Download citation
Download citation
link to html
A neutron diffraction study of the non-linear optical (NLO) material 4-nitro-4′-methylbenzylidene aniline (NMBA) is presented. NMBA exhibits a large macroscopic second-order NLO susceptibility, χ(2), and this study shows that hydrogen bonding is, in part, responsible for this. No hydrogen bonding was reported in the X-ray study [Ponomarev et al. (1977). Sov. Phys. Crystallogr. 22, 223–225], whereas the present work shows that C—H...X hydrogen bonds (where X = N, O or π) direct the nature of the three-dimensional lattice. C—H...X (X = N or O) hydrogen bonds are common; however, C—H...π hydrogen-bond motifs are relatively rare. Such intermolecular interactions help extend the molecular charge transfer into the supramolecular realm, the charge transfer originating as a consequence of the high level of molecular planarity and strong donor-to-acceptor interactions. Molecular planarity, coupled with the favourable nature of the hydrogen bonds, results in parallel stacking of molecules in both the a and c crystallographic directions with extremely close interplanar spacings. Such a combination of influential hydrogen-bonding characteristics accounts, in part, for the large second-order NLO output of the material since the phenomenon is so critically dependent upon the nature of the charge transfer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768101002154/an0580sup1.cif
Contains datablock NMBA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101002154/an0580sup2.hkl
Supplementary material

CCDC reference: 166521

Refinement top

Alert A: < 85% complete (theta max?) revealed: given that this is a neutron structure, completeness is much more resources demanding and is not necessary since monochromatic neutron diffraction is intrinsically much more precise than analogous XRD measurements. The completeness given here for this experiment is satisfactory.

Computing details top

Data collection: MAD (Barthelemy, 1984); cell refinement: RAFIN (Fihol, 198?); data reduction: COLL5N (Lehmann & Wilson, 198?); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL-Plus (Sheldrick, 1995); software used to prepare material for publication: SHELXL93 (Sheldrick, 1993).

Figures top
[Figure 1]
[Figure 2]
(NMBA) top
Crystal data top
C14H12N2O2F(000) = 184
Mr = 240.00Dx = 1.393 Mg m3
Monoclinic, PcNeutrons radiation, λ = 1.26170 Å
a = 7.305 (4) ÅCell parameters from 1349 reflections
b = 11.495 (5) Åθ = 15.4–70.4°
c = 7.240 (3) ŵ = 0.18 mm1
β = 109.71 (5)°T = 20 K
V = 572.3 (5) Å3Block, yellow
Z = 25.3 × 2.1 × 1.2 mm
Data collection top
The single-crystal
diffractometer, D10
1304 reflections with I > 2σ(I)
Radiation source: Institut Laue Langevin Reactor, Grenoble, FranceRint = 0.017
Cu (200) monochromatorθmax = 70.4°, θmin = 15.5°
ω–x–θ scansh = 410
Absorption correction: integration
DATAP (Coppens, 1970)
k = 1616
Tmin = 0.618, Tmax = 0.806l = 1010
1877 measured reflections1 standard reflections every 50 reflections
1349 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.031Calculated w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.002
S = 1.96Δρmax = 0.52 e Å3
1349 reflectionsΔρmin = 0.50 e Å3
272 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0071 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier map
Crystal data top
C14H12N2O2V = 572.3 (5) Å3
Mr = 240.00Z = 2
Monoclinic, PcNeutrons radiation, λ = 1.26170 Å
a = 7.305 (4) ŵ = 0.18 mm1
b = 11.495 (5) ÅT = 20 K
c = 7.240 (3) Å5.3 × 2.1 × 1.2 mm
β = 109.71 (5)°
Data collection top
The single-crystal
diffractometer, D10
1304 reflections with I > 2σ(I)
Absorption correction: integration
DATAP (Coppens, 1970)
Rint = 0.017
Tmin = 0.618, Tmax = 0.8061 standard reflections every 50 reflections
1877 measured reflections intensity decay: none
1349 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.047All H-atom parameters refined
S = 1.96Δρmax = 0.52 e Å3
1349 reflectionsΔρmin = 0.50 e Å3
272 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1583 (4)0.9665 (2)0.6238 (3)0.0110 (4)
O21.2740 (4)0.8444 (2)0.4654 (3)0.0119 (4)
N10.3211 (2)0.70490 (12)0.1104 (2)0.0094 (3)
N21.1386 (2)0.89530 (12)0.4911 (2)0.0088 (2)
C10.6025 (3)0.9190 (2)0.2429 (2)0.0092 (4)
H10.4839 (10)0.9739 (5)0.2458 (7)0.0252 (10)
C20.5666 (3)0.8224 (2)0.1178 (2)0.0080 (4)
C30.7216 (3)0.7515 (2)0.1144 (2)0.0086 (4)
H30.6917 (9)0.6769 (4)0.0175 (6)0.0238 (10)
C40.9103 (3)0.7756 (2)0.2343 (2)0.0098 (4)
H41.0315 (9)0.7204 (5)0.2348 (7)0.0234 (10)
C50.9411 (3)0.8711 (2)0.3590 (2)0.0080 (3)
C60.7914 (3)0.9435 (2)0.3662 (2)0.0089 (4)
H60.8204 (10)1.0171 (5)0.4679 (7)0.0245 (10)
C70.3647 (3)0.7962 (2)0.0035 (2)0.0095 (4)
H70.2563 (8)0.8591 (5)0.0066 (7)0.0317 (11)
C80.1248 (3)0.6796 (2)0.2231 (2)0.0083 (4)
C90.0368 (3)0.7430 (2)0.2187 (2)0.0089 (4)
H90.0191 (10)0.8193 (5)0.1247 (7)0.0260 (10)
C100.2240 (3)0.7103 (2)0.3347 (2)0.0089 (4)
H100.3498 (9)0.7602 (5)0.3301 (7)0.0241 (10)
C110.2561 (3)0.6131 (2)0.4583 (2)0.0082 (3)
C120.0932 (3)0.5502 (2)0.4630 (2)0.0086 (4)
H120.1130 (9)0.4759 (5)0.5613 (7)0.0243 (10)
C130.0939 (3)0.5823 (2)0.3474 (2)0.0092 (4)
H130.2202 (9)0.5336 (5)0.3523 (7)0.0256 (10)
C140.4582 (4)0.5789 (2)0.5840 (2)0.0108 (4)
H14A0.4956 (11)0.4918 (5)0.5537 (8)0.0388 (14)
H14B0.4754 (12)0.5801 (7)0.7399 (6)0.041 (2)
H14C0.5674 (11)0.6380 (7)0.5675 (9)0.041 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0123 (11)0.0075 (10)0.0127 (7)0.0009 (9)0.0035 (7)0.0027 (6)
O20.0091 (12)0.0123 (10)0.0142 (7)0.0002 (9)0.0036 (7)0.0008 (6)
N10.0086 (8)0.0075 (6)0.0114 (5)0.0004 (6)0.0027 (5)0.0016 (4)
N20.0098 (7)0.0061 (6)0.0113 (4)0.0009 (5)0.0045 (4)0.0001 (4)
C10.0102 (11)0.0046 (8)0.0125 (6)0.0009 (8)0.0037 (7)0.0017 (5)
H10.019 (3)0.022 (2)0.033 (2)0.008 (2)0.007 (2)0.0071 (15)
C20.0088 (11)0.0047 (7)0.0103 (6)0.0005 (7)0.0030 (7)0.0008 (5)
C30.0093 (11)0.0049 (9)0.0119 (6)0.0004 (8)0.0039 (7)0.0015 (5)
H30.025 (3)0.018 (2)0.026 (2)0.001 (2)0.005 (2)0.0089 (14)
C40.0109 (11)0.0081 (9)0.0114 (6)0.0004 (8)0.0051 (7)0.0011 (5)
H40.018 (3)0.021 (2)0.031 (2)0.003 (2)0.008 (2)0.0051 (14)
C50.0084 (10)0.0053 (8)0.0109 (6)0.0007 (7)0.0040 (6)0.0001 (5)
C60.0091 (11)0.0058 (8)0.0119 (6)0.0010 (7)0.0037 (7)0.0006 (5)
H60.025 (3)0.016 (2)0.032 (2)0.001 (2)0.010 (2)0.0091 (14)
C70.0093 (11)0.0053 (8)0.0123 (6)0.0006 (8)0.0016 (7)0.0022 (5)
H70.014 (3)0.027 (3)0.049 (2)0.004 (2)0.003 (2)0.015 (2)
C80.0088 (11)0.0061 (8)0.0102 (6)0.0000 (8)0.0032 (6)0.0003 (5)
C90.0081 (10)0.0067 (9)0.0119 (6)0.0005 (7)0.0035 (6)0.0014 (5)
H90.024 (3)0.023 (2)0.031 (2)0.002 (2)0.008 (2)0.010 (2)
C100.0089 (11)0.0051 (8)0.0124 (6)0.0003 (7)0.0033 (6)0.0001 (5)
H100.022 (3)0.017 (2)0.034 (2)0.004 (2)0.010 (2)0.0054 (13)
C110.0083 (10)0.0059 (7)0.0103 (6)0.0001 (7)0.0027 (6)0.0003 (5)
C120.0091 (11)0.0055 (9)0.0109 (6)0.0003 (8)0.0028 (6)0.0018 (5)
H120.023 (3)0.018 (2)0.028 (2)0.002 (2)0.005 (2)0.0118 (13)
C130.0095 (11)0.0066 (8)0.0114 (6)0.0004 (7)0.0032 (7)0.0012 (5)
H130.023 (3)0.023 (2)0.033 (2)0.004 (2)0.011 (2)0.0072 (15)
C140.0104 (11)0.0082 (9)0.0124 (6)0.0019 (8)0.0019 (6)0.0003 (5)
H14A0.028 (4)0.025 (3)0.051 (2)0.013 (3)0.002 (2)0.012 (2)
H14B0.043 (4)0.062 (4)0.0186 (15)0.015 (3)0.009 (2)0.001 (2)
H14C0.015 (3)0.039 (4)0.059 (3)0.009 (3)0.001 (2)0.022 (2)
Geometric parameters (Å, º) top
O1—N21.233 (2)C7—H71.093 (6)
O2—N21.216 (3)C8—C91.397 (3)
N1—C71.278 (2)C8—C131.405 (3)
N1—C81.420 (3)C9—C101.394 (3)
N2—C51.464 (3)C9—H91.091 (5)
C1—C61.396 (3)C10—C111.402 (3)
C1—C21.401 (3)C10—H101.093 (6)
C1—H11.078 (6)C11—C121.402 (3)
C2—C31.402 (3)C11—C141.502 (4)
C2—C71.471 (3)C12—C131.390 (3)
C3—C41.387 (4)C12—H121.089 (5)
C3—H31.083 (4)C13—H131.091 (6)
C4—C51.390 (3)C14—H14A1.081 (6)
C4—H41.088 (6)C14—H14B1.093 (4)
C5—C61.389 (3)C14—H14C1.084 (7)
C6—H61.095 (5)
C7—N1—C8120.9 (1)C9—C8—C13118.4 (2)
O2—N2—O1123.5 (2)C9—C8—N1125.3 (2)
O2—N2—C5118.8 (2)C13—C8—N1116.4 (2)
O1—N2—C5117.7 (2)C10—C9—C8120.7 (2)
C6—C1—C2120.1 (2)C10—C9—H9118.6 (4)
C6—C1—H1119.8 (3)C8—C9—H9120.7 (4)
C2—C1—H1120.0 (4)C9—C10—C11121.2 (2)
C1—C2—C3119.7 (2)C9—C10—H10120.3 (3)
C1—C2—C7118.7 (2)C11—C10—H10118.4 (3)
C3—C2—C7121.6 (2)C10—C11—C12117.8 (2)
C4—C3—C2120.8 (2)C10—C11—C14120.9 (2)
C4—C3—H3120.3 (4)C12—C11—C14121.3 (2)
C2—C3—H3119.0 (4)C13—C12—C11121.2 (2)
C3—C4—C5118.2 (2)C13—C12—H12119.2 (4)
C3—C4—H4121.4 (3)C11—C12—H12119.5 (4)
C5—C4—H4120.3 (4)C12—C13—C8120.7 (2)
C6—C5—C4122.7 (2)C12—C13—H13121.0 (3)
C6—C5—N2118.5 (2)C8—C13—H13118.3 (4)
C4—C5—N2118.8 (2)C11—C14—H14A112.5 (4)
C5—C6—C1118.4 (2)C11—C14—H14B111.7 (5)
C5—C6—H6120.8 (4)H14A—C14—H14B105.8 (5)
C1—C6—H6120.7 (4)C11—C14—H14C112.3 (4)
N1—C7—C2121.6 (2)H14A—C14—H14C108.2 (6)
N1—C7—H7123.0 (3)H14B—C14—H14C105.9 (6)
C2—C7—H7115.3 (3)

Experimental details

Crystal data
Chemical formulaC14H12N2O2
Mr240.00
Crystal system, space groupMonoclinic, Pc
Temperature (K)20
a, b, c (Å)7.305 (4), 11.495 (5), 7.240 (3)
β (°) 109.71 (5)
V3)572.3 (5)
Z2
Radiation typeNeutrons, λ = 1.26170 Å
µ (mm1)0.18
Crystal size (mm)5.3 × 2.1 × 1.2
Data collection
DiffractometerThe single-crystal
diffractometer, D10
Absorption correctionIntegration
DATAP (Coppens, 1970)
Tmin, Tmax0.618, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
1877, 1349, 1304
Rint0.017
(sin θ/λ)max1)0.747
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.047, 1.96
No. of reflections1349
No. of parameters272
No. of restraints2
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.52, 0.50
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881

Computer programs: MAD (Barthelemy, 1984), RAFIN (Fihol, 198?), COLL5N (Lehmann & Wilson, 198?), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), SHELXTL-Plus (Sheldrick, 1995).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds