Download citation
Download citation
link to html
To understand what tools are really suitable to identify and classify the iodine–iodine non-covalent interactions in solid organic polyiodides, we have examined the anisotropy of the electron density within the iodine atomic basin along and across the iodine–iodine halogen bond using the Laplacian of electron density, one-electron potential and electron localization function produced by Kohn–Sham calculations with periodic boundary conditions. The Laplacian of electron density exhibits the smallest anisotropy and yields a vague picture of the outermost electronic shells. The one-electron potential does not show such a deficiency and reveals that the valence electron shell for the halogen-bond acceptor iodine is always wider than that for the halogen-bond donor iodine along its σ-hole direction. We have concluded that the one-electron potential is the most suitable for classification of the iodine–iodine bonds and interactions in complicated cases, while the electron localization function allows to distinguish the diiodine molecule bonded with the monoiodide anion from the typical triiodide anion.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520617002931/ao5025sup1.pdf
Supporting figure and tables


Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds