Download citation
Download citation
link to html
Macromolecular crystallography (MX) and small-angle X-ray scattering (SAXS) studies on proteins at synchrotron light sources are commonly limited by the structural damage produced by the intense X-ray beam. Several effects, such as aggregation in protein solutions and global and site-specific damage in crystals, reduce the data quality or even introduce artefacts that can result in a biologically misguiding structure. One strategy to reduce these negative effects is the inclusion of an additive in the buffer solution to act as a free radical scavenger. Here the properties of uridine as a scavenger for both SAXS and MX experiments on lysozyme at room temperature are examined. In MX experiments, upon addition of uridine at 1 M, the critical dose D1/2 is increased by a factor of ∼1.7, a value similar to that obtained in the presence of the most commonly used scavengers such as ascorbate and sodium nitrate. Other figures of merit to assess radiation damage show a similar trend. In SAXS experiments, the scavenging effect of 40 mM uridine is similar to that of 5% v/v glycerol, and greater than 2 mM DTT and 1 mM ascorbic acid. In all cases, the protective effect of uridine is proportional to its concentration.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600577516018452/ap5009sup1.pdf
MX results (Tables S1, S2, S3; Figures S1, S2, S3). SAXS results (Table S4, Figure S4).


Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds