C52—H52121.00
N53—C53—C54118.80 (15)C55—C54—H54121.00
C52—C53—C54123.01 (16)C53—C54—H54121.00
C53—C54—C55118.07 (16)C56—C55—H55120.00
C54—C55—C56120.09 (16)C54—C55—H55120.00
C51—C56—C55121.57 (16)C51—C56—H56119.00
C3—C2—H2A109.00C55—C56—H56119.00
C1—C2—H2A109.00N311—C311—C3178.5 (2)
C1—C2—H2B109.00
O53A—N53—C53—C522.6 (2)C4—C5—C6—C153.75 (17)
O53A—N53—C53—C54178.27 (17)C51—C5—C6—C1179.64 (13)
O53B—N53—C53—C52177.67 (16)C4—C5—C51—C5230.4 (2)
O53B—N53—C53—C541.5 (2)C4—C5—C51—C56150.01 (15)
O1—C1—C2—C3137.96 (15)C6—C5—C51—C5294.13 (18)
C6—C1—C2—C344.03 (19)C6—C5—C51—C5685.48 (18)
O1—C1—C6—C5134.95 (15)C5—C51—C52—C53179.33 (15)
C2—C1—C6—C547.06 (18)C56—C51—C52—C531.1 (2)
C1—C2—C3—C446.89 (18)C5—C51—C56—C55179.03 (15)
C1—C2—C3—C31169.12 (14)C52—C51—C56—C551.4 (3)
C1—C2—C3—C31172.11 (17)C51—C52—C53—N53179.61 (15)
C2—C3—C4—C556.14 (16)C51—C52—C53—C540.5 (3)
C31—C3—C4—C5178.28 (13)N53—C53—C54—C55179.16 (15)
C311—C3—C4—C563.19 (17)C52—C53—C54—C551.7 (3)
C3—C4—C5—C660.31 (17)C53—C54—C55—C561.4 (3)
C3—C4—C5—C51174.57 (13)C54—C55—C56—C510.1 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+2, z+1; (iii) x+1/2, y+5/2, z; (iv) x+1/2, y+1/2, z; (v) x, y+2, z; (vi) x1/2, y+3/2, z; (vii) x, y+1, z+1; (viii) x+1/2, y+3/2, z; (ix) x+1/2, y1/2, z+1; (x) x1/2, y+5/2, z; (xi) x, y+3, z; (xii) x, y+1, z; (xiii) x+1/2, y1/2, z; (xiv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N311vii0.992.503.470 (2)167
Symmetry code: (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N2O3
Mr258.27
Crystal system, space groupMonoclinic, P21/a
Temperature (K)160
a, b, c (Å)12.2284 (3), 8.0986 (3), 13.1376 (4)
β (°) 91.336 (2)
V3)1300.70 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.2 × 0.13
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
32792, 2968, 2055
Rint0.097
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.163, 1.05
No. of reflections2968
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N311i0.992.503.470 (2)167
Symmetry code: (i) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds