Download citation
Download citation
link to html
Neutron-diffraction studies of the compounds 5-nitro-2-{[1-phenylethyl]amino}pyridine (methylbenzylaminonitro­pyridine, hereafter MBANP) and 3,5-dinitro-2-{[1-phenyl­ethyl]amino}pyridine (methylbenzylaminodinitropyridine, hereafter MBADNP) are presented, and a charge-density study of the latter is reported. The studies were conducted in order to relate the structural attributes of these materials to their physical properties. MBANP exhibits a second-harmonic generation (SHG) output, χ(2), over eight times higher than that of MBADNP, despite their very similar molecular characteristics and the seemingly more SHG-favourable molecular features present in MBADNP. The neutron-diffraction studies show that intramolecular hydrogen bonding is responsible for this apparent discrepancy. The charge-density study on MBADNP confirms this and reveals that the pyridine group is the principal moiety responsible for the SHG effect on the molecular scale. Moreover, the strong intra­molecular hydrogen bond present in MBADNP is proven to result from an electrostatic interaction. The dipole moment of MBADNP is also deduced from the charge-density study.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768102006109/an0602sup1.cif
Contains datablocks MBANP, MBADNP, MBADNPX

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102006109/an0602MBANPsup2.hkl
Contains datablock MBANP

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102006109/an0602MBADNPsup3.hkl
Contains datablock MBADNP

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102006109/an0602MBANPXsup4.hkl
Contains datablock MBADNPX

CCDC references: 193606; 193607; 193608

Comment top

The nature of the hydrogen bonding in two organic non-linear optical compounds, MBANP and MBADNP, as determined by neutron diffraction, is related to their differing second-harmonic-generation outputs. A charge-density study of MBADNP elucidates the nature of the highly influential intramolecular hydrogen-bond and also reveals the nature of the polarizability within the molecule.

Computing details top

Data collection: MAD (Barthelemy, 1984) for MBANP; MAD (Bartelemy, 1984) for MBADNP; local program for MBADNPX. Cell refinement: RAFD9 (local program) for MBANP, MBADNP; local program for MBADNPX. Data reduction: RACER (Wilkinson et al., 1988) for MBANP, MBADNP; COLL5N (Lehmann and Wilson, 1987) for MBADNPX. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990) for MBANP, MBADNP; SHELXS97 (Sheldrick, 1990) for MBADNPX. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993) for MBANP, MBADNP; SHELXL97 (Sheldrick, 1997) for MBADNPX. Molecular graphics: SHELXTL-Plus (Sheldrick, 1995) for MBANP, MBADNPX; SHELXTL_PLUS (1995) for MBADNP. Software used to prepare material for publication: SHELXL93 (Sheldrick, 1993) for MBANP, MBADNP; SHELXL97 (Sheldrick, 1997) for MBADNPX.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
(MBANP) top
Crystal data top
C13H13N3O2F(000) = 182
Mr = 243.00Dx = 1.368 Mg m3
Monoclinic, P21Neutron radiation, λ = 0.83717 Å
a = 5.321 (1) ÅCell parameters from 4 reflections
b = 6.293 (1) Åθ = 10–12°
c = 17.650 (4) ŵ = 0.16 mm1
β = 93.65 (3)°T = 20 K
V = 589.8 (2) Å3Rectangle, yellow
Z = 24.3 × 2.0 × 1.0 mm
Data collection top
The high-flux four-circle
diffractometer, D9
2619 reflections with I > 2σ(I)
Radiation source: Institut Laue Langevin Reactor, Grenoble, FranceRint = 0.038
Cu (220) monochromatorθmax = 46.5°, θmin = 2.7°
ω–x–θ scansh = 99
Absorption correction: integration
Gaussian integration (Coppens et al, 1965)
k = 102
Tmin = 0.726, Tmax = 0.857l = 2221
4116 measured reflections1 standard reflections every 50 reflections
2805 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073All H-atom parameters refined
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 2.56(Δ/σ)max = 0.004
2799 reflectionsΔρmax = 1.80 e Å3
280 parametersΔρmin = 1.87 e Å3
1 restraintAbsolute structure: Absolute structure known a priori from reagents in synthesis (see paper)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H13N3O2V = 589.8 (2) Å3
Mr = 243.00Z = 2
Monoclinic, P21Neutron radiation, λ = 0.83717 Å
a = 5.321 (1) ŵ = 0.16 mm1
b = 6.293 (1) ÅT = 20 K
c = 17.650 (4) Å4.3 × 2.0 × 1.0 mm
β = 93.65 (3)°
Data collection top
The high-flux four-circle
diffractometer, D9
2619 reflections with I > 2σ(I)
Absorption correction: integration
Gaussian integration (Coppens et al, 1965)
Rint = 0.038
Tmin = 0.726, Tmax = 0.8571 standard reflections every 50 reflections
4116 measured reflections intensity decay: none
2805 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0731 restraint
wR(F2) = 0.111All H-atom parameters refined
S = 2.56Δρmax = 1.80 e Å3
2799 reflectionsΔρmin = 1.87 e Å3
280 parametersAbsolute structure: Absolute structure known a priori from reagents in synthesis (see paper)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 6 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating the obs R factor etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6458 (6)0.1528 (5)0.4698 (2)0.0103 (5)
O20.3175 (6)0.1837 (5)0.3915 (2)0.0114 (5)
N10.8817 (3)0.9896 (3)0.30042 (12)0.0080 (3)
H1N1.0504 (10)1.0463 (11)0.3223 (4)0.0223 (13)
N20.5712 (3)0.7316 (3)0.30259 (12)0.0081 (3)
N30.5221 (3)0.2486 (3)0.41967 (12)0.0075 (3)
C10.8083 (4)0.9335 (4)0.1617 (2)0.0069 (4)
C20.6266 (4)0.9362 (4)0.1012 (2)0.0084 (4)
H20.4594 (11)1.0339 (11)0.1057 (5)0.0248 (13)
C30.6576 (5)0.8155 (4)0.0366 (2)0.0093 (4)
H30.5144 (13)0.8191 (12)0.0089 (4)0.0238 (13)
C40.8723 (5)0.6900 (4)0.0317 (2)0.0086 (4)
H40.8973 (13)0.5943 (12)0.0180 (4)0.0241 (13)
C51.0539 (4)0.6858 (4)0.0915 (2)0.0082 (4)
H51.2218 (11)0.5898 (12)0.0879 (4)0.0241 (13)
C61.0243 (4)0.8075 (4)0.1567 (2)0.0080 (4)
H61.1690 (11)0.8058 (12)0.2031 (4)0.0219 (12)
C70.7761 (4)1.0788 (4)0.2293 (2)0.0067 (4)
H70.5722 (9)1.1041 (10)0.2343 (4)0.0177 (10)
C80.9068 (5)1.2913 (4)0.2160 (2)0.0101 (4)
H8A0.8927 (15)1.3966 (11)0.2642 (5)0.0282 (14)
H8B0.8215 (14)1.3687 (13)0.1664 (5)0.030 (2)
H8C1.1034 (13)1.2654 (12)0.2071 (5)0.0286 (15)
C90.7922 (4)0.8116 (4)0.3324 (2)0.0068 (4)
C100.9319 (4)0.7158 (4)0.3944 (2)0.0078 (4)
H101.1051 (11)0.7868 (11)0.4161 (4)0.0226 (12)
C110.8457 (4)0.5305 (4)0.4240 (2)0.0075 (4)
H110.9485 (12)0.4492 (12)0.4702 (4)0.0235 (12)
C120.6180 (4)0.4461 (4)0.3917 (2)0.0071 (4)
C130.4876 (4)0.5519 (4)0.3326 (2)0.0075 (4)
H130.3098 (11)0.4870 (12)0.3092 (4)0.0221 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0090 (10)0.0066 (11)0.015 (2)0.0026 (8)0.0016 (9)0.0031 (10)
O20.0116 (11)0.0094 (10)0.013 (2)0.0046 (9)0.0011 (9)0.0016 (11)
N10.0070 (6)0.0061 (6)0.0107 (10)0.0021 (5)0.0008 (5)0.0007 (6)
H1N0.013 (2)0.024 (3)0.028 (4)0.014 (2)0.009 (2)0.004 (2)
N20.0067 (6)0.0059 (6)0.0114 (10)0.0003 (5)0.0013 (5)0.0013 (6)
N30.0062 (6)0.0060 (6)0.0100 (9)0.0011 (5)0.0006 (5)0.0004 (6)
C10.0082 (8)0.0051 (8)0.0072 (13)0.0008 (7)0.0003 (7)0.0007 (8)
C20.0063 (8)0.0076 (8)0.0113 (13)0.0004 (7)0.0002 (7)0.0005 (8)
H20.013 (2)0.025 (3)0.036 (4)0.010 (2)0.002 (2)0.003 (3)
C30.0105 (9)0.0080 (9)0.0091 (13)0.0017 (8)0.0016 (7)0.0015 (9)
H30.024 (2)0.026 (3)0.021 (3)0.004 (2)0.003 (2)0.007 (3)
C40.0097 (8)0.0065 (8)0.0094 (13)0.0010 (7)0.0001 (7)0.0007 (8)
H40.029 (3)0.026 (3)0.017 (3)0.006 (2)0.001 (2)0.009 (2)
C50.0061 (8)0.0071 (8)0.0112 (13)0.0017 (7)0.0004 (7)0.0017 (8)
H50.017 (2)0.026 (3)0.029 (4)0.010 (2)0.003 (2)0.006 (3)
C60.0070 (8)0.0060 (8)0.0109 (13)0.0004 (7)0.0005 (7)0.0002 (8)
H60.016 (2)0.026 (3)0.021 (3)0.007 (2)0.010 (2)0.002 (2)
C70.0083 (8)0.0057 (8)0.0061 (13)0.0004 (7)0.0005 (7)0.0008 (7)
H70.007 (2)0.021 (2)0.024 (3)0.003 (2)0.000 (2)0.001 (2)
C80.0123 (9)0.0049 (8)0.0132 (14)0.0021 (7)0.0018 (8)0.0006 (8)
H8A0.036 (3)0.019 (3)0.030 (4)0.003 (2)0.001 (3)0.005 (3)
H8B0.026 (3)0.026 (3)0.036 (4)0.006 (2)0.006 (3)0.011 (3)
H8C0.022 (3)0.022 (3)0.042 (4)0.002 (2)0.008 (3)0.001 (3)
C90.0055 (8)0.0055 (8)0.0095 (13)0.0010 (7)0.0007 (7)0.0009 (8)
C100.0048 (7)0.0060 (9)0.0123 (14)0.0019 (6)0.0014 (7)0.0004 (8)
H100.019 (2)0.022 (3)0.026 (3)0.006 (2)0.004 (2)0.000 (2)
C110.0063 (8)0.0061 (9)0.0099 (13)0.0016 (6)0.0008 (7)0.0012 (8)
H110.022 (2)0.026 (3)0.022 (3)0.002 (2)0.005 (2)0.010 (2)
C120.0052 (7)0.0053 (8)0.0109 (13)0.0012 (6)0.0001 (7)0.0003 (8)
C130.0062 (8)0.0060 (8)0.0100 (13)0.0013 (7)0.0013 (7)0.0004 (8)
H130.017 (2)0.023 (3)0.025 (3)0.009 (2)0.004 (2)0.003 (2)
Geometric parameters (Å, º) top
O1—N31.226 (4)C4—H41.080 (7)
O2—N31.237 (3)C5—C61.399 (4)
N1—C91.354 (3)C5—H51.084 (6)
N1—C71.455 (3)C6—H61.087 (6)
N1—H1N1.019 (5)C7—C81.532 (4)
N2—C131.337 (3)C7—H71.106 (6)
N2—C91.354 (3)C8—H8A1.085 (8)
N3—C121.443 (3)C8—H8B1.076 (8)
C1—C21.394 (4)C8—H8C1.080 (7)
C1—C61.404 (3)C9—C101.418 (4)
C1—C71.522 (4)C10—C111.369 (4)
C2—C31.388 (4)C10—H101.073 (7)
C2—H21.089 (6)C11—C121.409 (3)
C3—C41.396 (4)C11—H111.082 (7)
C3—H31.072 (8)C12—C131.386 (4)
C4—C51.385 (4)C13—H131.088 (7)
C9—N1—C7123.4 (2)N1—C7—C8108.3 (2)
C9—N1—H1N117.2 (4)C1—C7—C8109.2 (2)
C7—N1—H1N118.3 (4)N1—C7—H7108.3 (4)
C13—N2—C9117.6 (2)C1—C7—H7108.0 (4)
O1—N3—O2123.1 (3)C8—C7—H7110.1 (4)
O1—N3—C12119.0 (2)C7—C8—H8A111.0 (5)
O2—N3—C12117.9 (2)C7—C8—H8B110.3 (5)
C2—C1—C6119.3 (2)H8A—C8—H8B108.3 (7)
C2—C1—C7119.1 (2)C7—C8—H8C110.1 (4)
C6—C1—C7121.4 (2)H8A—C8—H8C108.8 (6)
C3—C2—C1120.6 (2)H8B—C8—H8C108.2 (7)
C3—C2—H2120.7 (5)N2—C9—N1117.8 (2)
C1—C2—H2118.7 (5)N2—C9—C10122.8 (2)
C2—C3—C4120.0 (2)N1—C9—C10119.5 (2)
C2—C3—H3119.2 (4)C11—C10—C9119.0 (2)
C4—C3—H3120.8 (5)C11—C10—H10121.3 (5)
C5—C4—C3119.9 (3)C9—C10—H10119.7 (4)
C5—C4—H4119.5 (4)C10—C11—C12117.9 (2)
C3—C4—H4120.6 (4)C10—C11—H11121.7 (4)
C4—C5—C6120.4 (2)C12—C11—H11120.4 (4)
C4—C5—H5120.2 (5)C13—C12—C11120.0 (2)
C6—C5—H5119.4 (5)C13—C12—N3120.0 (2)
C5—C6—C1119.7 (2)C11—C12—N3120.0 (2)
C5—C6—H6120.2 (4)N2—C13—C12122.8 (2)
C1—C6—H6120.1 (4)N2—C13—H13118.1 (4)
N1—C7—C1112.9 (2)C12—C13—H13119.2 (4)
(MBADNP) top
Crystal data top
C13H12N4O4F(000) = 230
Mr = 288.00Dx = 1.504 Mg m3
Monoclinic, P21Neutron radiation, λ = 0.83717 Å
a = 8.352 (3) ÅCell parameters from 4 reflections
b = 8.570 (3) Åθ = 10–12°
c = 8.909 (4) ŵ = 0.14 mm1
β = 93.98 (2)°T = 20 K
V = 636.1 (4) Å3Hexagonal prism, yellow
Z = 23.0 × 2.5 × 1.0 mm
Data collection top
High-flux four-circle
diffractometer, D9
3267 reflections with I > 2σ(I)
Radiation source: Institut Laue Langevin Reactor, Grenoble, FranceRint = 0.028
Cu (220) monochromatorθmax = 46.6°, θmin = 3.8°
ω–x–2θ scansh = 014
Absorption correction: integration
Gaussian integration (Coppens et al, 1965)
k = 1014
Tmin = 0.757, Tmax = 0.880l = 1513
3755 measured reflections1 standard reflections every 50 reflections
3401 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.47(Δ/σ)max < 0.001
3397 reflectionsΔρmax = 0.82 e Å3
298 parametersΔρmin = 0.91 e Å3
1 restraintAbsolute structure: The absolute structure is known a priori from reagents in the synthesis (see paper)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H12N4O4V = 636.1 (4) Å3
Mr = 288.00Z = 2
Monoclinic, P21Neutron radiation, λ = 0.83717 Å
a = 8.352 (3) ŵ = 0.14 mm1
b = 8.570 (3) ÅT = 20 K
c = 8.909 (4) Å3.0 × 2.5 × 1.0 mm
β = 93.98 (2)°
Data collection top
High-flux four-circle
diffractometer, D9
3267 reflections with I > 2σ(I)
Absorption correction: integration
Gaussian integration (Coppens et al, 1965)
Rint = 0.028
Tmin = 0.757, Tmax = 0.8801 standard reflections every 50 reflections
3755 measured reflections intensity decay: none
3401 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.052All H-atom parameters refined
S = 1.47Δρmax = 0.82 e Å3
3397 reflectionsΔρmin = 0.91 e Å3
298 parametersAbsolute structure: The absolute structure is known a priori from reagents in the synthesis (see paper)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 4 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating the obs R factor etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15593 (12)0.96547 (13)0.73206 (12)0.0076 (2)
O20.01945 (13)1.06825 (13)0.55930 (12)0.0082 (2)
O30.51576 (12)0.89189 (13)0.49365 (12)0.0071 (2)
O40.61174 (12)0.69667 (13)0.62704 (12)0.0071 (2)
N10.08104 (7)0.67472 (7)0.82438 (7)0.00506 (9)
H1N0.1746 (3)0.7477 (3)0.7998 (3)0.0203 (4)
N20.17873 (7)0.60357 (7)0.78741 (7)0.00496 (9)
N30.03933 (7)0.96757 (7)0.65345 (7)0.00438 (9)
N40.50107 (7)0.78427 (7)0.58286 (7)0.00431 (9)
C10.24396 (10)0.55579 (10)1.00641 (10)0.00419 (12)
C20.38679 (10)0.47043 (11)1.00011 (10)0.00554 (12)
H20.4081 (3)0.3772 (3)0.9181 (3)0.0199 (4)
C30.50539 (10)0.50292 (11)1.09938 (10)0.00608 (13)
H30.6170 (3)0.4370 (3)1.0907 (3)0.0224 (4)
C40.48078 (10)0.61863 (11)1.20866 (10)0.00586 (13)
H40.5733 (3)0.6411 (3)1.2864 (3)0.0208 (4)
C50.33708 (11)0.70326 (11)1.21700 (10)0.00606 (13)
H50.3150 (3)0.7913 (3)1.3034 (3)0.0217 (4)
C60.22085 (10)0.67300 (11)1.11570 (10)0.00524 (12)
H60.1108 (3)0.7410 (3)1.1218 (3)0.0220 (4)
C70.11286 (10)0.52602 (10)0.89968 (9)0.00404 (12)
H70.0012 (2)0.4945 (3)0.9657 (2)0.0156 (3)
C80.15256 (11)0.39796 (10)0.78310 (10)0.00631 (13)
H8A0.1687 (3)0.2854 (3)0.8380 (3)0.0236 (4)
H8B0.0542 (3)0.3866 (3)0.7081 (3)0.0237 (4)
H8C0.2630 (3)0.4254 (3)0.7153 (3)0.0223 (4)
C90.05708 (10)0.70823 (10)0.76388 (9)0.00371 (12)
C100.08145 (10)0.84614 (10)0.67666 (10)0.00400 (12)
C110.22537 (10)0.87061 (10)0.61283 (10)0.00406 (12)
H110.2447 (3)0.9743 (3)0.5467 (3)0.0176 (3)
C120.34521 (10)0.76013 (10)0.64042 (10)0.00420 (12)
C130.31768 (10)0.63001 (10)0.72972 (10)0.00468 (12)
H130.4132 (3)0.5450 (3)0.7533 (3)0.0201 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0064 (3)0.0062 (3)0.0106 (4)0.0020 (3)0.0039 (3)0.0023 (3)
O20.0086 (4)0.0077 (4)0.0087 (4)0.0028 (3)0.0028 (3)0.0047 (3)
O30.0066 (3)0.0071 (4)0.0080 (4)0.0007 (3)0.0027 (3)0.0030 (3)
O40.0046 (3)0.0072 (4)0.0094 (4)0.0009 (3)0.0007 (3)0.0012 (3)
N10.0046 (2)0.0042 (2)0.0066 (2)0.0007 (2)0.0019 (2)0.0017 (2)
H1N0.0137 (8)0.0183 (9)0.0296 (11)0.0067 (7)0.0060 (8)0.0098 (8)
N20.0042 (2)0.0042 (2)0.0066 (2)0.0006 (2)0.0012 (2)0.0021 (2)
N30.0042 (2)0.0039 (2)0.0050 (2)0.0008 (2)0.0004 (2)0.0008 (2)
N40.0037 (2)0.0044 (2)0.0050 (2)0.0003 (2)0.0010 (2)0.0002 (2)
C10.0049 (3)0.0040 (3)0.0037 (3)0.0006 (2)0.0003 (2)0.0001 (2)
C20.0049 (3)0.0060 (3)0.0058 (3)0.0015 (3)0.0007 (2)0.0011 (3)
H20.0201 (8)0.0204 (9)0.0196 (9)0.0064 (8)0.0034 (7)0.0090 (8)
C30.0046 (3)0.0073 (3)0.0066 (3)0.0012 (2)0.0015 (2)0.0003 (3)
H30.0142 (8)0.0273 (11)0.0261 (11)0.0092 (8)0.0048 (7)0.0043 (9)
C40.0058 (3)0.0060 (3)0.0060 (3)0.0009 (3)0.0019 (2)0.0005 (3)
H40.0166 (8)0.0261 (11)0.0210 (9)0.0002 (8)0.0104 (7)0.0041 (8)
C50.0075 (3)0.0056 (3)0.0052 (3)0.0002 (3)0.0015 (2)0.0010 (3)
H50.0256 (10)0.0192 (9)0.0207 (9)0.0031 (8)0.0039 (8)0.0114 (8)
C60.0059 (3)0.0045 (3)0.0054 (3)0.0013 (2)0.0012 (2)0.0015 (3)
H60.0157 (8)0.0250 (10)0.0257 (10)0.0110 (8)0.0048 (7)0.0067 (8)
C70.0042 (3)0.0033 (3)0.0047 (3)0.0002 (2)0.0004 (2)0.0006 (2)
H70.0124 (6)0.0155 (8)0.0183 (8)0.0022 (6)0.0029 (6)0.0026 (6)
C80.0073 (3)0.0054 (3)0.0062 (3)0.0007 (3)0.0007 (3)0.0017 (3)
H8A0.0312 (11)0.0116 (8)0.0280 (11)0.0027 (8)0.0028 (9)0.0024 (8)
H8B0.0227 (9)0.0278 (11)0.0219 (9)0.0005 (9)0.0113 (8)0.0071 (9)
H8C0.0184 (9)0.0272 (11)0.0203 (9)0.0039 (8)0.0065 (7)0.0037 (8)
C90.0040 (3)0.0031 (3)0.0041 (3)0.0000 (2)0.0008 (2)0.0006 (2)
C100.0040 (3)0.0034 (3)0.0046 (3)0.0002 (2)0.0006 (2)0.0007 (2)
C110.0041 (3)0.0033 (3)0.0048 (3)0.0005 (2)0.0007 (2)0.0006 (2)
H110.0181 (8)0.0135 (8)0.0214 (8)0.0004 (7)0.0037 (7)0.0076 (7)
C120.0032 (3)0.0040 (3)0.0056 (3)0.0003 (2)0.0013 (2)0.0007 (2)
C130.0039 (3)0.0039 (3)0.0064 (3)0.0003 (2)0.0009 (2)0.0017 (2)
H130.0123 (7)0.0177 (9)0.0306 (11)0.0072 (7)0.0034 (7)0.0074 (8)
Geometric parameters (Å, º) top
O1—N31.239 (1)C3—H31.089 (2)
O1—H1N1.971 (3)C4—C51.400 (1)
O2—N31.223 (1)C4—H41.090 (2)
O3—N41.229 (1)C5—C61.395 (1)
O4—N41.234 (1)C5—H51.084 (2)
N1—C91.338 (1)C6—H61.086 (2)
N1—C71.473 (1)C7—C81.532 (1)
N1—H1N1.013 (2)C7—H71.101 (2)
N2—C131.321 (1)C8—H8A1.094 (3)
N2—C91.361 (1)C8—H8B1.098 (2)
N3—C101.454 (1)C8—H8C1.093 (2)
N4—C121.447 (1)C9—C101.437 (1)
C1—C21.397 (1)C10—C111.381 (1)
C1—C61.403 (1)C11—C121.387 (1)
C1—C71.521 (1)C11—H111.084 (2)
C2—C31.401 (1)C12—C131.398 (1)
C2—H21.089 (2)C13—H131.090 (2)
C3—C41.395 (1)
N3—O1—H1N105.6 (1)C1—C6—H6119.6 (2)
C9—N1—C7123.85 (6)N1—C7—C1107.46 (7)
C9—N1—H1N117.0 (1)N1—C7—C8110.40 (7)
C7—N1—H1N118.2 (1)C1—C7—C8114.39 (7)
C13—N2—C9119.59 (7)N1—C7—H7106.4 (1)
O2—N3—O1123.21 (9)C1—C7—H7109.1 (1)
O2—N3—C10118.47 (8)C8—C7—H7108.8 (1)
O1—N3—C10118.30 (8)C7—C8—H8A110.9 (2)
O3—N4—O4123.82 (8)C7—C8—H8B109.9 (2)
O3—N4—C12117.98 (7)H8A—C8—H8B108.3 (2)
O4—N4—C12118.20 (7)C7—C8—H8C110.8 (2)
C2—C1—C6118.60 (8)H8A—C8—H8C108.1 (2)
C2—C1—C7122.47 (8)H8B—C8—H8C108.8 (2)
C6—C1—C7118.93 (8)N1—C9—N2116.87 (7)
C1—C2—C3120.65 (8)N1—C9—C10123.57 (7)
C1—C2—H2120.7 (1)N2—C9—C10119.56 (7)
C3—C2—H2118.7 (2)C11—C10—C9120.51 (7)
C4—C3—C2120.37 (8)C11—C10—N3116.60 (7)
C4—C3—H3120.2 (2)C9—C10—N3122.87 (7)
C2—C3—H3119.5 (2)C10—C11—C12117.47 (8)
C3—C4—C5119.32 (8)C10—C11—H11121.0 (1)
C3—C4—H4119.5 (2)C12—C11—H11121.5 (1)
C5—C4—H4121.2 (2)C11—C12—C13120.00 (8)
C6—C5—C4120.13 (8)C11—C12—N4119.70 (7)
C6—C5—H5119.8 (2)C13—C12—N4120.22 (7)
C4—C5—H5120.0 (2)N2—C13—C12122.80 (8)
C5—C6—C1120.92 (8)N2—C13—H13117.5 (2)
C5—C6—H6119.5 (2)C12—C13—H13119.7 (2)
(MBADNPX) top
Crystal data top
C13H12N4O4F(000) = 300
Mr = 288.27Dx = 1.505 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.352 (3) ÅCell parameters from 4 reflections
b = 8.570 (3) Åθ = 10–12°
c = 8.909 (4) ŵ = 0.12 mm1
β = 93.98 (2)°T = 20 K
V = 636.1 (4) Å3Block, yellow
Z = 20.30 × 0.26 × 0.20 mm
Data collection top
Fddd cryo-
diffractometer at Durham, UK
7613 reflections with I > 2σ(I)
Radiation source: Rotating-anodeRint = 0.020
Graphite monochromatorθmax = 40.0°, θmin = 2.3°
ω scansh = 1515
Absorption correction: integration
Gaussian integration (Coppens et al, 1965)
k = 1515
Tmin = 0.977, Tmax = 0.982l = 1616
16427 measured reflections4 standard reflections every 146 reflections
7873 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
7873 reflectionsΔρmax = 0.61 e Å3
238 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
The absolute structure is known a priori from the reagents used in the synthesis (see paper).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.8 (4)
Crystal data top
C13H12N4O4V = 636.1 (4) Å3
Mr = 288.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.352 (3) ŵ = 0.12 mm1
b = 8.570 (3) ÅT = 20 K
c = 8.909 (4) Å0.30 × 0.26 × 0.20 mm
β = 93.98 (2)°
Data collection top
Fddd cryo-
diffractometer at Durham, UK
7613 reflections with I > 2σ(I)
Absorption correction: integration
Gaussian integration (Coppens et al, 1965)
Rint = 0.020
Tmin = 0.977, Tmax = 0.9824 standard reflections every 146 reflections
16427 measured reflections intensity decay: none
7873 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.115Δρmax = 0.61 e Å3
S = 0.99Δρmin = 0.27 e Å3
7873 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
The absolute structure is known a priori from the reagents used in the synthesis (see paper).
238 parametersAbsolute structure parameter: 0.8 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15648 (6)0.96551 (7)0.73211 (6)0.01176 (9)
O20.01934 (7)1.06874 (7)0.55883 (6)0.01235 (9)
O30.51597 (7)0.89231 (7)0.49339 (6)0.01130 (9)
O40.61185 (6)0.69626 (7)0.62699 (6)0.01120 (9)
N10.08107 (7)0.67476 (7)0.82450 (6)0.00877 (8)
H1N0.164 (2)0.742 (2)0.8061 (19)0.018 (4)*
N20.17858 (7)0.60322 (7)0.78756 (6)0.00886 (8)
N30.03936 (7)0.96739 (7)0.65346 (6)0.00845 (8)
N40.50111 (6)0.78433 (7)0.58295 (6)0.00827 (8)
C10.24422 (7)0.55578 (8)1.00655 (7)0.00819 (9)
C20.38688 (8)0.47035 (8)1.00010 (7)0.00953 (9)
H20.4060 (19)0.397 (2)0.9235 (16)0.013 (3)*
C30.50551 (8)0.50300 (8)1.09942 (7)0.01011 (10)
H30.6058 (18)0.447 (2)1.0900 (16)0.014 (3)*
C40.48067 (8)0.61837 (8)1.20847 (7)0.00994 (10)
H40.565 (2)0.643 (2)1.2752 (17)0.018 (3)*
C50.33707 (8)0.70299 (8)1.21699 (7)0.01017 (10)
H50.3217 (17)0.790 (2)1.2959 (15)0.013 (3)*
C60.22103 (8)0.67317 (8)1.11588 (7)0.00942 (9)
H60.1242 (18)0.734 (2)1.1210 (15)0.016 (3)*
C70.11271 (7)0.52580 (8)0.89942 (7)0.00802 (9)
H70.0208 (17)0.497 (2)0.9604 (14)0.011 (3)*
C80.15248 (8)0.39822 (8)0.78313 (7)0.01029 (10)
H8A0.1605 (19)0.297 (2)0.8342 (18)0.020 (4)*
H8B0.054 (2)0.386 (2)0.7126 (16)0.024 (4)*
H8C0.2596 (18)0.428 (2)0.7189 (16)0.018 (4)*
C90.05719 (7)0.70826 (8)0.76395 (7)0.00780 (9)
C100.08164 (7)0.84630 (8)0.67686 (7)0.00786 (9)
C110.22560 (8)0.87036 (7)0.61288 (7)0.00809 (9)
H110.250 (2)0.963 (3)0.5622 (17)0.027 (4)*
C120.34521 (7)0.76037 (7)0.64038 (7)0.00812 (9)
C130.31782 (8)0.62998 (8)0.72973 (7)0.00895 (9)
H130.4066 (19)0.556 (2)0.7516 (15)0.017 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.01004 (18)0.01083 (19)0.0150 (2)0.00199 (15)0.00524 (15)0.00194 (16)
O20.0141 (2)0.01053 (19)0.01266 (19)0.00230 (16)0.00249 (15)0.00519 (16)
O30.0124 (2)0.01058 (19)0.01131 (18)0.00007 (16)0.00365 (14)0.00289 (15)
O40.00880 (18)0.01028 (19)0.0145 (2)0.00173 (15)0.00053 (14)0.00138 (16)
N10.00862 (18)0.00752 (19)0.01038 (19)0.00028 (15)0.00225 (15)0.00205 (15)
N20.00833 (18)0.00780 (19)0.01059 (19)0.00079 (15)0.00171 (14)0.00115 (16)
N30.00894 (18)0.00714 (18)0.00932 (18)0.00076 (15)0.00099 (14)0.00006 (15)
N40.00837 (18)0.00788 (19)0.00866 (17)0.00040 (15)0.00126 (14)0.00059 (15)
C10.0087 (2)0.0076 (2)0.00837 (19)0.00015 (16)0.00117 (15)0.00006 (16)
C20.0097 (2)0.0098 (2)0.0091 (2)0.00144 (18)0.00098 (16)0.00049 (18)
C30.0093 (2)0.0106 (2)0.0105 (2)0.00107 (18)0.00177 (17)0.00033 (18)
C40.0102 (2)0.0099 (2)0.0099 (2)0.00067 (18)0.00220 (16)0.00031 (18)
C50.0120 (2)0.0083 (2)0.0104 (2)0.00031 (18)0.00205 (17)0.00059 (18)
C60.0096 (2)0.0086 (2)0.0102 (2)0.00105 (17)0.00139 (16)0.00105 (17)
C70.0087 (2)0.0069 (2)0.0085 (2)0.00009 (16)0.00134 (15)0.00042 (16)
C80.0112 (2)0.0093 (2)0.0106 (2)0.00025 (18)0.00176 (18)0.00148 (18)
C90.00818 (19)0.0073 (2)0.00802 (19)0.00015 (16)0.00104 (15)0.00029 (16)
C100.0084 (2)0.0068 (2)0.00844 (19)0.00085 (16)0.00094 (15)0.00053 (16)
C110.00839 (19)0.0076 (2)0.00835 (19)0.00010 (16)0.00112 (15)0.00035 (16)
C120.00795 (19)0.0075 (2)0.0091 (2)0.00028 (17)0.00158 (15)0.00024 (17)
C130.0084 (2)0.0082 (2)0.0104 (2)0.00043 (17)0.00146 (16)0.00099 (17)
Geometric parameters (Å, º) top
O1—N31.2422 (8)C3—H30.966 (16)
O2—N31.2299 (8)C4—C51.3990 (10)
O3—N41.2338 (8)C4—H40.975 (17)
O4—N41.2364 (8)C5—C61.3919 (10)
N1—C91.3391 (9)C5—H51.026 (16)
N1—C71.4729 (10)C6—H60.961 (17)
N1—H1N0.903 (18)C7—C81.5269 (10)
N2—C131.3242 (9)C7—H70.942 (14)
N2—C91.3612 (9)C8—H8A0.98 (2)
N3—C101.4534 (9)C8—H8B1.074 (15)
N4—C121.4463 (9)C8—H8C1.058 (15)
C1—C21.3962 (10)C9—C101.4371 (10)
C1—C61.4042 (10)C10—C111.3814 (10)
C1—C71.5261 (10)C11—C121.3829 (10)
C2—C31.4017 (10)C11—H110.94 (2)
C2—H20.934 (16)C12—C131.4000 (10)
C3—C41.3916 (10)C13—H130.986 (17)
C9—N1—C7123.73 (6)N1—C7—C1107.28 (5)
C9—N1—H1N117.3 (11)N1—C7—C8110.52 (6)
C7—N1—H1N118.4 (11)C1—C7—C8114.38 (6)
C13—N2—C9119.35 (6)N1—C7—H7108.8 (10)
O2—N3—O1123.07 (6)C1—C7—H7106.1 (8)
O2—N3—C10118.44 (6)C8—C7—H7109.6 (10)
O1—N3—C10118.48 (6)C7—C8—H8A109.6 (10)
O3—N4—O4123.81 (6)C7—C8—H8B109.2 (10)
O3—N4—C12117.95 (6)H8A—C8—H8B105.2 (15)
O4—N4—C12118.24 (6)C7—C8—H8C109.4 (10)
C2—C1—C6118.72 (6)H8A—C8—H8C112.1 (14)
C2—C1—C7122.35 (6)H8B—C8—H8C111.1 (11)
C6—C1—C7118.93 (6)N1—C9—N2116.73 (6)
C1—C2—C3120.52 (6)N1—C9—C10123.56 (6)
C1—C2—H2119.1 (9)N2—C9—C10119.71 (6)
C3—C2—H2120.2 (9)C11—C10—C9120.40 (6)
C4—C3—C2120.32 (6)C11—C10—N3116.79 (6)
C4—C3—H3120.1 (9)C9—C10—N3122.80 (6)
C2—C3—H3119.5 (9)C10—C11—C12117.64 (6)
C3—C4—C5119.47 (6)C10—C11—H11123.0 (11)
C3—C4—H4119.9 (10)C12—C11—H11119.0 (11)
C5—C4—H4120.6 (10)C11—C12—C13120.02 (6)
C6—C5—C4120.16 (6)C11—C12—N4119.84 (6)
C6—C5—H5121.1 (8)C13—C12—N4120.07 (6)
C4—C5—H5118.6 (8)N2—C13—C12122.82 (6)
C5—C6—C1120.78 (6)N2—C13—H13118.7 (10)
C5—C6—H6119.5 (9)C12—C13—H13118.5 (10)
C1—C6—H6119.8 (9)

Experimental details

(MBANP)(MBADNP)(MBADNPX)
Crystal data
Chemical formulaC13H13N3O2C13H12N4O4C13H12N4O4
Mr243.00288.00288.27
Crystal system, space groupMonoclinic, P21Monoclinic, P21Monoclinic, P21
Temperature (K)202020
a, b, c (Å)5.321 (1), 6.293 (1), 17.650 (4)8.352 (3), 8.570 (3), 8.909 (4)8.352 (3), 8.570 (3), 8.909 (4)
β (°) 93.65 (3) 93.98 (2) 93.98 (2)
V3)589.8 (2)636.1 (4)636.1 (4)
Z222
Radiation typeNeutron, λ = 0.83717 ÅNeutron, λ = 0.83717 ÅMo Kα
µ (mm1)0.160.140.12
Crystal size (mm)4.3 × 2.0 × 1.03.0 × 2.5 × 1.00.30 × 0.26 × 0.20
Data collection
DiffractometerThe high-flux four-circle
diffractometer, D9
High-flux four-circle
diffractometer, D9
Fddd cryo-
diffractometer at Durham, UK
Absorption correctionIntegration
Gaussian integration (Coppens et al, 1965)
Integration
Gaussian integration (Coppens et al, 1965)
Integration
Gaussian integration (Coppens et al, 1965)
Tmin, Tmax0.726, 0.8570.757, 0.8800.977, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4116, 2805, 2619 3755, 3401, 3267 16427, 7873, 7613
Rint0.0380.0280.020
(sin θ/λ)max1)0.8660.8670.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.111, 2.56 0.029, 0.052, 1.47 0.033, 0.115, 0.99
No. of reflections279933977873
No. of parameters280298238
No. of restraints111
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.80, 1.870.82, 0.910.61, 0.27
Absolute structureAbsolute structure known a priori from reagents in synthesis (see paper)The absolute structure is known a priori from reagents in the synthesis (see paper)Flack H D (1983), Acta Cryst. A39, 876-881

The absolute structure is known a priori from the reagents used in the synthesis (see paper).

Absolute structure parameter??0.8 (4)

Computer programs: MAD (Barthelemy, 1984), MAD (Bartelemy, 1984), RAFD9 (local program), RACER (Wilkinson et al., 1988), COLL5N (Lehmann and Wilson, 1987), SHELXS86 (Sheldrick, 1990), SHELXS97 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1995), SHELXTL_PLUS (1995).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds