Download citation
Download citation
link to html
The crystal structure of α-glycine has been investigated in the temperature range 288–427 K using neutron diffraction. The molecular structure does not change significantly and the putative crystallographic phase transition associated with anomalous electrical behaviour in this temperature range is not observed. The unit cell expands anisotropically with increasing temperature, with the unique monoclinic b axis, corresponding to the stacking direction of molecular layers, changing the most. The increasing separation of antiferroelectric molecular layers with increasing temperature is driven by an increase in molecular libration about an axis that lies perpendicular to the b axis. There is also a weakening of the interlayer hydrogen bonds with temperature. These structural and dynamic changes will affect the response of molecular dipoles to an applied electric field and provide a possible mechanism for the anomalous electrical behaviour.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768102004263/an0604sup1.cif
Contains datablocks 288K, 301K, 304K, 313K, 323K, 427K, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102004263/an0604288Ksup2.hkl
Contains datablock 288K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102004263/an0604301Ksup3.hkl
Contains datablock {vcif WARNING: Line 0: length exceeds internal buffer size (4096) - rest discarded}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102004263/an0604304Ksup4.hkl
Contains datablock {vcif WARNING: Line 0: length exceeds internal buffer size (4096) - rest discarded}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102004263/an0604313Ksup5.hkl
Contains datablock {vcif WARNING: Line 0: length exceeds internal buffer size (4096) - rest discarded}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102004263/an0604323Ksup6.hkl
Contains datablock {vcif WARNING: Line 0: length exceeds internal buffer size (4096) - rest discarded}

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102004263/an0604427Ksup7.hkl
Contains datablock {vcif WARNING: Line 0: length exceeds internal buffer size (4096) - rest discarded}

CCDC references: 193596; 193597; 193598; 193599; 193600; 193601

Computing details top

For all compounds, data collection: ILL MAD; cell refinement: ILL RAFD9. Data reduction: ILL RETREAT for 288K, 301K, 304K, 313K, 427K; ILL RAFD9 for 323K. For all compounds, program(s) used to solve structure: SHELXL97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
(288K) top
Crystal data top
C8H20N4O8F(000) = 62
Mr = 300.24Dx = 1.615 Mg m3
Monoclinic, P21/nNeutron radiation, λ = 0.83950 Å
a = 5.0993 (3) ÅCell parameters from 1319 reflections
b = 11.9416 (6) Åθ = 4.0–45.0°
c = 5.4608 (3) ŵ = 0.24 mm1
β = 111.784 (2)°T = 288 K
V = 308.78 (3) Å3Needle, none
Z = 16 × 1.8 × 1.7 mm
Data collection top
D9
diffractometer
Rint = 0.016
Radiation source: ILL reactorθmax = 45.0°, θmin = 4.0°
equatorial geometry scansh = 82
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
k = 1318
Tmin = 0.550, Tmax = 0.706l = 69
1540 measured reflections3 standard reflections every 50 reflections
1319 independent reflections intensity decay: none
1249 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.5346P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
1319 reflectionsΔρmax = 0.68 e Å3
92 parametersΔρmin = 0.62 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.615 (18)
Crystal data top
C8H20N4O8V = 308.78 (3) Å3
Mr = 300.24Z = 1
Monoclinic, P21/nNeutron radiation, λ = 0.83950 Å
a = 5.0993 (3) ŵ = 0.24 mm1
b = 11.9416 (6) ÅT = 288 K
c = 5.4608 (3) Å6 × 1.8 × 1.7 mm
β = 111.784 (2)°
Data collection top
D9
diffractometer
1249 reflections with I > 2σ(I)
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Rint = 0.016
Tmin = 0.550, Tmax = 0.7063 standard reflections every 50 reflections
1540 measured reflections intensity decay: none
1319 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.68 e Å3
1319 reflectionsΔρmin = 0.62 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30477 (17)0.09419 (8)0.23523 (15)0.02178 (18)
O20.14853 (18)0.14157 (9)0.10710 (18)0.02504 (19)
N30.30030 (10)0.08977 (5)0.25894 (9)0.01858 (13)
C40.07438 (12)0.12480 (5)0.06593 (12)0.01364 (13)
C50.06373 (13)0.14504 (6)0.21334 (12)0.01592 (14)
H60.2883 (4)0.10017 (18)0.4544 (3)0.0325 (3)
H70.4949 (4)0.1191 (2)0.1310 (4)0.0360 (4)
H80.2977 (5)0.00465 (16)0.2260 (4)0.0382 (4)
H90.0767 (5)0.23489 (16)0.2434 (4)0.0407 (4)
H100.1343 (4)0.1145 (2)0.3568 (4)0.0419 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (3)0.0343 (4)0.0128 (3)0.0060 (3)0.0079 (3)0.0036 (3)
O20.0185 (3)0.0402 (5)0.0211 (4)0.0016 (3)0.0127 (3)0.0027 (3)
N30.0192 (2)0.0271 (2)0.0116 (2)0.00508 (15)0.00822 (15)0.00170 (15)
C40.0152 (2)0.0158 (3)0.0124 (2)0.00079 (17)0.00792 (19)0.00083 (18)
C50.0163 (2)0.0199 (3)0.0128 (3)0.00294 (19)0.00693 (19)0.0033 (2)
H60.0334 (7)0.0480 (9)0.0202 (6)0.0048 (6)0.0149 (5)0.0035 (6)
H70.0247 (6)0.0566 (11)0.0266 (7)0.0010 (6)0.0095 (5)0.0015 (7)
H80.0526 (11)0.0309 (8)0.0314 (8)0.0128 (7)0.0159 (8)0.0027 (6)
H90.0604 (12)0.0263 (7)0.0446 (10)0.0116 (7)0.0302 (9)0.0139 (7)
H100.0241 (7)0.0730 (14)0.0251 (7)0.0014 (8)0.0049 (6)0.0061 (8)
Geometric parameters (Å, º) top
O1—C41.2500 (10)N3—H81.033 (2)
O2—C41.2540 (9)C4—C51.5250 (9)
N3—C51.4751 (8)C5—H91.091 (2)
N3—H61.0535 (16)C5—H101.086 (2)
N3—H71.0397 (19)
C5—N3—H6111.99 (11)N3—C5—C4111.72 (5)
C5—N3—H7111.86 (12)N3—C5—H9108.40 (12)
C5—N3—H8110.29 (13)C4—C5—H9108.93 (12)
O1—C4—O2125.43 (7)N3—C5—H10109.12 (13)
O1—C4—C5117.45 (6)C4—C5—H10110.29 (12)
O2—C4—C5117.11 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.0535 (16)1.7293 (17)2.7713 (9)169.23 (17)
N3—H6···O2i1.0535 (16)2.642 (2)3.4242 (11)130.75 (12)
N3—H7···O2ii1.0397 (19)1.820 (2)2.8474 (10)168.8 (2)
N3—H8···O2iii1.033 (2)2.101 (2)3.0650 (12)154.26 (17)
N3—H8···O1iv1.033 (2)2.362 (2)2.9504 (10)114.92 (17)
N3—H8···O1iv1.033 (2)2.362 (2)2.9504 (10)114.92 (17)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
(301K) top
Crystal data top
C8H20N4O8F(000) = 62
Mr = 300.24Dx = 1.613 Mg m3
Dm = not measusred Mg m3
Dm measured by not measured
Monoclinic, P21/nNeutron radiation, λ = 0.83950 Å
a = 5.0999 (3) ÅCell parameters from 1062 reflections
b = 11.9516 (6) Åθ = 4.0–46.2°
c = 5.4594 (3) ŵ = 0.24 mm1
β = 111.781 (2)°T = 301 K
V = 309.00 (3) Å3Needle, none
Z = 16 × 1.8 × 1.7 mm
Data collection top
D9
diffractometer
Rint = 0.021
Radiation source: ILL reactorθmax = 46.2°, θmin = 4.0°
equatorial geometry scansh = 72
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
k = 1318
Tmin = 0.593, Tmax = 0.706l = 78
1062 measured reflections3 standard reflections every 50 reflections
927 independent reflections intensity decay: none
872 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.3176P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
927 reflectionsΔρmax = 0.47 e Å3
92 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.583 (17)
Crystal data top
C8H20N4O8V = 309.00 (3) Å3
Mr = 300.24Z = 1
Monoclinic, P21/nNeutron radiation, λ = 0.83950 Å
a = 5.0999 (3) ŵ = 0.24 mm1
b = 11.9516 (6) ÅT = 301 K
c = 5.4594 (3) Å6 × 1.8 × 1.7 mm
β = 111.781 (2)°
Data collection top
D9
diffractometer
872 reflections with I > 2σ(I)
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Rint = 0.021
Tmin = 0.593, Tmax = 0.7063 standard reflections every 50 reflections
1062 measured reflections intensity decay: none
927 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.47 e Å3
927 reflectionsΔρmin = 0.44 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30478 (18)0.09443 (8)0.23515 (15)0.02312 (19)
O20.14775 (19)0.14154 (9)0.10700 (17)0.0264 (2)
N30.30086 (10)0.08984 (5)0.25900 (9)0.01986 (14)
C40.07471 (13)0.12484 (5)0.06601 (12)0.01471 (15)
C50.06438 (14)0.14494 (6)0.21330 (12)0.01730 (16)
H60.2894 (4)0.10007 (17)0.4542 (3)0.0339 (4)
H70.4955 (4)0.11920 (18)0.1307 (3)0.0373 (4)
H80.2980 (5)0.00493 (15)0.2263 (4)0.0408 (4)
H90.0775 (5)0.23479 (15)0.2430 (4)0.0424 (4)
H100.1341 (4)0.1144 (2)0.3568 (3)0.0436 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0216 (4)0.0360 (4)0.0134 (3)0.0062 (3)0.0084 (3)0.0037 (3)
O20.0194 (4)0.0426 (5)0.0219 (4)0.0016 (4)0.0131 (3)0.0027 (3)
N30.0198 (2)0.0292 (3)0.0126 (2)0.00562 (18)0.00832 (17)0.00203 (17)
C40.0162 (3)0.0172 (3)0.0133 (3)0.0006 (2)0.0085 (2)0.0011 (2)
C50.0179 (3)0.0221 (3)0.0134 (3)0.0029 (2)0.0076 (2)0.0033 (2)
H60.0343 (8)0.0499 (9)0.0212 (6)0.0052 (7)0.0146 (6)0.0038 (6)
H70.0262 (7)0.0576 (10)0.0280 (7)0.0007 (7)0.0098 (6)0.0014 (7)
H80.0574 (11)0.0340 (8)0.0323 (8)0.0156 (8)0.0182 (7)0.0028 (6)
H90.0632 (12)0.0285 (7)0.0443 (9)0.0124 (8)0.0302 (9)0.0132 (7)
H100.0253 (7)0.0763 (13)0.0254 (7)0.0032 (8)0.0050 (6)0.0069 (8)
Geometric parameters (Å, º) top
O1—C41.2480 (10)N3—H81.0315 (19)
O2—C41.2512 (10)C4—C51.5252 (9)
N3—C51.4743 (8)C5—H91.0917 (19)
N3—H61.0527 (15)C5—H101.0879 (18)
N3—H71.0408 (18)
C5—N3—H6112.21 (11)N3—C5—C4111.83 (5)
C5—N3—H7111.81 (12)N3—C5—H9108.37 (12)
C5—N3—H8110.20 (12)C4—C5—H9108.79 (11)
O1—C4—O2125.45 (7)N3—C5—H10109.23 (12)
O1—C4—C5117.38 (6)C4—C5—H10110.15 (12)
O2—C4—C5117.16 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.0527 (15)1.7277 (16)2.7696 (9)169.60 (17)
N3—H6···O2i1.0527 (15)2.6440 (19)3.4234 (10)130.56 (12)
N3—H7···O2ii1.0408 (18)1.8201 (19)2.8482 (10)168.73 (19)
N3—H8···O2iii1.0315 (19)2.109 (2)3.0703 (12)154.21 (16)
N3—H8···O1iv1.0315 (19)2.364 (2)2.9526 (10)115.05 (16)
N3—H8···O1iv1.0315 (19)2.364 (2)2.9526 (10)115.05 (16)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
(304K) top
Crystal data top
C8H20N4O8F(000) = 62
Mr = 300.24Dx = 1.612 Mg m3
Monoclinic, P21/nNeutron radiation, λ = 0.83950 Å
a = 5.1008 (3) ÅCell parameters from 1070 reflections
b = 11.9558 (8) Åθ = 4.0–40.0°
c = 5.4602 (3) ŵ = 0.24 mm1
β = 111.772 (3)°T = 304 K
V = 309.23 (3) Å3Needle, none
Z = 16 × 1.8 × 1.7 mm
Data collection top
D9
diffractometer
Rint = 0.018
Radiation source: ILL reactorθmax = 40.0°, θmin = 4.0°
equatorial geometry scansh = 72
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
k = 1318
Tmin = 0.593, Tmax = 0.706l = 68
1070 measured reflections3 standard reflections every 50 reflections
926 independent reflections intensity decay: none
861 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.3169P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
926 reflectionsΔρmax = 0.47 e Å3
92 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.568 (18)
Crystal data top
C8H20N4O8V = 309.23 (3) Å3
Mr = 300.24Z = 1
Monoclinic, P21/nNeutron radiation, λ = 0.83950 Å
a = 5.1008 (3) ŵ = 0.24 mm1
b = 11.9558 (8) ÅT = 304 K
c = 5.4602 (3) Å6 × 1.8 × 1.7 mm
β = 111.772 (3)°
Data collection top
D9
diffractometer
861 reflections with I > 2σ(I)
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Rint = 0.018
Tmin = 0.593, Tmax = 0.7063 standard reflections every 50 reflections
1070 measured reflections intensity decay: none
926 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.47 e Å3
926 reflectionsΔρmin = 0.60 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30498 (18)0.09419 (8)0.23531 (15)0.0231 (2)
O20.1475 (2)0.14151 (9)0.10717 (18)0.0272 (2)
N30.30095 (11)0.08988 (5)0.25906 (9)0.02016 (15)
C40.07497 (14)0.12485 (5)0.06604 (12)0.01491 (16)
C50.06457 (15)0.14496 (6)0.21328 (13)0.01742 (17)
H60.2893 (4)0.10015 (17)0.4544 (3)0.0339 (4)
H70.4952 (4)0.11908 (19)0.1315 (4)0.0380 (4)
H80.2982 (5)0.00506 (16)0.2265 (4)0.0408 (4)
H90.0776 (5)0.23469 (16)0.2431 (4)0.0428 (4)
H100.1337 (4)0.1148 (2)0.3568 (4)0.0437 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (4)0.0358 (5)0.0137 (3)0.0059 (3)0.0084 (3)0.0036 (3)
O20.0200 (4)0.0442 (5)0.0223 (4)0.0019 (4)0.0136 (3)0.0032 (4)
N30.0202 (3)0.0298 (3)0.0126 (2)0.00525 (18)0.00838 (18)0.00155 (17)
C40.0165 (3)0.0172 (3)0.0136 (3)0.0010 (2)0.0086 (2)0.0009 (2)
C50.0176 (3)0.0225 (3)0.0135 (3)0.0032 (2)0.0073 (2)0.0033 (2)
H60.0341 (8)0.0506 (10)0.0205 (6)0.0059 (7)0.0142 (6)0.0043 (6)
H70.0252 (7)0.0601 (11)0.0281 (7)0.0005 (7)0.0091 (6)0.0020 (7)
H80.0566 (12)0.0344 (9)0.0324 (8)0.0136 (8)0.0177 (8)0.0029 (6)
H90.0634 (12)0.0291 (7)0.0444 (10)0.0119 (8)0.0300 (9)0.0135 (7)
H100.0255 (8)0.0757 (13)0.0263 (7)0.0030 (8)0.0055 (6)0.0069 (8)
Geometric parameters (Å, º) top
O1—C41.2492 (11)N3—H81.030 (2)
O2—C41.2520 (11)C4—C51.5253 (9)
N3—C51.4743 (9)C5—H91.091 (2)
N3—H61.0533 (16)C5—H101.0860 (19)
N3—H71.0377 (19)
C5—N3—H6112.16 (11)O2—C4—N3147.85 (6)
C5—N3—H7111.91 (12)N3—C5—C4111.83 (5)
C5—N3—H8110.24 (13)N3—C5—H9108.35 (12)
O1—C4—C5117.44 (6)C4—C5—H9108.85 (12)
O2—C4—C5117.17 (7)N3—C5—H10109.29 (13)
O1—C4—N385.52 (5)C4—C5—H10110.31 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.0533 (16)1.7269 (17)2.7690 (9)169.41 (17)
N3—H6···O2i1.0533 (16)2.6427 (19)3.4230 (11)130.62 (13)
N3—H7···O2ii1.0377 (19)1.825 (2)2.8497 (11)168.8 (2)
N3—H8···O2iii1.030 (2)2.111 (2)3.0716 (13)154.13 (17)
N3—H8···O1iv1.030 (2)2.362 (2)2.9508 (11)115.10 (17)
N3—H8···O1iv1.030 (2)2.362 (2)2.9508 (11)115.10 (17)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
(313K) top
Crystal data top
C8H20N4O8F(000) = 62
Mr = 300.24Dx = 1.611 Mg m3
Monoclinic, P21/nNeutron radiation, λ = 0.83950 Å
a = 5.1012 (3) ÅCell parameters from 1044 reflections
b = 11.9651 (9) Åθ = 4.0–40.0°
c = 5.4604 (4) ŵ = 0.24 mm1
β = 111.763 (5)°T = 313 K
V = 309.53 (4) Å3Needle, none
Z = 16 × 1.8 × 1.7 mm
Data collection top
D9
diffractometer
Rint = 0.015
Radiation source: ILL reactorθmax = 40.0°, θmin = 4.0°
equatorial geometry scansh = 72
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
k = 1318
Tmin = 0.593, Tmax = 0.706l = 68
1044 measured reflections3 standard reflections every 50 reflections
926 independent reflections intensity decay: none
876 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.2935P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
926 reflectionsΔρmax = 0.51 e Å3
92 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.60 (2)
Crystal data top
C8H20N4O8V = 309.53 (4) Å3
Mr = 300.24Z = 1
Monoclinic, P21/nNeutron radiation, λ = 0.83950 Å
a = 5.1012 (3) ŵ = 0.24 mm1
b = 11.9651 (9) ÅT = 313 K
c = 5.4604 (4) Å6 × 1.8 × 1.7 mm
β = 111.763 (5)°
Data collection top
D9
diffractometer
876 reflections with I > 2σ(I)
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Rint = 0.015
Tmin = 0.593, Tmax = 0.7063 standard reflections every 50 reflections
1044 measured reflections intensity decay: none
926 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.51 e Å3
926 reflectionsΔρmin = 0.55 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3051 (2)0.09431 (9)0.23518 (16)0.0240 (2)
O20.1472 (2)0.14152 (10)0.1073 (2)0.0278 (2)
N30.30130 (12)0.09000 (5)0.25903 (10)0.02068 (17)
C40.07517 (15)0.12480 (6)0.06600 (14)0.01530 (18)
C50.06478 (16)0.14495 (7)0.21328 (14)0.01793 (18)
H60.2897 (4)0.10015 (19)0.4542 (3)0.0348 (4)
H70.4953 (4)0.1190 (2)0.1309 (4)0.0385 (4)
H80.2991 (5)0.00493 (17)0.2258 (4)0.0421 (5)
H90.0778 (5)0.23451 (17)0.2434 (4)0.0439 (5)
H100.1330 (4)0.1142 (2)0.3567 (4)0.0446 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0220 (4)0.0380 (5)0.0139 (4)0.0059 (4)0.0086 (3)0.0039 (3)
O20.0203 (4)0.0457 (6)0.0227 (4)0.0023 (4)0.0140 (3)0.0026 (4)
N30.0211 (3)0.0299 (3)0.0131 (2)0.0057 (2)0.00872 (19)0.00189 (18)
C40.0167 (3)0.0176 (3)0.0141 (3)0.0007 (2)0.0087 (2)0.0011 (2)
C50.0182 (3)0.0227 (4)0.0143 (3)0.0030 (3)0.0076 (2)0.0037 (2)
H60.0346 (9)0.0520 (11)0.0218 (6)0.0059 (7)0.0152 (6)0.0044 (7)
H70.0261 (8)0.0605 (12)0.0281 (8)0.0031 (8)0.0092 (6)0.0003 (8)
H80.0590 (13)0.0354 (9)0.0333 (9)0.0154 (9)0.0188 (8)0.0029 (7)
H90.0662 (14)0.0299 (8)0.0456 (11)0.0116 (9)0.0322 (10)0.0141 (8)
H100.0254 (8)0.0785 (15)0.0264 (8)0.0033 (9)0.0056 (7)0.0069 (9)
Geometric parameters (Å, º) top
O1—C41.2486 (12)N3—H81.035 (2)
O2—C41.2521 (12)C4—C51.5253 (10)
N3—C51.4744 (9)C5—H91.090 (2)
N3—H61.0525 (17)C5—H101.087 (2)
N3—H71.037 (2)
C5—N3—H6112.20 (12)N3—C5—C4111.82 (6)
C5—N3—H7111.87 (13)N3—C5—H9108.26 (13)
C5—N3—H8110.26 (14)C4—C5—H9108.95 (13)
O1—C4—O2125.38 (8)N3—C5—H10109.07 (14)
O1—C4—C5117.43 (7)C4—C5—H10110.23 (13)
O2—C4—C5117.18 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.0525 (17)1.7281 (18)2.7696 (10)169.54 (19)
N3—H6···O2i1.0525 (17)2.644 (2)3.4230 (12)130.60 (14)
N3—H7···O2ii1.037 (2)1.825 (2)2.8499 (12)168.9 (2)
N3—H8···O2iii1.035 (2)2.112 (3)3.0759 (14)154.01 (19)
N3—H8···O1iv1.035 (2)2.359 (2)2.9525 (12)115.24 (18)
N3—H8···O1iv1.035 (2)2.359 (2)2.9525 (12)115.24 (18)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
(323K) top
Crystal data top
C8H20N4O8F(000) = 62
Mr = 300.24Dx = 1.609 Mg m3
Monoclinic, P21/nNeutron radiation, λ = 0.83950 Å
a = 5.1026 (3) ÅCell parameters from 926 reflections
b = 11.9752 (9) Åθ = 4.0–39.9°
c = 5.4602 (4) ŵ = 0.24 mm1
β = 111.757 (5)°T = 323 K
V = 309.88 (4) Å3Needle, none
Z = 16 × 1.8 × 1.7 mm
Data collection top
D9
diffractometer
Rint = 0.021
Radiation source: ILL reactorθmax = 39.9°, θmin = 4.0°
equatorial geometry scansh = 72
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
k = 1318
Tmin = 0.594, Tmax = 0.706l = 68
1060 measured reflections3 standard reflections every 50 reflections
926 independent reflections intensity decay: none
883 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.2935P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
926 reflectionsΔρmax = 0.61 e Å3
92 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.59 (2)
Crystal data top
C8H20N4O8V = 309.88 (4) Å3
Mr = 300.24Z = 1
Monoclinic, P21/nNeutron radiation, λ = 0.83950 Å
a = 5.1026 (3) ŵ = 0.24 mm1
b = 11.9752 (9) ÅT = 323 K
c = 5.4602 (4) Å6 × 1.8 × 1.7 mm
β = 111.757 (5)°
Data collection top
D9
diffractometer
883 reflections with I > 2σ(I)
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Rint = 0.021
Tmin = 0.594, Tmax = 0.7063 standard reflections every 50 reflections
1060 measured reflections intensity decay: none
926 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.61 e Å3
926 reflectionsΔρmin = 0.65 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3055 (2)0.09436 (9)0.23504 (17)0.0250 (2)
O20.1464 (2)0.14140 (10)0.1074 (2)0.0290 (2)
N30.30176 (12)0.09010 (5)0.25907 (10)0.02169 (17)
C40.07555 (15)0.12480 (6)0.06608 (14)0.01603 (18)
C50.06516 (16)0.14480 (7)0.21328 (14)0.01865 (18)
H60.2908 (4)0.10024 (19)0.4544 (3)0.0357 (4)
H70.4960 (4)0.1193 (2)0.1313 (4)0.0398 (4)
H80.2990 (5)0.00500 (17)0.2260 (4)0.0433 (5)
H90.0778 (6)0.23443 (17)0.2438 (5)0.0456 (5)
H100.1321 (4)0.1142 (2)0.3561 (4)0.0467 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0227 (4)0.0395 (5)0.0146 (4)0.0062 (4)0.0089 (3)0.0045 (3)
O20.0207 (4)0.0478 (6)0.0236 (4)0.0016 (4)0.0141 (3)0.0034 (4)
N30.0218 (3)0.0319 (3)0.0135 (2)0.0061 (2)0.0090 (2)0.00206 (19)
C40.0174 (3)0.0188 (3)0.0144 (3)0.0011 (2)0.0089 (2)0.0013 (2)
C50.0189 (3)0.0238 (4)0.0146 (3)0.0031 (3)0.0078 (2)0.0038 (2)
H60.0356 (9)0.0538 (11)0.0220 (6)0.0052 (8)0.0157 (6)0.0041 (7)
H70.0274 (8)0.0630 (12)0.0290 (8)0.0032 (8)0.0104 (7)0.0013 (8)
H80.0597 (13)0.0373 (10)0.0343 (9)0.0153 (9)0.0192 (9)0.0027 (7)
H90.0691 (14)0.0306 (8)0.0479 (11)0.0137 (9)0.0343 (11)0.0151 (8)
H100.0259 (9)0.0834 (15)0.0269 (8)0.0025 (9)0.0052 (7)0.0072 (9)
Geometric parameters (Å, º) top
O1—C41.2484 (12)N3—H81.036 (2)
O2—C41.2498 (12)C4—C51.5255 (10)
N3—C51.4741 (9)C5—H91.092 (2)
N3—H61.0542 (17)C5—H101.083 (2)
N3—H71.039 (2)
C5—N3—H6112.38 (12)N3—C5—C4111.88 (6)
C5—N3—H7111.97 (13)N3—C5—H9108.21 (14)
C5—N3—H8110.05 (14)C4—C5—H9108.96 (13)
O1—C4—O2125.42 (8)N3—C5—H10109.19 (14)
O1—C4—C5117.36 (7)C4—C5—H10110.20 (14)
O2—C4—C5117.22 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.0542 (17)1.7263 (19)2.7699 (10)169.66 (19)
N3—H6···O2i1.0542 (17)2.643 (2)3.4218 (12)130.39 (14)
N3—H7···O2ii1.039 (2)1.826 (2)2.8519 (12)168.7 (2)
N3—H8···O2iii1.036 (2)2.115 (3)3.0801 (14)154.02 (19)
N3—H8···O1iv1.036 (2)2.359 (2)2.9524 (12)115.20 (18)
N3—H8···O1iv1.036 (2)2.359 (2)2.9524 (12)115.20 (18)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
(427K) top
Crystal data top
C8H20N4O8F(000) = 62
Mr = 300.24Dx = 1.595 Mg m3
Monoclinic, P21/nNeutron radiation, λ = 0.83970 Å
a = 5.1074 (3) ÅCell parameters from 399 reflections
b = 12.0775 (9) Åθ = 4.0–46.2°
c = 5.4596 (4) ŵ = 0.24 mm1
β = 111.827 (5)°T = 427 K
V = 312.63 (4) Å3Needle, none
Z = 16 × 1.8 × 1.7 mm
Data collection top
D9
diffractometer
Rint = 0.093
Radiation source: ILL reactorθmax = 46.2°, θmin = 4.0°
equatorial geometry scansh = 51
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
k = 412
Tmin = 0.594, Tmax = 0.706l = 76
399 measured reflections3 standard reflections every 50 reflections
331 independent reflections intensity decay: none
312 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.2935P]
where P = (Fo2 + 2Fc2)/3
S = 1.33(Δ/σ)max = 0.001
331 reflectionsΔρmax = 0.61 e Å3
92 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.26 (2)
Crystal data top
C8H20N4O8V = 312.63 (4) Å3
Mr = 300.24Z = 1
Monoclinic, P21/nNeutron radiation, λ = 0.83970 Å
a = 5.1074 (3) ŵ = 0.24 mm1
b = 12.0775 (9) ÅT = 427 K
c = 5.4596 (4) Å6 × 1.8 × 1.7 mm
β = 111.827 (5)°
Data collection top
D9
diffractometer
312 reflections with I > 2σ(I)
Absorption correction: gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Rint = 0.093
Tmin = 0.594, Tmax = 0.7063 standard reflections every 50 reflections
399 measured reflections intensity decay: none
331 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.33Δρmax = 0.61 e Å3
331 reflectionsΔρmin = 0.35 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3093 (5)0.09491 (19)0.2345 (5)0.0292 (8)
O20.1400 (5)0.1416 (2)0.1074 (5)0.0363 (8)
N30.3075 (4)0.09064 (19)0.2581 (4)0.0259 (7)
C40.0819 (4)0.12463 (14)0.0657 (4)0.0171 (7)
C50.0694 (5)0.14393 (17)0.2138 (4)0.0202 (7)
H60.2952 (10)0.1021 (4)0.4558 (9)0.0407 (12)
H70.4978 (13)0.1199 (4)0.1342 (12)0.0482 (12)
H80.3064 (11)0.0095 (6)0.2283 (9)0.0496 (13)
H90.0791 (11)0.2327 (4)0.2442 (9)0.0539 (14)
H100.1257 (13)0.1144 (5)0.3542 (11)0.0570 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0217 (18)0.0517 (15)0.0169 (13)0.0077 (11)0.0105 (14)0.0049 (10)
O20.0201 (16)0.0670 (18)0.0304 (17)0.0048 (12)0.0194 (14)0.0040 (11)
N30.0184 (14)0.0489 (15)0.0133 (11)0.0083 (9)0.0093 (10)0.0012 (8)
C40.0120 (13)0.0269 (11)0.0157 (11)0.0007 (8)0.0090 (11)0.0013 (8)
C50.0131 (15)0.0322 (15)0.0172 (14)0.0065 (9)0.0080 (13)0.0054 (8)
H60.040 (3)0.066 (3)0.026 (3)0.006 (2)0.023 (2)0.007 (2)
H70.021 (3)0.085 (3)0.039 (3)0.003 (3)0.012 (3)0.001 (2)
H80.062 (3)0.056 (3)0.034 (3)0.025 (3)0.021 (2)0.002 (2)
H90.076 (4)0.042 (3)0.060 (3)0.020 (2)0.044 (3)0.019 (2)
H100.023 (3)0.109 (4)0.035 (3)0.004 (3)0.006 (3)0.006 (2)
Geometric parameters (Å, º) top
O1—C41.237 (3)N3—H80.993 (8)
O2—C41.253 (3)C4—C51.521 (3)
N3—C51.473 (3)C5—H91.089 (6)
N3—H61.067 (6)C5—H101.068 (8)
N3—H71.019 (8)
C5—N3—H6111.6 (3)N3—C5—C4111.62 (18)
C5—N3—H7112.4 (3)N3—C5—H9108.6 (3)
C5—N3—H8110.4 (3)C4—C5—H9108.5 (3)
O1—C4—O2125.0 (2)N3—C5—H10110.1 (3)
O1—C4—C5117.97 (18)C4—C5—H10110.4 (3)
O2—C4—C5116.98 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.067 (6)1.721 (5)2.774 (2)168.3 (4)
N3—H6···O2i1.067 (6)2.630 (5)3.423 (3)130.8 (3)
N3—H7···O2ii1.019 (8)1.848 (7)2.852 (3)167.8 (5)
N3—H8···O2iii0.993 (8)2.215 (7)3.130 (3)152.5 (4)
N3—H8···O1iv0.993 (8)2.344 (5)2.947 (3)118.2 (4)
N3—H8···O1iv0.993 (8)2.344 (5)2.947 (3)118.2 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.

Experimental details

(288K)(301K)(304K)(313K)
Crystal data
Chemical formulaC8H20N4O8C8H20N4O8C8H20N4O8C8H20N4O8
Mr300.24300.24300.24300.24
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)288301304313
a, b, c (Å)5.0993 (3), 11.9416 (6), 5.4608 (3)5.0999 (3), 11.9516 (6), 5.4594 (3)5.1008 (3), 11.9558 (8), 5.4602 (3)5.1012 (3), 11.9651 (9), 5.4604 (4)
β (°) 111.784 (2) 111.781 (2) 111.772 (3) 111.763 (5)
V3)308.78 (3)309.00 (3)309.23 (3)309.53 (4)
Z1111
Radiation typeNeutron, λ = 0.83950 ÅNeutron, λ = 0.83950 ÅNeutron, λ = 0.83950 ÅNeutron, λ = 0.83950 Å
µ (mm1)0.240.240.240.24
Crystal size (mm)6 × 1.8 × 1.76 × 1.8 × 1.76 × 1.8 × 1.76 × 1.8 × 1.7
Data collection
DiffractometerD9
diffractometer
D9
diffractometer
D9
diffractometer
D9
diffractometer
Absorption correctionGaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Tmin, Tmax0.550, 0.7060.593, 0.7060.593, 0.7060.593, 0.706
No. of measured, independent and
observed [I > 2σ(I)] reflections
1540, 1319, 1249 1062, 927, 872 1070, 926, 861 1044, 926, 876
Rint0.0160.0210.0180.015
(sin θ/λ)max1)0.8430.8600.7660.765
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.078, 1.20 0.027, 0.061, 1.15 0.027, 0.067, 1.09 0.030, 0.074, 1.16
No. of reflections1319927926926
No. of parameters92929292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.620.47, 0.440.47, 0.600.51, 0.55


(323K)(427K)
Crystal data
Chemical formulaC8H20N4O8C8H20N4O8
Mr300.24300.24
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)323427
a, b, c (Å)5.1026 (3), 11.9752 (9), 5.4602 (4)5.1074 (3), 12.0775 (9), 5.4596 (4)
β (°) 111.757 (5) 111.827 (5)
V3)309.88 (4)312.63 (4)
Z11
Radiation typeNeutron, λ = 0.83950 ÅNeutron, λ = 0.83970 Å
µ (mm1)0.240.24
Crystal size (mm)6 × 1.8 × 1.76 × 1.8 × 1.7
Data collection
DiffractometerD9
diffractometer
D9
diffractometer
Absorption correctionGaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Gaussian
P. Coppens: The evaluation of absorption and extinction in single crystal structure analysis in crystallographic computing, ed F.R.Ahmed, Munsgaad, 1970.
Tmin, Tmax0.594, 0.7060.594, 0.706
No. of measured, independent and
observed [I > 2σ(I)] reflections
1060, 926, 883 399, 331, 312
Rint0.0210.093
(sin θ/λ)max1)0.7650.860
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.075, 1.16 0.031, 0.072, 1.33
No. of reflections926331
No. of parameters9292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.650.61, 0.35

Computer programs: ILL MAD, ILL RAFD9, ILL RETREAT, SHELXL97 (Sheldrick, 1997), PLATON.

Hydrogen-bond geometry (Å, º) for (288K) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.0535 (16)1.7293 (17)2.7713 (9)169.23 (17)
N3—H6···O2i1.0535 (16)2.642 (2)3.4242 (11)130.75 (12)
N3—H7···O2ii1.0397 (19)1.820 (2)2.8474 (10)168.8 (2)
N3—H8···O2iii1.033 (2)2.101 (2)3.0650 (12)154.26 (17)
N3—H8···O1iv1.033 (2)2.362 (2)2.9504 (10)114.92 (17)
N3—H8···O1iv1.033 (2)2.362 (2)2.9504 (10)114.92 (17)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (301K) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.0527 (15)1.7277 (16)2.7696 (9)169.60 (17)
N3—H6···O2i1.0527 (15)2.6440 (19)3.4234 (10)130.56 (12)
N3—H7···O2ii1.0408 (18)1.8201 (19)2.8482 (10)168.73 (19)
N3—H8···O2iii1.0315 (19)2.109 (2)3.0703 (12)154.21 (16)
N3—H8···O1iv1.0315 (19)2.364 (2)2.9526 (10)115.05 (16)
N3—H8···O1iv1.0315 (19)2.364 (2)2.9526 (10)115.05 (16)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (304K) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.0533 (16)1.7269 (17)2.7690 (9)169.41 (17)
N3—H6···O2i1.0533 (16)2.6427 (19)3.4230 (11)130.62 (13)
N3—H7···O2ii1.0377 (19)1.825 (2)2.8497 (11)168.8 (2)
N3—H8···O2iii1.030 (2)2.111 (2)3.0716 (13)154.13 (17)
N3—H8···O1iv1.030 (2)2.362 (2)2.9508 (11)115.10 (17)
N3—H8···O1iv1.030 (2)2.362 (2)2.9508 (11)115.10 (17)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (313K) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.0525 (17)1.7281 (18)2.7696 (10)169.54 (19)
N3—H6···O2i1.0525 (17)2.644 (2)3.4230 (12)130.60 (14)
N3—H7···O2ii1.037 (2)1.825 (2)2.8499 (12)168.9 (2)
N3—H8···O2iii1.035 (2)2.112 (3)3.0759 (14)154.01 (19)
N3—H8···O1iv1.035 (2)2.359 (2)2.9525 (12)115.24 (18)
N3—H8···O1iv1.035 (2)2.359 (2)2.9525 (12)115.24 (18)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (323K) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.0542 (17)1.7263 (19)2.7699 (10)169.66 (19)
N3—H6···O2i1.0542 (17)2.643 (2)3.4218 (12)130.39 (14)
N3—H7···O2ii1.039 (2)1.826 (2)2.8519 (12)168.7 (2)
N3—H8···O2iii1.036 (2)2.115 (3)3.0801 (14)154.02 (19)
N3—H8···O1iv1.036 (2)2.359 (2)2.9524 (12)115.20 (18)
N3—H8···O1iv1.036 (2)2.359 (2)2.9524 (12)115.20 (18)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (427K) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O1i1.067 (6)1.721 (5)2.774 (2)168.3 (4)
N3—H6···O2i1.067 (6)2.630 (5)3.423 (3)130.8 (3)
N3—H7···O2ii1.019 (8)1.848 (7)2.852 (3)167.8 (5)
N3—H8···O2iii0.993 (8)2.215 (7)3.130 (3)152.5 (4)
N3—H8···O1iv0.993 (8)2.344 (5)2.947 (3)118.2 (4)
N3—H8···O1iv0.993 (8)2.344 (5)2.947 (3)118.2 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x, y, z; (iv) x+1, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds