Download citation
Download citation
link to html
The crystal structure of the title compound, C14H12N2O2, is stabilized by inter­molecular hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807018855/at2274sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807018855/at2274Isup2.hkl
Contains datablock I

CCDC reference: 628127

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.046
  • wR factor = 0.147
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H1O .. H2O .. 1.11 Ang.
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT755_ALERT_4_C D-H Calc 0.84000, Rep 0.84(10) ...... Senseless su O1 -H1O 1.555 1.555 PLAT755_ALERT_4_C D-H Calc 0.84000, Rep 0.84(10) ...... Senseless su O1 -H1O 1.555 1.555 PLAT755_ALERT_4_C D-H Calc 0.84000, Rep 0.84(10) ...... Senseless su O2 -H2O 1.555 1.555 PLAT755_ALERT_4_C D-H Calc 0.84000, Rep 0.84(10) ...... Senseless su O2 -H2O 1.555 1.555 PLAT756_ALERT_4_C H...A Calc 1.11000, Rep 1.11(10) ...... Senseless su H1O -H2O 1.555 1.666 PLAT756_ALERT_4_C H...A Calc 1.94000, Rep 1.94(10) ...... Senseless su H1O -O2 1.555 1.666 PLAT756_ALERT_4_C H...A Calc 1.11000, Rep 1.11(10) ...... Senseless su H2O -H1O 1.555 1.444 PLAT756_ALERT_4_C H...A Calc 1.93000, Rep 1.93(10) ...... Senseless su H2O -O1 1.555 1.444 PLAT757_ALERT_4_C D...A Calc 1.93000, Rep 1.9303(16) ...... Senseless su O1 -H2O 1.555 1.666 PLAT757_ALERT_4_C D...A Calc 1.94000, Rep 1.9393(15) ...... Senseless su O2 -H1O 1.555 1.444
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Acylhydrazones have been extensively investigated in recent years, as they are associated with various biological activities (Buu-Hoi et al.,1953). Furthermore, it also has interesting analytical properties (Singh et al., 1982) and can be used as ligands in orgamometallic catalysts (Lal et al., 1997). 2,2'-Azinodi-2-hydroxytoluene and N,N'-bis(4-chlorobenzylidene)hydrazine have been reported by Xu et al., 1994 and Zheng et al., 2005, respectively.

The molecular structure of the title compound (Fig. 1) contains intermolecular hydrogen bond [O1—H1O···O2 = 2.7302 (16) Å](Table 2), leading to an one-dimensional chain. Interesting another chain was hydrogen-bonded reversely to the chain through the other type of intermolecular hydrogen bond [O1—H10···N1 = 2.7590 (14) Å]. Thus, the structure can be attributted to a two dimensional framework (Fig.2). Two types of hydrogen bonds make the structure stabilize.

Related literature top

For related literature, see: Buu-Hoi et al., (1953); Lal et al. (1997); Singh et al. (1982); Xu et al. (1994); Zheng et al. (2005).

Experimental top

The mixture of 4-hydroxybenzaldehyde (0.244 g) in 20 ml me thanol and hydrazine (0.146 g) in 40 ml me thanol was stirred 2 h with refluxing. The yellow produce was isolated by filtration, washed with diethyl ether and dried at room temperature for a yield of 0.15 g (53%). Analysis found (calculated) for the title compound (%): C 69.51(69.99); H 4.72(5.03); N 10.93 (11.66); O 14.84(13.32).

Refinement top

The H atoms attached to the parent C were geometrically fixed with, and were treated as riding atoms, whereas the H atoms attached to the parent O atom were located from difference maps and were refined freely. The H atoms were positioned geometrically, with C—H = 0.95 - 0.99 Å, and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Acylhydrazones have been extensively investigated in recent years, as they are associated with various biological activities (Buu-Hoi et al.,1953). Furthermore, it also has interesting analytical properties (Singh et al., 1982) and can be used as ligands in orgamometallic catalysts (Lal et al., 1997). 2,2'-Azinodi-2-hydroxytoluene and N,N'-bis(4-chlorobenzylidene)hydrazine have been reported by Xu et al., 1994 and Zheng et al., 2005, respectively.

The molecular structure of the title compound (Fig. 1) contains intermolecular hydrogen bond [O1—H1O···O2 = 2.7302 (16) Å](Table 2), leading to an one-dimensional chain. Interesting another chain was hydrogen-bonded reversely to the chain through the other type of intermolecular hydrogen bond [O1—H10···N1 = 2.7590 (14) Å]. Thus, the structure can be attributted to a two dimensional framework (Fig.2). Two types of hydrogen bonds make the structure stabilize.

For related literature, see: Buu-Hoi et al., (1953); Lal et al. (1997); Singh et al. (1982); Xu et al. (1994); Zheng et al. (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing structure of the title compound viewed down the a axis showing the molecular.
N,N'-Bis(4-Hydroxybenzylidene)hydrazine top
Crystal data top
C14H12N2O2F(000) = 504
Mr = 240.26Dx = 1.368 Mg m3
Monoclinic, P21/cMelting point: 528 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.587 (3) ÅCell parameters from 8183 reflections
b = 8.5349 (17) Åθ = 3.0–27.5°
c = 11.897 (2) ŵ = 0.09 mm1
β = 114.12 (3)°T = 153 K
V = 1166.6 (4) Å3Chip, colourless
Z = 40.34 × 0.33 × 0.03 mm
Data collection top
Rigaku R-AXIS SPIDER
diffractometer
2663 independent reflections
Radiation source: fine-focus sealed tube2075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.969, Tmax = 0.997k = 1011
10931 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0904P)2 + 0.38P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.009
2663 reflectionsΔρmax = 0.33 e Å3
164 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C14H12N2O2V = 1166.6 (4) Å3
Mr = 240.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.587 (3) ŵ = 0.09 mm1
b = 8.5349 (17) ÅT = 153 K
c = 11.897 (2) Å0.34 × 0.33 × 0.03 mm
β = 114.12 (3)°
Data collection top
Rigaku R-AXIS SPIDER
diffractometer
2663 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2075 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.997Rint = 0.026
10931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
2663 reflectionsΔρmin = 0.27 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 1.0038 (0.0089) x - 6.8322 (0.0048) y + 6.8379 (0.0074) z = 1.7177 (0.0012)

* 0.0000 (0.0011) C9 * 0.0033 (0.0011) C10 * -0.0039 (0.0011) C11 * 0.0012 (0.0011) C12 * 0.0022 (0.0012) C13 * -0.0028 (0.0011) C14

Rms deviation of fitted atoms = 0.0026

1.7154 (0.0212) x - 6.9219 (0.0065) y + 5.5155 (0.0214) z = 1.9752 (0.0035)

Angle to previous plane (with approximate esd) = 12.50 ( 0.18 )

* -0.0847 (0.0007) C7 * -0.0854 (0.0007) C8 * 0.0845 (0.0007) N1 * 0.0856 (0.0007) N2

Rms deviation of fitted atoms = 0.0850

1.6200 (0.0080) x - 6.7985 (0.0046) y + 5.7888 (0.0069) z = 1.9768 (0.0052)

Angle to previous plane (with approximate esd) = 1.56 ( 0.19 )

* 0.0152 (0.0010) C1 * -0.0105 (0.0010) C2 * -0.0041 (0.0010) C3 * 0.0141 (0.0010) C4 * -0.0097 (0.0010) C5 * -0.0049 (0.0010) C6

Rms deviation of fitted atoms = 0.0106

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72875 (8)0.61870 (12)0.87357 (10)0.0250 (3)
H1O0.79620.62480.87590.038*
O20.04201 (10)0.33486 (15)0.09068 (12)0.0354 (3)
H2O0.11070.34540.09750.053*
N10.36829 (10)0.16168 (14)0.46180 (12)0.0218 (3)
N20.32543 (10)0.06609 (15)0.35537 (12)0.0237 (3)
C10.66180 (12)0.52650 (16)0.77724 (13)0.0205 (3)
C20.54791 (11)0.48685 (16)0.75810 (13)0.0206 (3)
H20.51500.52740.81110.025*
C30.48322 (12)0.38881 (16)0.66218 (14)0.0210 (3)
H30.40620.36140.65020.025*
C40.52981 (12)0.32924 (16)0.58232 (13)0.0205 (3)
C50.64248 (12)0.37493 (17)0.60033 (14)0.0235 (3)
H50.67430.33850.54520.028*
C60.70851 (12)0.47210 (18)0.69680 (14)0.0244 (3)
H60.78500.50140.70800.029*
C70.46655 (12)0.22489 (16)0.47989 (14)0.0222 (3)
H70.49990.20220.42310.027*
C80.21725 (12)0.03528 (17)0.31936 (14)0.0229 (3)
H80.17700.07760.36470.028*
C90.15253 (12)0.06125 (17)0.21241 (14)0.0225 (3)
C100.03306 (13)0.07915 (18)0.17746 (15)0.0261 (3)
H100.00300.02850.22390.031*
C110.03409 (12)0.16936 (18)0.07641 (15)0.0267 (4)
H110.11550.17930.05330.032*
C120.01847 (13)0.24519 (18)0.00911 (14)0.0249 (3)
C130.13789 (13)0.22885 (19)0.04311 (15)0.0281 (4)
H130.17380.28080.00290.034*
C140.20428 (12)0.13778 (18)0.14312 (15)0.0255 (3)
H140.28550.12690.16520.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (5)0.0312 (6)0.0239 (6)0.0057 (4)0.0056 (4)0.0074 (4)
O20.0274 (6)0.0478 (7)0.0314 (7)0.0141 (5)0.0123 (5)0.0180 (5)
N10.0228 (6)0.0218 (6)0.0169 (6)0.0009 (5)0.0044 (5)0.0021 (5)
N20.0253 (6)0.0251 (6)0.0188 (6)0.0023 (5)0.0070 (5)0.0035 (5)
C10.0201 (6)0.0192 (6)0.0195 (7)0.0004 (5)0.0055 (5)0.0003 (5)
C20.0199 (6)0.0216 (7)0.0213 (7)0.0008 (5)0.0093 (5)0.0009 (5)
C30.0186 (6)0.0218 (7)0.0221 (7)0.0021 (5)0.0081 (5)0.0000 (5)
C40.0219 (6)0.0199 (7)0.0184 (7)0.0002 (5)0.0070 (5)0.0007 (5)
C50.0227 (7)0.0271 (7)0.0225 (8)0.0020 (5)0.0110 (6)0.0010 (6)
C60.0178 (6)0.0293 (8)0.0260 (8)0.0024 (5)0.0088 (6)0.0012 (6)
C70.0239 (7)0.0231 (7)0.0189 (7)0.0013 (5)0.0082 (6)0.0002 (5)
C80.0235 (7)0.0247 (7)0.0195 (7)0.0002 (5)0.0076 (6)0.0015 (6)
C90.0227 (7)0.0235 (7)0.0196 (7)0.0026 (5)0.0069 (5)0.0001 (6)
C100.0246 (7)0.0304 (8)0.0250 (8)0.0023 (6)0.0119 (6)0.0038 (6)
C110.0203 (7)0.0324 (8)0.0268 (8)0.0056 (6)0.0092 (6)0.0028 (6)
C120.0260 (7)0.0270 (7)0.0205 (7)0.0073 (6)0.0082 (6)0.0036 (6)
C130.0254 (7)0.0329 (8)0.0276 (8)0.0036 (6)0.0125 (6)0.0077 (6)
C140.0199 (6)0.0293 (8)0.0265 (8)0.0030 (5)0.0086 (6)0.0039 (6)
Geometric parameters (Å, º) top
O1—C11.3615 (17)C5—H50.9500
O1—H1O0.8400C6—H60.9500
O2—C121.3550 (19)C7—H70.9500
O2—H2O0.8400C8—C91.454 (2)
N1—C71.2843 (19)C8—H80.9500
N1—N21.4148 (17)C9—C101.395 (2)
N2—C81.2767 (19)C9—C141.403 (2)
C1—C61.392 (2)C10—C111.386 (2)
C1—C21.3982 (18)C10—H100.9500
C2—C31.3806 (19)C11—C121.390 (2)
C2—H20.9500C11—H110.9500
C3—C41.400 (2)C12—C131.395 (2)
C3—H30.9500C13—C141.380 (2)
C4—C51.400 (2)C13—H130.9500
C4—C71.456 (2)C14—H140.9500
C5—C61.384 (2)
C1—O1—H1O109.5N1—C7—H7118.1
C12—O2—H2O109.5C4—C7—H7118.1
C7—N1—N2112.40 (13)N2—C8—C9123.35 (14)
C8—N2—N1112.55 (13)N2—C8—H8118.3
O1—C1—C6118.79 (12)C9—C8—H8118.3
O1—C1—C2121.18 (13)C10—C9—C14118.45 (14)
C6—C1—C2120.02 (13)C10—C9—C8118.23 (14)
C3—C2—C1120.03 (13)C14—C9—C8123.31 (13)
C3—C2—H2120.0C11—C10—C9121.35 (14)
C1—C2—H2120.0C11—C10—H10119.3
C2—C3—C4120.79 (12)C9—C10—H10119.3
C2—C3—H3119.6C10—C11—C12119.55 (13)
C4—C3—H3119.6C10—C11—H11120.2
C3—C4—C5118.28 (13)C12—C11—H11120.2
C3—C4—C7123.55 (13)O2—C12—C11122.59 (13)
C5—C4—C7118.16 (13)O2—C12—C13117.62 (14)
C6—C5—C4121.41 (14)C11—C12—C13119.78 (14)
C6—C5—H5119.3C14—C13—C12120.49 (14)
C4—C5—H5119.3C14—C13—H13119.8
C5—C6—C1119.39 (13)C12—C13—H13119.8
C5—C6—H6120.3C13—C14—C9120.37 (13)
C1—C6—H6120.3C13—C14—H14119.8
N1—C7—C4123.86 (14)C9—C14—H14119.8
C7—N1—N2—C8163.47 (13)N1—N2—C8—C9179.73 (12)
O1—C1—C2—C3177.79 (12)N2—C8—C9—C10176.21 (15)
C6—C1—C2—C32.5 (2)N2—C8—C9—C144.1 (2)
C1—C2—C3—C40.7 (2)C14—C9—C10—C110.4 (2)
C2—C3—C4—C51.6 (2)C8—C9—C10—C11179.94 (14)
C2—C3—C4—C7179.70 (13)C9—C10—C11—C120.8 (2)
C3—C4—C5—C62.2 (2)C10—C11—C12—O2179.88 (14)
C7—C4—C5—C6179.07 (13)C10—C11—C12—C130.5 (2)
C4—C5—C6—C10.4 (2)O2—C12—C13—C14179.33 (14)
O1—C1—C6—C5178.33 (13)C11—C12—C13—C140.0 (2)
C2—C1—C6—C51.9 (2)C12—C13—C14—C90.4 (2)
N2—N1—C7—C4179.69 (12)C10—C9—C14—C130.2 (2)
C3—C4—C7—N19.1 (2)C8—C9—C14—C13179.45 (14)
C5—C4—C7—N1172.24 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···H2Oi0.84 (10)1.11 (10)1.9303 (16)163 (1)
O1—H1O···O2i0.84 (10)1.94 (10)2.7679 (16)169 (1)
O2—H2O···H1Oii0.84 (10)1.11 (10)1.9393 (15)168 (1)
O2—H2O···O1ii0.84 (10)1.93 (10)2.7679 (16)175 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z1.

Experimental details

Crystal data
Chemical formulaC14H12N2O2
Mr240.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)12.587 (3), 8.5349 (17), 11.897 (2)
β (°) 114.12 (3)
V3)1166.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.33 × 0.03
Data collection
DiffractometerRigaku R-AXIS SPIDER
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.969, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
10931, 2663, 2075
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.147, 1.01
No. of reflections2663
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: RAPID-AUTO (Rigaku, 2004), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C11.3615 (17)N1—N21.4148 (17)
O2—C121.3550 (19)N2—C81.2767 (19)
N1—C71.2843 (19)
C7—N1—N2112.40 (13)C8—N2—N1112.55 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···H2Oi0.84 (10)1.11 (10)1.9303 (16)163.3 (4)
O1—H1O···O2i0.84 (10)1.94 (10)2.7679 (16)168.7 (4)
O2—H2O···H1Oii0.84 (10)1.11 (10)1.9393 (15)167.6 (4)
O2—H2O···O1ii0.84 (10)1.93 (10)2.7679 (16)174.8 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds