Download citation
Download citation
link to html
The structure of urea–phosphoric acid is reported at a large number of temperatures in the range 150–335 K from neutron diffraction data collected using a novel multiple single-crystal data collection method. The work focuses on the behaviour of the H atom involved in the short strong O—H...O hydrogen bond in this material. The position of this atom is shown to vary significantly, by around 0.035  Å, as a function of temperature, becoming effectively centred at the highest temperatures studied. This result, only accessible due to the accurate determination of H-atom parameters by neutron diffraction, has implications for the potential governing the hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768100018875/an0570sup1.cif
Contains datablocks 150K, global, 250K, 280K, 290K, 295K, 300K, 305K, 310K, 315K, 320K, 330K, 335K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570150Ksup2.hkl
Contains datablock 150K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570250Ksup3.hkl
Contains datablock 250K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570280Ksup4.hkl
Contains datablock 280K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570290Ksup5.hkl
Contains datablock 290K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570295Ksup6.hkl
Contains datablock 295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570300Ksup7.hkl
Contains datablock 300K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570305Ksup8.hkl
Contains datablock 305K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570310Ksup9.hkl
Contains datablock 310K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570315Ksup10.hkl
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570320Ksup11.hkl
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570330Ksup12.hkl
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018875/an0570335Ksup13.hkl
Supplementary material

CCDC references: 166534; 166535; 166536; 166537; 166538; 166539; 166540; 166541; 166542; 166543; 166544; 166545

Computing details top

Program(s) used to refine structure: GSAS (Larsen & von Dreele, 1994) for 150K, 250K, 290K, 295K, 300K, 305K, 310K, 315K, 320K, 330K, 335K; GSAS (Larsen and von Dreele, 1994) for 280K. For all compounds, molecular graphics: ORTEP (Johnson, 1994).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
(150K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.817 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.420 ÅCell parameters from 25 reflections
b = 7.421 ŵ = 1.96, at 1 Angstrom mm1
c = 8.939 ÅT = 150 K
V = 1155.6 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
1037 independent reflections
Radiation source: ISIS spallation source1037 reflections with > 3σ(I)
None monochromatorRint = 0.079
time–of–flight LAUE diffraction scansh = 028
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 014
Tmin = 0.36, Tmax = 0.78l = 015
2327 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.103(Δ/σ)max < 0.001
wR(F2) = 0.185Δρmax = 2.00 e Å3
S = 1.20Δρmin = 1.77 e Å3
1037 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1155.6 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.420 ŵ = 1.96, at 1 Angstrom mm1
b = 7.421 ÅT = 150 K
c = 8.939 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
1037 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
1037 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.079
2327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1030 restraints
wR(F2) = 0.185All H-atom parameters refined
S = 1.20Δρmax = 2.00 e Å3
1037 reflectionsΔρmin = 1.77 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.23 _cell_measurement_sin(theta)/lambda_max 0.60

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.141 _diffrn_reflns_sin(theta)/lambda_max 0.82

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3105 (3)0.2805 (4)0.3099 (4)1.02
O10.3403 (3)0.0912 (4)0.3626 (4)1.65
O20.2774 (3)0.3863 (4)0.4390 (3)1.42
O30.2454 (3)0.2511 (4)0.1951 (4)1.63
O40.3788 (3)0.3679 (4)0.2390 (4)1.60
O50.4475 (3)0.6350 (4)0.3095 (4)1.56
N10.50886 (18)0.7837 (3)0.4934 (3)1.72
N20.39745 (17)0.6335 (3)0.5437 (3)1.82
C10.4507 (2)0.6836 (3)0.4485 (3)1.12
H10.2975 (5)0.0116 (7)0.3918 (7)2.56
H110.5531 (6)0.8116 (8)0.4212 (8)3.07
H120.5115 (6)0.8248 (10)0.5992 (9)3.61
H210.3528 (6)0.5570 (9)0.5103 (9)3.20
H220.3989 (6)0.6723 (9)0.6503 (7)3.48
H30.2598 (5)0.1989 (7)0.0949 (6)2.36
H40.4091 (5)0.5092 (8)0.2807 (7)2.78
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.008 (3)0.0109 (13)0.0115 (14)0.0018 (13)0.0005 (15)0.0022 (14)
O10.009 (3)0.0172 (14)0.0223 (17)0.0025 (15)0.0025 (16)0.0011 (13)
O20.016 (3)0.0124 (13)0.0128 (13)0.0003 (13)0.0009 (15)0.0029 (12)
O30.009 (3)0.0250 (16)0.0142 (13)0.0014 (14)0.0022 (15)0.0015 (14)
O40.016 (3)0.0173 (13)0.0152 (15)0.0013 (15)0.0019 (14)0.0012 (12)
O50.018 (3)0.0155 (13)0.0137 (14)0.0049 (14)0.0020 (15)0.0013 (12)
N10.017 (2)0.0178 (8)0.0172 (10)0.0045 (10)0.0016 (11)0.0028 (8)
N20.013 (2)0.0234 (10)0.0184 (10)0.0051 (10)0.0037 (10)0.0042 (9)
C10.010 (2)0.0105 (10)0.0126 (12)0.0004 (10)0.0000 (11)0.0002 (10)
H10.033 (7)0.017 (2)0.029 (4)0.004 (3)0.002 (3)0.004 (2)
H110.025 (7)0.032 (3)0.035 (4)0.003 (3)0.001 (4)0.000 (3)
H120.031 (8)0.044 (4)0.035 (4)0.001 (4)0.002 (4)0.014 (3)
H210.021 (7)0.033 (3)0.040 (4)0.006 (3)0.003 (4)0.006 (3)
H220.036 (8)0.047 (4)0.022 (3)0.014 (4)0.001 (3)0.010 (3)
H30.034 (6)0.018 (3)0.018 (3)0.001 (3)0.005 (3)0.001 (2)
H40.028 (7)0.033 (3)0.025 (3)0.001 (3)0.001 (3)0.002 (3)
Geometric parameters (Å, º) top
P1—O11.571 (5)O5—H41.178 (8)
P1—O21.510 (5)N1—C11.319 (4)
P1—O31.544 (6)N1—H111.026 (10)
P1—O41.496 (6)N1—H120.995 (8)
O1—H10.985 (10)N2—C11.313 (4)
O3—H31.008 (7)N2—H211.009 (9)
O4—H41.231 (8)N2—H220.996 (7)
O5—C11.294 (4)
O1—P1—O2111.2 (3)C1—N1—H11119.9 (5)
O1—P1—O3108.4 (3)C1—N1—H12119.9 (7)
O1—P1—O4104.6 (3)H11—N1—H12120.1 (8)
O2—P1—O3107.6 (3)C1—N2—H21120.9 (5)
O2—P1—O4113.7 (3)C1—N2—H22121.4 (6)
O3—P1—O4111.4 (3)H21—N2—H22117.7 (7)
P1—O1—H1111.4 (5)O5—C1—N1118.8 (3)
P1—O3—H3117.5 (6)O5—C1—N2120.9 (3)
P1—O4—H4125.6 (5)N1—C1—N2120.3 (3)
C1—O5—H4117.1 (4)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i0.985 (10)1.658 (9)2.642 (6)
O3—H3···O2ii1.008 (7)1.561 (7)2.568 (5)
O5—H4···O41.178 (8)1.231 (8)2.400 (5)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(250K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.794 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.549 ÅCell parameters from 25 reflections
b = 7.446 ŵ = 1.96, at 1 Angstrom mm1
c = 8.959 ÅT = 250 K
V = 1170.6 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
782 independent reflections
Radiation source: ISIS spallation source782 reflections with > 3σ(I)
None monochromatorRint = 0.066
time–of–flight LAUE diffraction scansh = 026
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 012
Tmin = 0.36, Tmax = 0.78l = 015
1798 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.093(Δ/σ)max < 0.001
wR(F2) = 0.171Δρmax = 1.11 e Å3
S = 1.18Δρmin = 1.37 e Å3
782 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1170.6 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.549 ŵ = 1.96, at 1 Angstrom mm1
b = 7.446 ÅT = 250 K
c = 8.959 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
782 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
782 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.066
1798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0930 restraints
wR(F2) = 0.171All H-atom parameters refined
S = 1.18Δρmax = 1.11 e Å3
782 reflectionsΔρmin = 1.37 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.23 _cell_measurement_sin(theta)/lambda_max 0.60

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.141 _diffrn_reflns_sin(theta)/lambda_max 0.66

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3109 (3)0.2798 (4)0.3095 (4)1.80
O10.3394 (3)0.0913 (6)0.3618 (5)2.69
O20.2775 (3)0.3860 (4)0.4381 (4)2.17
O30.2466 (3)0.2497 (5)0.1954 (5)2.69
O40.3790 (3)0.3656 (5)0.2403 (4)2.64
O50.4469 (3)0.6331 (4)0.3106 (4)2.40
N10.5074 (2)0.7839 (3)0.4916 (3)2.67
N20.3968 (2)0.6352 (4)0.5421 (3)2.77
C10.4497 (2)0.6835 (4)0.4483 (4)1.80
H10.2979 (6)0.0121 (9)0.3916 (9)3.50
H110.5527 (7)0.8119 (9)0.4217 (10)4.66
H120.5135 (7)0.8252 (10)0.5982 (8)4.97
H210.3563 (7)0.5559 (12)0.5111 (10)5.02
H220.3987 (7)0.6719 (11)0.6479 (8)5.54
H30.2608 (6)0.1963 (9)0.0964 (8)3.62
H40.4088 (6)0.5081 (10)0.2809 (8)4.00
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.020 (4)0.0175 (17)0.0156 (17)0.0037 (17)0.0010 (18)0.0044 (16)
O10.020 (4)0.0271 (19)0.030 (2)0.004 (2)0.002 (2)0.0004 (18)
O20.029 (4)0.0200 (16)0.0177 (17)0.0005 (17)0.0042 (19)0.0011 (15)
O30.018 (4)0.037 (2)0.0251 (18)0.0011 (18)0.0063 (18)0.0043 (19)
O40.026 (4)0.028 (2)0.0223 (19)0.0039 (19)0.0061 (19)0.0008 (15)
O50.027 (4)0.0223 (18)0.0219 (19)0.0045 (17)0.0006 (18)0.0005 (16)
N10.024 (3)0.0289 (12)0.0262 (13)0.0075 (13)0.0027 (13)0.0066 (11)
N20.021 (3)0.0345 (15)0.0275 (14)0.0078 (13)0.0057 (12)0.0043 (11)
C10.014 (3)0.0197 (14)0.0212 (16)0.0000 (14)0.0005 (14)0.0002 (12)
H10.041 (8)0.022 (3)0.045 (4)0.008 (3)0.001 (4)0.003 (3)
H110.043 (9)0.042 (4)0.046 (5)0.010 (4)0.006 (4)0.004 (4)
H120.067 (10)0.045 (4)0.030 (4)0.003 (5)0.011 (4)0.013 (3)
H210.045 (10)0.050 (5)0.055 (6)0.024 (5)0.008 (5)0.017 (4)
H220.061 (10)0.068 (5)0.032 (4)0.021 (5)0.000 (4)0.026 (4)
H30.050 (8)0.029 (3)0.035 (4)0.005 (3)0.007 (4)0.003 (3)
H40.027 (8)0.050 (5)0.038 (4)0.002 (4)0.006 (4)0.001 (3)
Geometric parameters (Å, º) top
P1—O11.562 (5)O5—H41.176 (10)
P1—O21.516 (5)N1—C11.317 (5)
P1—O31.539 (6)N1—H111.032 (12)
P1—O41.490 (7)N1—H121.009 (8)
O1—H10.974 (12)N2—C11.302 (5)
O3—H31.003 (9)N2—H210.965 (11)
O4—H41.237 (9)N2—H220.988 (8)
O5—C11.290 (5)
O1—P1—O2111.4 (3)C1—N1—H11121.8 (5)
O1—P1—O3107.6 (3)C1—N1—H12122.2 (7)
O1—P1—O4104.7 (4)H11—N1—H12115.5 (9)
O2—P1—O3107.3 (4)C1—N2—H21120.6 (6)
O2—P1—O4113.8 (3)C1—N2—H22121.3 (7)
O3—P1—O4112.0 (3)H21—N2—H22118.0 (9)
P1—O1—H1112.9 (6)O5—C1—N1118.4 (4)
P1—O3—H3117.6 (8)O5—C1—N2120.6 (4)
P1—O4—H4125.7 (5)N1—C1—N2121.0 (3)
C1—O5—H4117.9 (5)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i0.974 (12)1.676 (11)2.648 (7)
O3—H3···O2ii1.003 (9)1.573 (8)2.575 (6)
O5—H4···O41.176 (10)1.237 (9)2.405 (6)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(280K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.788 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.576 ÅCell parameters from 25 reflections
b = 7.456 ŵ = 1.96, at 1 Angstrom mm1
c = 8.963 ÅT = 280 K
V = 1174.4 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
705 independent reflections
Radiation source: ISIS spallation source705 reflections with > 3σ(I)
None monochromatorRint = 0.087
time–of–flight LAUE diffraction scansh = 023
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 014
Tmin = 0.36, Tmax = 0.78l = 015
2087 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.121(Δ/σ)max < 0.001
wR(F2) = 0.191Δρmax = 1.34 e Å3
S = 1.29Δρmin = 1.35 e Å3
705 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1174.4 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.576 ŵ = 1.96, at 1 Angstrom mm1
b = 7.456 ÅT = 280 K
c = 8.963 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
705 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
705 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.087
2087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1210 restraints
wR(F2) = 0.191All H-atom parameters refined
S = 1.29Δρmax = 1.34 e Å3
705 reflectionsΔρmin = 1.35 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.23 _cell_measurement_sin(theta)/lambda_max 0.56

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.140 _diffrn_reflns_sin(theta)/lambda_max 0.62

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3117 (4)0.2790 (6)0.3104 (5)2.26
O10.3401 (4)0.0910 (7)0.3626 (7)3.16
O20.2782 (4)0.3855 (6)0.4374 (5)2.51
O30.2460 (4)0.2507 (7)0.1960 (6)2.62
O40.3781 (4)0.3656 (6)0.2395 (5)2.97
O50.4467 (4)0.6336 (5)0.3096 (5)2.97
N10.5081 (3)0.7832 (4)0.4925 (5)3.29
N20.3968 (3)0.6356 (5)0.5419 (4)3.32
C10.4491 (4)0.6856 (5)0.4473 (5)2.46
H10.2973 (7)0.0082 (12)0.3895 (10)3.06
H110.5538 (8)0.8112 (11)0.4207 (13)3.84
H120.5101 (9)0.8279 (16)0.5952 (16)5.79
H210.3553 (8)0.5560 (15)0.5145 (12)4.63
H220.4005 (9)0.6814 (15)0.6492 (12)5.36
H30.2619 (9)0.1941 (12)0.0955 (9)5.04
H40.4068 (8)0.5072 (11)0.2853 (10)4.03
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.030 (6)0.020 (3)0.016 (3)0.007 (3)0.005 (3)0.002 (2)
O10.020 (7)0.021 (3)0.044 (4)0.004 (3)0.001 (3)0.004 (3)
O20.022 (6)0.022 (3)0.027 (3)0.002 (3)0.005 (3)0.001 (2)
O30.010 (6)0.036 (3)0.033 (3)0.004 (3)0.000 (3)0.006 (3)
O40.034 (6)0.025 (3)0.028 (3)0.008 (3)0.002 (3)0.005 (2)
O50.036 (6)0.024 (3)0.026 (3)0.008 (3)0.004 (3)0.002 (2)
N10.030 (5)0.0288 (17)0.036 (2)0.005 (2)0.006 (2)0.0035 (18)
N20.022 (5)0.041 (2)0.030 (2)0.008 (2)0.005 (2)0.0056 (18)
C10.025 (5)0.022 (2)0.021 (2)0.001 (2)0.003 (2)0.0012 (18)
H10.034 (12)0.028 (5)0.035 (5)0.005 (5)0.007 (6)0.003 (4)
H110.018 (13)0.037 (6)0.067 (10)0.004 (5)0.009 (9)0.003 (6)
H120.020 (15)0.072 (9)0.079 (9)0.007 (7)0.004 (9)0.027 (7)
H210.022 (13)0.058 (7)0.071 (9)0.018 (7)0.014 (9)0.025 (6)
H220.039 (14)0.077 (8)0.042 (7)0.011 (7)0.005 (8)0.025 (6)
H30.064 (14)0.037 (6)0.032 (5)0.002 (6)0.001 (7)0.001 (4)
H40.036 (14)0.038 (6)0.036 (5)0.002 (5)0.011 (6)0.003 (4)
Geometric parameters (Å, º) top
P1—O11.560 (8)O5—H41.195 (12)
P1—O21.507 (7)N1—C11.329 (7)
P1—O31.558 (9)N1—H111.051 (17)
P1—O41.477 (9)N1—H120.979 (16)
O1—H11.003 (14)N2—C11.306 (7)
O3—H31.032 (12)N2—H210.972 (13)
O4—H41.240 (11)N2—H221.022 (11)
O5—C11.294 (6)
O1—P1—O2111.8 (4)C1—N1—H11121.2 (6)
O1—P1—O3108.2 (4)C1—N1—H12120.2 (11)
O1—P1—O4105.6 (5)H11—N1—H12118.6 (12)
O2—P1—O3106.2 (5)C1—N2—H21122.6 (7)
O2—P1—O4113.8 (4)C1—N2—H22118.1 (9)
O3—P1—O4111.2 (4)H21—N2—H22119.4 (11)
P1—O1—H1112.7 (7)O5—C1—N1118.7 (5)
P1—O3—H3115.4 (10)O5—C1—N2120.7 (5)
P1—O4—H4123.4 (7)N1—C1—N2120.5 (4)
C1—O5—H4115.5 (6)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i1.003 (14)1.668 (12)2.669 (10)
O3—H3···O2ii1.032 (12)1.563 (10)2.593 (6)
O5—H4···O41.195 (12)1.240 (11)2.417 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(290K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.785 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.589 ÅCell parameters from 25 reflections
b = 7.458 ŵ = 1.96, at 1 Angstrom mm1
c = 8.967 ÅT = 290 K
V = 1176.3 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
686 independent reflections
Radiation source: ISIS spallation source686 reflections with > 3σ(I)
None monochromatorRint = 0.071
time–of–flight LAUE diffraction scansh = 030
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 012
Tmin = 0.36, Tmax = 0.78l = 014
2010 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.097(Δ/σ)max = 0.004
wR(F2) = 0.159Δρmax = 1.22 e Å3
S = 1.22Δρmin = 1.18 e Å3
686 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1176.3 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.589 ŵ = 1.96, at 1 Angstrom mm1
b = 7.458 ÅT = 290 K
c = 8.967 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
686 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
686 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.071
2010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0970 restraints
wR(F2) = 0.159All H-atom parameters refined
S = 1.22Δρmax = 1.22 e Å3
686 reflectionsΔρmin = 1.18 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.23 _cell_measurement_sin(theta)/lambda_max 0.60

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.148 _diffrn_reflns_sin(theta)/lambda_max 0.60

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3115 (3)0.2803 (5)0.3094 (4)2.31
O10.3397 (4)0.0906 (7)0.3622 (6)3.24
O20.2776 (3)0.3845 (5)0.4373 (4)2.38
O30.2467 (3)0.2509 (6)0.1942 (5)3.11
O40.3789 (3)0.3669 (5)0.2392 (4)3.07
O50.4470 (3)0.6328 (5)0.3102 (4)3.08
N10.5079 (3)0.7831 (4)0.4918 (4)3.48
N20.3968 (2)0.6355 (4)0.5419 (3)3.40
C10.4496 (3)0.6847 (4)0.4477 (4)2.23
H10.2992 (7)0.0110 (11)0.3899 (9)3.98
H110.5509 (8)0.8113 (10)0.4206 (11)4.65
H120.5105 (7)0.8254 (12)0.5965 (10)5.43
H210.3529 (8)0.5583 (13)0.5138 (11)5.72
H220.3953 (8)0.6751 (13)0.6450 (9)6.70
H30.2609 (6)0.1955 (10)0.0928 (8)4.34
H40.4084 (7)0.5082 (11)0.2816 (9)4.57
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.029 (5)0.021 (2)0.0183 (19)0.007 (2)0.002 (2)0.0030 (19)
O10.020 (5)0.032 (3)0.046 (3)0.006 (2)0.002 (3)0.004 (2)
O20.024 (4)0.026 (2)0.0211 (19)0.005 (2)0.006 (2)0.0027 (16)
O30.030 (5)0.040 (3)0.0251 (19)0.001 (2)0.009 (2)0.005 (2)
O40.031 (5)0.034 (3)0.028 (2)0.006 (2)0.005 (2)0.0032 (18)
O50.042 (5)0.029 (2)0.0212 (19)0.012 (2)0.006 (2)0.0015 (18)
N10.032 (4)0.0351 (14)0.0374 (16)0.0086 (16)0.0020 (17)0.0092 (14)
N20.024 (4)0.0443 (18)0.0331 (16)0.0100 (16)0.0065 (15)0.0069 (15)
C10.016 (4)0.0257 (16)0.0247 (17)0.0013 (17)0.0031 (17)0.0005 (14)
H10.046 (11)0.032 (4)0.046 (5)0.018 (4)0.007 (5)0.002 (4)
H110.052 (11)0.037 (4)0.052 (6)0.010 (4)0.001 (5)0.008 (4)
H120.055 (11)0.058 (5)0.045 (5)0.003 (5)0.002 (5)0.012 (4)
H210.054 (13)0.058 (5)0.069 (7)0.019 (6)0.011 (6)0.030 (5)
H220.082 (14)0.083 (7)0.036 (5)0.018 (7)0.001 (5)0.021 (5)
H30.051 (10)0.043 (4)0.037 (4)0.001 (4)0.010 (4)0.000 (3)
H40.037 (10)0.051 (5)0.048 (5)0.002 (4)0.014 (4)0.006 (4)
Geometric parameters (Å, º) top
P1—O11.572 (7)O5—H41.179 (11)
P1—O21.509 (6)N1—C11.321 (6)
P1—O31.553 (7)N1—H111.012 (15)
P1—O41.490 (7)N1—H120.992 (11)
O1—H10.960 (16)N2—C11.308 (5)
O3—H31.030 (10)N2—H210.996 (14)
O4—H41.235 (10)N2—H220.971 (9)
O5—C11.293 (5)
O1—P1—O2111.1 (3)C1—N1—H11120.4 (5)
O1—P1—O3107.8 (3)C1—N1—H12119.8 (8)
O1—P1—O4105.4 (5)H11—N1—H12119.7 (10)
O2—P1—O3106.8 (5)C1—N2—H21123.3 (6)
O2—P1—O4114.3 (3)C1—N2—H22123.4 (9)
O3—P1—O4111.3 (4)H21—N2—H22113.3 (10)
P1—O1—H1113.6 (6)O5—C1—N1118.6 (4)
P1—O3—H3117.7 (8)O5—C1—N2120.4 (4)
P1—O4—H4125.1 (6)N1—C1—N2120.9 (4)
C1—O5—H4117.6 (5)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i0.960 (16)1.702 (13)2.659 (8)
O3—H3···O2ii1.030 (10)1.545 (8)2.573 (5)
O5—H4···O41.179 (11)1.235 (10)2.403 (6)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(295K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.784 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.595 ÅCell parameters from 25 reflections
b = 7.460 ŵ = 1.96, at 1 Angstrom mm1
c = 8.968 ÅT = 295 K
V = 1177.1 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
677 independent reflections
Radiation source: ISIS spallation source677 reflections with > 3σ(I)
None monochromatorRint = 0.074
time–of–flight LAUE diffraction scansh = 027
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 012
Tmin = 0.36, Tmax = 0.78l = 014
1928 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.094(Δ/σ)max < 0.001
wR(F2) = 0.163Δρmax = 1.05 e Å3
S = 1.25Δρmin = 1.09 e Å3
677 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1177.1 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.595 ŵ = 1.96, at 1 Angstrom mm1
b = 7.460 ÅT = 295 K
c = 8.968 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
677 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
677 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.074
1928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0940 restraints
wR(F2) = 0.163All H-atom parameters refined
S = 1.25Δρmax = 1.05 e Å3
677 reflectionsΔρmin = 1.09 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.23 _cell_measurement_sin(theta)/lambda_max 0.59

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.140 _diffrn_reflns_sin(theta)/lambda_max 0.59

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3114 (3)0.2796 (5)0.3093 (5)2.16
O10.3399 (4)0.0915 (7)0.3606 (6)3.47
O20.2772 (3)0.3842 (5)0.4363 (4)2.48
O30.2465 (4)0.2506 (7)0.1943 (5)3.17
O40.3786 (3)0.3666 (5)0.2380 (5)2.95
O50.4471 (4)0.6342 (5)0.3104 (5)3.08
N10.5082 (3)0.7829 (4)0.4914 (4)3.35
N20.3969 (3)0.6369 (4)0.5419 (3)3.42
C10.4493 (3)0.6847 (4)0.4476 (4)2.19
H10.2991 (6)0.0090 (11)0.3943 (9)3.70
H110.5522 (8)0.8140 (10)0.4188 (11)4.85
H120.5111 (8)0.8250 (13)0.5981 (11)5.74
H210.3542 (9)0.5604 (14)0.5163 (12)6.24
H220.3966 (8)0.6731 (12)0.6443 (10)6.35
H30.2616 (7)0.1980 (11)0.0941 (9)4.46
H40.4085 (7)0.5094 (11)0.2819 (9)4.71
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.027 (5)0.019 (2)0.017 (2)0.005 (2)0.001 (2)0.003 (2)
O10.031 (6)0.031 (3)0.043 (3)0.005 (3)0.004 (3)0.001 (2)
O20.033 (5)0.023 (2)0.020 (2)0.002 (2)0.004 (2)0.0000 (18)
O30.020 (5)0.046 (3)0.029 (2)0.004 (2)0.007 (2)0.008 (2)
O40.023 (5)0.032 (3)0.030 (2)0.003 (2)0.008 (2)0.0041 (19)
O50.038 (5)0.031 (2)0.025 (2)0.012 (2)0.001 (2)0.000 (2)
N10.030 (4)0.0356 (15)0.0349 (17)0.0093 (16)0.0009 (17)0.0089 (14)
N20.026 (3)0.0443 (19)0.0322 (15)0.0082 (17)0.0082 (16)0.0036 (16)
C10.019 (4)0.0253 (17)0.0216 (18)0.0033 (17)0.0003 (17)0.0002 (15)
H10.034 (11)0.034 (4)0.045 (5)0.002 (4)0.001 (4)0.004 (4)
H110.050 (11)0.040 (4)0.050 (6)0.012 (5)0.005 (5)0.004 (4)
H120.066 (13)0.062 (6)0.045 (5)0.011 (6)0.003 (5)0.008 (4)
H210.052 (14)0.053 (5)0.083 (8)0.023 (6)0.003 (6)0.027 (5)
H220.079 (13)0.066 (6)0.038 (5)0.024 (6)0.006 (6)0.014 (5)
H30.058 (11)0.042 (5)0.038 (5)0.001 (5)0.003 (5)0.001 (4)
H40.047 (11)0.051 (5)0.040 (5)0.007 (5)0.012 (4)0.005 (4)
Geometric parameters (Å, º) top
P1—O11.560 (6)O5—H41.180 (11)
P1—O21.506 (6)N1—C11.328 (6)
P1—O31.554 (8)N1—H111.038 (15)
P1—O41.493 (7)N1—H121.009 (11)
O1—H10.994 (14)N2—C11.301 (6)
O3—H31.016 (11)N2—H210.971 (14)
O4—H41.252 (10)N2—H220.958 (10)
O5—C11.287 (5)
O1—P1—O2111.8 (4)C1—N1—H11121.4 (6)
O1—P1—O3107.9 (4)C1—N1—H12119.4 (9)
O1—P1—O4105.2 (5)H11—N1—H12119.2 (10)
O2—P1—O3106.3 (5)C1—N2—H21123.8 (7)
O2—P1—O4114.5 (3)C1—N2—H22123.3 (9)
O3—P1—O4111.0 (4)H21—N2—H22112.8 (10)
P1—O1—H1114.4 (7)O5—C1—N1117.9 (4)
P1—O3—H3116.7 (9)O5—C1—N2121.2 (4)
P1—O4—H4124.6 (6)N1—C1—N2120.8 (4)
C1—O5—H4117.1 (5)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i0.994 (14)1.677 (12)2.665 (9)
O3—H3···O2ii1.016 (11)1.566 (9)2.580 (6)
O5—H4···O41.180 (11)1.252 (10)2.420 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(300K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.783 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.601 ÅCell parameters from 25 reflections
b = 7.461 ŵ = 1.96, at 1 Angstrom mm1
c = 8.968 ÅT = 300 K
V = 1177.7 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
649 independent reflections
Radiation source: ISIS spallation source649 reflections with > 3σ(I)
None monochromatorRint = 0.064
time–of–flight LAUE diffraction scansh = 023
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 014
Tmin = 0.36, Tmax = 0.78l = 012
1858 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.090(Δ/σ)max < 0.001
wR(F2) = 0.154Δρmax = 0.88 e Å3
S = 1.21Δρmin = 0.96 e Å3
649 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1177.7 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.601 ŵ = 1.96, at 1 Angstrom mm1
b = 7.461 ÅT = 300 K
c = 8.968 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
649 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
649 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.064
1858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0900 restraints
wR(F2) = 0.154All H-atom parameters refined
S = 1.21Δρmax = 0.88 e Å3
649 reflectionsΔρmin = 0.96 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.23 _cell_measurement_sin(theta)/lambda_max 0.60

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.148 _diffrn_reflns_sin(theta)/lambda_max 0.57

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3119 (3)0.2799 (5)0.3104 (4)2.20
O10.3393 (4)0.0913 (7)0.3611 (6)3.49
O20.2775 (3)0.3846 (5)0.4380 (4)2.73
O30.2466 (3)0.2505 (7)0.1936 (5)3.43
O40.3785 (3)0.3661 (5)0.2386 (5)3.20
O50.4471 (3)0.6338 (5)0.3110 (5)3.10
N10.5070 (3)0.7839 (4)0.4917 (4)3.51
N20.3966 (3)0.6378 (5)0.5418 (4)3.72
C10.4489 (3)0.6846 (4)0.4478 (4)2.48
H10.2987 (6)0.0104 (10)0.3901 (8)3.68
H110.5501 (8)0.8115 (10)0.4185 (11)5.11
H120.5113 (7)0.8220 (12)0.5970 (11)5.40
H210.3540 (8)0.5606 (14)0.5129 (11)5.68
H220.3951 (8)0.6743 (13)0.6428 (11)6.81
H30.2599 (7)0.1971 (10)0.0928 (9)4.37
H40.4089 (7)0.5064 (11)0.2819 (8)4.42
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.030 (5)0.020 (2)0.0155 (17)0.005 (2)0.003 (2)0.0027 (19)
O10.026 (5)0.032 (2)0.046 (3)0.004 (2)0.006 (3)0.003 (2)
O20.036 (5)0.025 (2)0.021 (2)0.003 (2)0.005 (2)0.0039 (17)
O30.029 (6)0.046 (3)0.029 (2)0.001 (2)0.007 (2)0.007 (2)
O40.030 (5)0.034 (2)0.033 (2)0.006 (3)0.007 (2)0.0048 (19)
O50.040 (5)0.029 (2)0.0227 (19)0.012 (2)0.007 (2)0.000 (2)
N10.032 (4)0.0347 (14)0.0354 (16)0.0082 (16)0.0012 (17)0.0078 (13)
N20.029 (4)0.0469 (19)0.0350 (16)0.0108 (17)0.0071 (17)0.0055 (16)
C10.023 (4)0.0261 (17)0.0251 (19)0.0016 (17)0.0030 (18)0.0013 (15)
H10.042 (10)0.029 (4)0.037 (4)0.005 (4)0.002 (4)0.002 (3)
H110.051 (12)0.044 (4)0.056 (6)0.007 (5)0.005 (5)0.003 (4)
H120.055 (12)0.063 (6)0.047 (5)0.004 (5)0.007 (5)0.007 (4)
H210.046 (12)0.067 (6)0.060 (6)0.023 (6)0.003 (5)0.026 (5)
H220.080 (14)0.077 (6)0.044 (5)0.029 (6)0.012 (6)0.021 (5)
H30.052 (10)0.040 (4)0.039 (5)0.007 (4)0.000 (4)0.000 (3)
H40.043 (10)0.052 (5)0.034 (4)0.004 (4)0.013 (4)0.007 (4)
Geometric parameters (Å, º) top
P1—O11.556 (7)O5—H41.193 (11)
P1—O21.512 (6)N1—C11.323 (6)
P1—O31.570 (7)N1—H111.023 (14)
P1—O41.485 (7)N1—H120.989 (12)
O1—H10.971 (14)N2—C11.297 (6)
O3—H31.016 (10)N2—H210.980 (15)
O4—H41.238 (10)N2—H220.946 (11)
O5—C11.285 (5)
O1—P1—O2111.7 (3)C1—N1—H11119.6 (6)
O1—P1—O3107.2 (4)C1—N1—H12120.3 (9)
O1—P1—O4105.8 (5)H11—N1—H12119.9 (10)
O2—P1—O3106.5 (5)C1—N2—H21121.9 (7)
O2—P1—O4114.9 (3)C1—N2—H22124.4 (9)
O3—P1—O4110.5 (4)H21—N2—H22113.7 (10)
P1—O1—H1114.4 (6)O5—C1—N1117.9 (4)
P1—O3—H3118.7 (9)O5—C1—N2121.6 (5)
P1—O4—H4124.8 (5)N1—C1—N2120.4 (4)
C1—O5—H4117.2 (5)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i0.971 (14)1.693 (12)2.661 (8)
O3—H3···O2ii1.016 (10)1.547 (9)2.562 (6)
O5—H4···O41.193 (11)1.238 (10)2.422 (6)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(305K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.782 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.608 ÅCell parameters from 25 reflections
b = 7.462 ŵ = 1.96, at 1 Angstrom mm1
c = 8.970 ÅT = 305 K
V = 1178.4 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
645 independent reflections
Radiation source: ISIS spallation source645 reflections with > 3σ(I)
None monochromatorRint = 0.066
time–of–flight LAUE diffraction scansh = 023
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 012
Tmin = 0.36, Tmax = 0.78l = 014
1817 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.099(Δ/σ)max < 0.001
wR(F2) = 0.165Δρmax = 1.19 e Å3
S = 1.29Δρmin = 1.07 e Å3
645 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1178.4 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.608 ŵ = 1.96, at 1 Angstrom mm1
b = 7.462 ÅT = 305 K
c = 8.970 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
645 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
645 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.066
1817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0990 restraints
wR(F2) = 0.165All H-atom parameters refined
S = 1.29Δρmax = 1.19 e Å3
645 reflectionsΔρmin = 1.07 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.22 _cell_measurement_sin(theta)/lambda_max 0.60

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.140 _diffrn_reflns_sin(theta)/lambda_max 0.57

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3122 (4)0.2806 (5)0.3101 (5)2.12
O10.3397 (5)0.0898 (8)0.3612 (6)3.60
O20.2770 (3)0.3848 (5)0.4372 (4)2.74
O30.2470 (3)0.2506 (7)0.1940 (5)3.22
O40.3785 (4)0.3659 (6)0.2391 (5)3.00
O50.4469 (4)0.6340 (5)0.3110 (5)3.11
N10.5083 (3)0.7824 (4)0.4908 (4)3.41
N20.3963 (3)0.6386 (5)0.5415 (4)3.69
C10.4493 (3)0.6855 (4)0.4485 (4)2.39
H10.2994 (7)0.0106 (12)0.3918 (10)3.88
H110.5512 (9)0.8112 (12)0.4241 (14)5.36
H120.5088 (9)0.8220 (14)0.5968 (11)6.53
H210.3528 (9)0.5621 (15)0.5126 (13)7.13
H220.3971 (9)0.6763 (14)0.6430 (11)7.17
H30.2618 (8)0.1999 (11)0.0909 (11)4.92
H40.4090 (7)0.5053 (10)0.2818 (8)4.19
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.024 (5)0.021 (2)0.017 (2)0.004 (2)0.000 (2)0.000 (2)
O10.032 (6)0.032 (3)0.042 (3)0.011 (3)0.007 (3)0.004 (2)
O20.036 (5)0.025 (2)0.020 (2)0.003 (2)0.005 (2)0.0047 (19)
O30.022 (5)0.048 (3)0.027 (2)0.000 (2)0.006 (3)0.007 (2)
O40.028 (6)0.031 (3)0.033 (3)0.006 (3)0.004 (2)0.004 (2)
O50.042 (5)0.030 (2)0.022 (2)0.011 (3)0.004 (2)0.002 (2)
N10.031 (4)0.0352 (16)0.0362 (18)0.0068 (18)0.0011 (19)0.0078 (15)
N20.026 (4)0.048 (2)0.0372 (17)0.0094 (18)0.0077 (18)0.0039 (17)
C10.025 (4)0.0244 (18)0.0221 (19)0.0017 (19)0.0003 (19)0.0004 (16)
H10.038 (12)0.034 (4)0.045 (5)0.012 (4)0.002 (5)0.002 (4)
H110.045 (13)0.044 (5)0.070 (8)0.004 (5)0.005 (6)0.006 (5)
H120.091 (15)0.065 (6)0.043 (6)0.010 (6)0.006 (6)0.019 (5)
H210.064 (16)0.064 (7)0.081 (9)0.038 (7)0.010 (7)0.035 (6)
H220.103 (16)0.077 (7)0.036 (5)0.027 (8)0.004 (6)0.031 (5)
H30.051 (12)0.042 (5)0.052 (6)0.001 (5)0.006 (5)0.001 (4)
H40.048 (11)0.045 (5)0.032 (4)0.003 (5)0.013 (4)0.001 (4)
Geometric parameters (Å, º) top
P1—O11.572 (7)O5—H41.199 (11)
P1—O21.513 (6)N1—C11.321 (7)
P1—O31.567 (8)N1—H110.99 (2)
P1—O41.474 (8)N1—H120.995 (12)
O1—H10.964 (17)N2—C11.299 (6)
O3—H31.033 (13)N2—H210.990 (15)
O4—H41.231 (10)N2—H220.953 (11)
O5—C11.293 (5)
O1—P1—O2111.8 (4)C1—N1—H11123.1 (7)
O1—P1—O3106.8 (4)C1—N1—H12116.3 (10)
O1—P1—O4105.9 (5)H11—N1—H12120.5 (12)
O2—P1—O3105.9 (5)C1—N2—H21122.9 (7)
O2—P1—O4115.3 (4)C1—N2—H22121.6 (10)
O3—P1—O4110.8 (4)H21—N2—H22115.5 (12)
P1—O1—H1114.3 (7)O5—C1—N1117.6 (5)
P1—O3—H3117.6 (9)O5—C1—N2120.6 (5)
P1—O4—H4125.1 (6)N1—C1—N2121.8 (4)
C1—O5—H4117.7 (5)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i0.964 (17)1.690 (14)2.651 (10)
O3—H3···O2ii1.033 (13)1.540 (11)2.570 (6)
O5—H4···O41.199 (11)1.231 (10)2.422 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(310K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.781 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.614 ÅCell parameters from 25 reflections
b = 7.463 ŵ = 1.96, at 1 Angstrom mm1
c = 8.971 ÅT = 310 K
V = 1179.1 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
636 independent reflections
Radiation source: ISIS spallation source636 reflections with > 3σ(I)
None monochromatorRint = 0.066
time–of–flight LAUE diffraction scansh = 026
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 012
Tmin = 0.36, Tmax = 0.78l = 011
1804 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.101(Δ/σ)max < 0.001
wR(F2) = 0.167Δρmax = 1.14 e Å3
S = 1.23Δρmin = 1.19 e Å3
636 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1179.1 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.614 ŵ = 1.96, at 1 Angstrom mm1
b = 7.463 ÅT = 310 K
c = 8.971 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
636 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
636 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.066
1804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1010 restraints
wR(F2) = 0.167All H-atom parameters refined
S = 1.23Δρmax = 1.14 e Å3
636 reflectionsΔρmin = 1.19 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.22 _cell_measurement_sin(theta)/lambda_max 0.59

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.140 _diffrn_reflns_sin(theta)/lambda_max 0.55

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3126 (4)0.2801 (5)0.3091 (5)2.01
O10.3397 (4)0.0893 (7)0.3602 (6)3.35
O20.2771 (4)0.3842 (5)0.4375 (5)2.77
O30.2466 (4)0.2501 (7)0.1942 (6)3.31
O40.3784 (4)0.3646 (6)0.2399 (5)3.13
O50.4472 (4)0.6336 (5)0.3111 (5)3.04
N10.5080 (3)0.7819 (5)0.4905 (4)3.51
N20.3970 (3)0.6376 (5)0.5414 (4)3.85
C10.4491 (3)0.6853 (5)0.4486 (4)2.23
H10.2988 (7)0.0101 (12)0.3931 (10)4.03
H110.5511 (9)0.8132 (12)0.4217 (15)5.77
H120.5102 (8)0.8241 (14)0.5970 (11)6.27
H210.3540 (9)0.5616 (15)0.5131 (13)6.65
H220.3957 (9)0.6759 (14)0.6457 (12)7.03
H30.2614 (7)0.1997 (12)0.0921 (11)4.86
H40.4085 (7)0.5059 (11)0.2822 (10)4.46
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.020 (5)0.021 (2)0.018 (2)0.002 (2)0.003 (2)0.002 (2)
O10.027 (6)0.030 (3)0.041 (3)0.004 (3)0.005 (3)0.001 (2)
O20.034 (5)0.024 (2)0.026 (3)0.002 (2)0.001 (3)0.005 (2)
O30.022 (5)0.047 (3)0.032 (2)0.002 (2)0.007 (3)0.007 (2)
O40.033 (6)0.031 (3)0.029 (3)0.004 (3)0.004 (3)0.004 (2)
O50.039 (5)0.028 (2)0.026 (2)0.010 (2)0.001 (2)0.002 (2)
N10.035 (4)0.0363 (16)0.0329 (18)0.0087 (18)0.0005 (18)0.0095 (15)
N20.028 (4)0.049 (2)0.0386 (19)0.0101 (19)0.0082 (19)0.0033 (18)
C10.018 (4)0.0258 (19)0.0232 (19)0.0024 (18)0.0006 (19)0.0000 (16)
H10.052 (12)0.033 (4)0.032 (4)0.013 (5)0.001 (5)0.000 (4)
H110.049 (13)0.048 (5)0.071 (8)0.004 (6)0.006 (6)0.011 (6)
H120.091 (15)0.068 (7)0.034 (5)0.007 (7)0.005 (5)0.010 (5)
H210.072 (16)0.055 (6)0.073 (8)0.030 (7)0.001 (7)0.029 (5)
H220.099 (16)0.074 (7)0.036 (5)0.023 (7)0.008 (6)0.032 (5)
H30.045 (12)0.050 (6)0.052 (6)0.001 (5)0.004 (5)0.001 (5)
H40.036 (11)0.048 (5)0.046 (5)0.001 (5)0.013 (4)0.003 (4)
Geometric parameters (Å, º) top
P1—O11.570 (7)O5—H41.201 (11)
P1—O21.524 (6)N1—C11.319 (7)
P1—O31.569 (8)N1—H111.01 (2)
P1—O41.459 (8)N1—H121.007 (12)
O1—H10.977 (17)N2—C11.289 (6)
O3—H31.024 (14)N2—H210.980 (16)
O4—H41.239 (10)N2—H220.979 (11)
O5—C11.293 (6)
O1—P1—O2111.5 (4)C1—N1—H11123.1 (7)
O1—P1—O3106.7 (4)C1—N1—H12118.1 (10)
O1—P1—O4105.9 (5)H11—N1—H12118.8 (11)
O2—P1—O3105.4 (5)C1—N2—H21122.9 (8)
O2—P1—O4115.3 (4)C1—N2—H22123.6 (10)
O3—P1—O4111.8 (4)H21—N2—H22113.5 (11)
P1—O1—H1114.4 (7)O5—C1—N1117.1 (5)
P1—O3—H3116.9 (10)O5—C1—N2121.1 (5)
P1—O4—H4125.2 (6)N1—C1—N2121.8 (4)
C1—O5—H4117.2 (6)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i0.977 (17)1.682 (14)2.656 (9)
O3—H3···O2ii1.024 (14)1.546 (11)2.568 (7)
O5—H4···O41.201 (11)1.239 (10)2.431 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(315K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.780 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.621 ÅCell parameters from 25 reflections
b = 7.463 ŵ = 1.96, at 1 Angstrom mm1
c = 8.972 ÅT = 315 K
V = 1179.7 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
617 independent reflections
Radiation source: ISIS spallation source617 reflections with > 3σ(I)
None monochromatorRint = 0.069
time–of–flight LAUE diffraction scansh = 022
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 011
Tmin = 0.36, Tmax = 0.78l = 011
1756 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.102(Δ/σ)max < 0.001
wR(F2) = 0.166Δρmax = 1.03 e Å3
S = 1.27Δρmin = 1.06 e Å3
617 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1179.7 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.621 ŵ = 1.96, at 1 Angstrom mm1
b = 7.463 ÅT = 315 K
c = 8.972 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
617 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
617 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.069
1756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1020 restraints
wR(F2) = 0.166All H-atom parameters refined
S = 1.27Δρmax = 1.03 e Å3
617 reflectionsΔρmin = 1.06 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.22 _cell_measurement_sin(theta)/lambda_max 0.60

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.140 _diffrn_reflns_sin(theta)/lambda_max 0.55

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3120 (4)0.2792 (5)0.3100 (5)2.42
O10.3407 (5)0.0926 (7)0.3596 (6)3.86
O20.2779 (4)0.3841 (5)0.4370 (5)2.74
O30.2471 (4)0.2501 (7)0.1939 (6)3.30
O40.3783 (4)0.3652 (6)0.2393 (5)3.10
O50.4473 (4)0.6338 (5)0.3117 (5)3.20
N10.5082 (3)0.7835 (5)0.4917 (5)3.84
N20.3962 (3)0.6378 (5)0.5405 (4)3.87
C10.4497 (3)0.6860 (5)0.4477 (4)2.50
H10.2987 (6)0.0089 (11)0.3934 (9)3.82
H110.5520 (10)0.8148 (12)0.4211 (14)5.94
H120.5082 (7)0.8203 (14)0.5968 (12)5.23
H210.3540 (9)0.5612 (15)0.5138 (12)6.12
H220.3947 (8)0.6761 (13)0.6452 (12)6.46
H30.2615 (8)0.1975 (12)0.0905 (11)5.65
H40.4083 (8)0.5041 (11)0.2802 (8)4.95
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.034 (6)0.025 (3)0.012 (2)0.005 (3)0.000 (2)0.000 (2)
O10.041 (7)0.031 (3)0.044 (4)0.007 (3)0.008 (3)0.000 (3)
O20.027 (5)0.029 (2)0.027 (2)0.000 (2)0.004 (3)0.008 (2)
O30.022 (6)0.048 (3)0.029 (2)0.004 (3)0.005 (3)0.011 (3)
O40.018 (6)0.036 (3)0.035 (3)0.007 (3)0.003 (3)0.004 (2)
O50.037 (5)0.030 (3)0.028 (2)0.013 (3)0.011 (3)0.002 (2)
N10.038 (5)0.0352 (16)0.041 (2)0.0074 (19)0.002 (2)0.0079 (17)
N20.033 (4)0.050 (2)0.0339 (18)0.012 (2)0.0080 (19)0.0047 (18)
C10.022 (4)0.0264 (19)0.024 (2)0.005 (2)0.005 (2)0.0045 (17)
H10.057 (12)0.028 (4)0.039 (5)0.003 (5)0.006 (5)0.006 (4)
H110.063 (14)0.040 (5)0.078 (9)0.000 (6)0.003 (7)0.000 (6)
H120.054 (13)0.068 (7)0.042 (6)0.005 (6)0.003 (5)0.010 (5)
H210.072 (17)0.061 (6)0.062 (8)0.023 (7)0.005 (6)0.021 (6)
H220.071 (14)0.071 (6)0.050 (6)0.019 (7)0.008 (6)0.022 (6)
H30.065 (13)0.046 (6)0.057 (7)0.001 (5)0.012 (6)0.001 (5)
H40.059 (12)0.052 (5)0.033 (4)0.007 (6)0.014 (5)0.000 (4)
Geometric parameters (Å, º) top
P1—O11.547 (7)O5—H41.221 (11)
P1—O21.507 (6)N1—C11.323 (7)
P1—O31.562 (8)N1—H111.03 (2)
P1—O41.477 (8)N1—H120.982 (14)
O1—H11.014 (15)N2—C11.307 (6)
O3—H31.038 (13)N2—H210.969 (16)
O4—H41.219 (11)N2—H220.982 (12)
O5—C11.282 (6)
O1—P1—O2112.4 (4)C1—N1—H11121.8 (7)
O1—P1—O3107.8 (4)C1—N1—H12116.1 (9)
O1—P1—O4104.8 (5)H11—N1—H12122.0 (11)
O2—P1—O3106.5 (5)C1—N2—H21124.0 (7)
O2—P1—O4114.4 (4)C1—N2—H22123.3 (10)
O3—P1—O4110.7 (4)H21—N2—H22112.7 (11)
P1—O1—H1113.7 (7)O5—C1—N1118.4 (5)
P1—O3—H3118.0 (10)O5—C1—N2120.0 (5)
P1—O4—H4125.7 (6)N1—C1—N2121.5 (4)
C1—O5—H4118.6 (5)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i1.014 (15)1.686 (12)2.696 (9)
O3—H3···O2ii1.038 (13)1.534 (11)2.571 (7)
O5—H4···O41.221 (11)1.219 (11)2.433 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(320K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.778 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.629 ÅCell parameters from 25 reflections
b = 7.465 ŵ = 1.96, at 1 Angstrom mm1
c = 8.974 ÅT = 320 K
V = 1180.9 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
594 independent reflections
Radiation source: ISIS spallation source594 reflections with > 3σ(I)
None monochromatorRint = 0.070
time–of–flight LAUE diffraction scansh = 019
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 012
Tmin = 0.36, Tmax = 0.78l = 011
1694 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.103(Δ/σ)max < 0.001
wR(F2) = 0.161Δρmax = 0.97 e Å3
S = 1.28Δρmin = 0.97 e Å3
594 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1180.9 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.629 ŵ = 1.96, at 1 Angstrom mm1
b = 7.465 ÅT = 320 K
c = 8.974 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
594 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
594 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.070
1694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1030 restraints
wR(F2) = 0.161All H-atom parameters refined
S = 1.28Δρmax = 0.97 e Å3
594 reflectionsΔρmin = 0.97 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.22 _cell_measurement_sin(theta)/lambda_max 0.59

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.140 _diffrn_reflns_sin(theta)/lambda_max 0.54

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3127 (4)0.2799 (5)0.3096 (5)2.45
O10.3405 (5)0.0927 (8)0.3604 (7)4.23
O20.2779 (4)0.3841 (5)0.4378 (5)3.07
O30.2471 (4)0.2510 (8)0.1931 (6)3.54
O40.3789 (4)0.3650 (6)0.2394 (5)3.13
O50.4474 (4)0.6327 (5)0.3124 (5)3.37
N10.5080 (3)0.7836 (5)0.4903 (5)3.70
N20.3966 (3)0.6393 (5)0.5416 (4)3.81
C10.4490 (3)0.6855 (5)0.4482 (5)2.50
H10.2986 (7)0.0076 (12)0.3919 (9)3.83
H110.5495 (11)0.8109 (12)0.4215 (15)5.91
H120.5068 (8)0.8236 (13)0.5984 (11)5.65
H210.3540 (9)0.5610 (16)0.5126 (12)6.14
H220.3934 (10)0.6756 (14)0.6454 (13)7.61
H30.2618 (8)0.1990 (12)0.0924 (13)5.25
H40.4079 (8)0.5054 (11)0.2801 (9)4.54
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.036 (6)0.023 (3)0.016 (2)0.007 (3)0.001 (3)0.003 (2)
O10.040 (8)0.037 (3)0.052 (4)0.010 (3)0.008 (4)0.002 (3)
O20.039 (6)0.027 (3)0.026 (3)0.003 (2)0.010 (3)0.005 (2)
O30.021 (6)0.051 (3)0.035 (3)0.001 (3)0.007 (3)0.007 (3)
O40.022 (6)0.039 (3)0.033 (3)0.005 (3)0.002 (3)0.005 (2)
O50.045 (6)0.031 (3)0.025 (3)0.013 (3)0.005 (3)0.003 (2)
N10.042 (4)0.0344 (17)0.0355 (19)0.007 (2)0.001 (2)0.0103 (15)
N20.030 (4)0.048 (2)0.0368 (19)0.0128 (19)0.008 (2)0.0064 (18)
C10.022 (5)0.0258 (19)0.026 (2)0.004 (2)0.001 (2)0.0010 (17)
H10.043 (11)0.033 (4)0.037 (5)0.004 (5)0.000 (5)0.005 (4)
H110.071 (14)0.041 (5)0.064 (8)0.001 (6)0.002 (7)0.001 (5)
H120.067 (13)0.066 (6)0.038 (5)0.010 (6)0.007 (5)0.011 (5)
H210.046 (15)0.068 (7)0.073 (8)0.035 (7)0.004 (7)0.021 (6)
H220.093 (17)0.076 (7)0.049 (6)0.015 (7)0.001 (7)0.016 (6)
H30.043 (13)0.043 (5)0.068 (8)0.006 (5)0.008 (6)0.005 (5)
H40.053 (11)0.044 (5)0.038 (5)0.002 (5)0.019 (5)0.003 (4)
Geometric parameters (Å, º) top
P1—O11.549 (7)O5—H41.214 (12)
P1—O21.519 (7)N1—C11.326 (7)
P1—O31.574 (9)N1—H110.98 (2)
P1—O41.471 (8)N1—H121.015 (12)
O1—H11.015 (17)N2—C11.295 (7)
O3—H31.016 (16)N2—H210.986 (15)
O4—H41.222 (11)N2—H220.972 (13)
O5—C11.281 (6)
O1—P1—O2111.5 (4)C1—N1—H11121.4 (8)
O1—P1—O3107.7 (4)C1—N1—H12114.8 (10)
O1—P1—O4105.4 (5)H11—N1—H12123.8 (12)
O2—P1—O3106.0 (5)C1—N2—H21122.0 (8)
O2—P1—O4115.1 (4)C1—N2—H22126.0 (11)
O3—P1—O4111.0 (4)H21—N2—H22111.9 (12)
P1—O1—H1114.6 (7)O5—C1—N1117.3 (5)
P1—O3—H3117.1 (11)O5—C1—N2121.2 (5)
P1—O4—H4125.0 (6)N1—C1—N2121.5 (4)
C1—O5—H4118.8 (6)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i1.015 (17)1.684 (13)2.695 (10)
O3—H3···O2ii1.016 (16)1.546 (13)2.561 (7)
O5—H4···O41.214 (12)1.222 (11)2.425 (8)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(330K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.776 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.639 ÅCell parameters from 25 reflections
b = 7.466 ŵ = 1.96, at 1 Angstrom mm1
c = 8.975 ÅT = 330 K
V = 1181.9 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
606 independent reflections
Radiation source: ISIS spallation source606 reflections with > 3σ(I)
None monochromatorRint = 0.075
time–of–flight LAUE diffraction scansh = 022
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 013
Tmin = 0.36, Tmax = 0.78l = 012
1661 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.101(Δ/σ)max < 0.001
wR(F2) = 0.163Δρmax = 0.92 e Å3
S = 1.29Δρmin = 0.97 e Å3
606 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1181.9 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.639 ŵ = 1.96, at 1 Angstrom mm1
b = 7.466 ÅT = 330 K
c = 8.975 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
606 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
606 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.075
1661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1010 restraints
wR(F2) = 0.163All H-atom parameters refined
S = 1.29Δρmax = 0.92 e Å3
606 reflectionsΔρmin = 0.97 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.22 _cell_measurement_sin(theta)/lambda_max 0.60

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.140 _diffrn_reflns_sin(theta)/lambda_max 0.54

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3117 (4)0.2795 (5)0.3091 (5)2.54
O10.3393 (4)0.0921 (8)0.3605 (6)3.76
O20.2783 (3)0.3848 (5)0.4361 (5)2.67
O30.2479 (4)0.2506 (7)0.1923 (6)3.52
O40.3790 (4)0.3650 (7)0.2403 (5)3.73
O50.4471 (4)0.6333 (5)0.3100 (5)3.56
N10.5072 (4)0.7839 (5)0.4915 (5)4.21
N20.3964 (3)0.6387 (5)0.5417 (4)4.17
C10.4495 (3)0.6852 (5)0.4470 (5)3.00
H10.2977 (8)0.0102 (13)0.3911 (10)4.92
H110.5514 (11)0.8096 (13)0.4211 (16)6.54
H120.5103 (8)0.8222 (14)0.5986 (12)5.97
H210.3536 (10)0.5616 (17)0.5142 (13)6.58
H220.3955 (8)0.6767 (14)0.6442 (12)6.70
H30.2616 (7)0.1959 (11)0.0940 (9)4.73
H40.4079 (8)0.5061 (13)0.2789 (10)6.03
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.037 (5)0.023 (3)0.0154 (19)0.008 (2)0.000 (2)0.001 (2)
O10.030 (6)0.037 (3)0.045 (3)0.009 (3)0.010 (3)0.001 (3)
O20.019 (5)0.028 (2)0.031 (2)0.004 (2)0.004 (2)0.002 (2)
O30.019 (5)0.051 (3)0.034 (2)0.002 (2)0.009 (3)0.004 (2)
O40.033 (6)0.045 (3)0.033 (3)0.009 (3)0.007 (3)0.001 (2)
O50.051 (6)0.029 (3)0.028 (2)0.010 (3)0.007 (3)0.002 (2)
N10.045 (4)0.0413 (17)0.0397 (19)0.010 (2)0.002 (2)0.0131 (17)
N20.035 (4)0.051 (2)0.0384 (18)0.007 (2)0.006 (2)0.0064 (18)
C10.032 (5)0.029 (2)0.027 (2)0.002 (2)0.001 (2)0.0008 (17)
H10.066 (13)0.035 (5)0.046 (5)0.008 (5)0.004 (5)0.002 (4)
H110.073 (15)0.047 (5)0.078 (8)0.016 (6)0.011 (7)0.005 (6)
H120.048 (12)0.075 (7)0.056 (6)0.000 (6)0.006 (5)0.026 (5)
H210.049 (15)0.071 (7)0.074 (8)0.024 (7)0.008 (7)0.020 (6)
H220.069 (14)0.080 (7)0.050 (6)0.014 (7)0.003 (6)0.020 (6)
H30.055 (11)0.048 (5)0.039 (5)0.007 (5)0.000 (5)0.002 (4)
H40.079 (14)0.053 (6)0.044 (5)0.004 (6)0.018 (5)0.007 (4)
Geometric parameters (Å, º) top
P1—O11.552 (7)O5—H41.208 (13)
P1—O21.505 (7)N1—C11.317 (7)
P1—O31.552 (8)N1—H111.02 (2)
P1—O41.482 (8)N1—H121.004 (13)
O1—H10.994 (18)N2—C11.312 (7)
O3—H31.002 (12)N2—H210.982 (19)
O4—H41.221 (12)N2—H220.963 (12)
O5—C11.290 (6)
O1—P1—O2111.6 (4)C1—N1—H11120.4 (7)
O1—P1—O3107.6 (4)C1—N1—H12119.4 (10)
O1—P1—O4105.1 (5)H11—N1—H12119.8 (11)
O2—P1—O3107.5 (5)C1—N2—H21122.9 (8)
O2—P1—O4113.8 (4)C1—N2—H22123.6 (10)
O3—P1—O4111.0 (4)H21—N2—H22113.6 (11)
P1—O1—H1113.9 (7)O5—C1—N1118.8 (5)
P1—O3—H3118.5 (10)O5—C1—N2120.9 (5)
P1—O4—H4126.0 (7)N1—C1—N2120.2 (4)
C1—O5—H4118.4 (6)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i0.994 (18)1.685 (14)2.676 (10)
O3—H3···O2ii1.002 (12)1.567 (10)2.568 (7)
O5—H4···O41.208 (13)1.221 (12)2.419 (8)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
(335K) Urea-phosphoric acid 1:1 complex top
Crystal data top
CH7N2O5PF(000) = 26.58
Mr = 158.0Dx = 1.775 Mg m3
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.648 ÅCell parameters from 25 reflections
b = 7.467 ŵ = 1.96, at 1 Angstrom mm1
c = 8.976 ÅT = 335 K
V = 1182.8 Å3Irregular prisms, colourless
Z = 83.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
553 independent reflections
Radiation source: ISIS spallation source553 reflections with > 3σ(I)
None monochromatorRint = 0.084
time–of–flight LAUE diffraction scansh = 021
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
k = 013
Tmin = 0.36, Tmax = 0.78l = 011
1395 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2)]
R[F2 > 2σ(F2)] = 0.101(Δ/σ)max < 0.001
wR(F2) = 0.163Δρmax = 0.93 e Å3
S = 1.26Δρmin = 0.92 e Å3
553 reflectionsExtinction correction: Becker-Coppens Lorentzian model
145 parametersExtinction coefficient: 8.410
0 restraints
Crystal data top
CH7N2O5PV = 1182.8 Å3
Mr = 158.0Z = 8
Orthorhombic, PbcaNeutron radiation, λ = 0.5-5.0 Å
a = 17.648 ŵ = 1.96, at 1 Angstrom mm1
b = 7.467 ÅT = 335 K
c = 8.976 Å3.0 × 2.5 × 1.5 mm
Data collection top
SXD
diffractometer
553 independent reflections
Absorption correction: empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
553 reflections with > 3σ(I)
Tmin = 0.36, Tmax = 0.78Rint = 0.084
1395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1010 restraints
wR(F2) = 0.163All H-atom parameters refined
S = 1.26Δρmax = 0.93 e Å3
553 reflectionsΔρmin = 0.92 e Å3
145 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25

For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

Instead, we can give values of

_cell_measurement_sin(theta)/lambda_min 0.23 _cell_measurement_sin(theta)/lambda_max 0.57

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5–5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given

It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region.

However, we can attempt to estimate the sin(theta)/lambda limits as follows:

_diffrn_reflns_sin(theta)/lambda_min 0.140 _diffrn_reflns_sin(theta)/lambda_max 0.53

Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set.

The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10-4 rad-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129–148.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3124 (4)0.2813 (7)0.3082 (6)2.40
O10.3392 (5)0.0928 (10)0.3599 (6)3.64
O20.2783 (4)0.3840 (6)0.4381 (5)3.38
O30.2460 (4)0.2497 (8)0.1922 (7)3.48
O40.3788 (4)0.3639 (8)0.2402 (6)4.02
O50.4458 (5)0.6350 (7)0.3112 (6)4.29
N10.5080 (4)0.7844 (6)0.4923 (5)4.22
N20.3956 (4)0.6397 (6)0.5407 (4)4.23
C10.4498 (4)0.6853 (6)0.4479 (5)3.26
H10.2976 (9)0.0064 (15)0.3897 (12)5.03
H110.5548 (11)0.8095 (16)0.424 (2)6.56
H120.5101 (9)0.8197 (15)0.5986 (12)6.57
H210.3533 (10)0.561 (2)0.5149 (15)6.91
H220.3992 (9)0.6661 (14)0.6500 (12)6.87
H30.2619 (8)0.2018 (15)0.0945 (12)4.94
H40.4077 (8)0.5039 (13)0.2831 (10)4.66
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.020 (6)0.032 (3)0.019 (2)0.005 (3)0.002 (3)0.001 (2)
O10.027 (6)0.040 (4)0.042 (3)0.011 (4)0.002 (3)0.006 (3)
O20.036 (6)0.028 (3)0.037 (3)0.007 (3)0.000 (3)0.001 (2)
O30.017 (6)0.048 (4)0.041 (3)0.007 (3)0.004 (3)0.006 (3)
O40.038 (7)0.042 (4)0.037 (3)0.012 (4)0.008 (3)0.001 (3)
O50.062 (8)0.032 (4)0.035 (3)0.003 (4)0.007 (3)0.001 (3)
N10.052 (5)0.041 (2)0.034 (2)0.004 (3)0.003 (2)0.0106 (18)
N20.036 (5)0.048 (3)0.040 (2)0.008 (3)0.007 (2)0.008 (2)
C10.033 (6)0.034 (3)0.033 (3)0.006 (3)0.001 (3)0.0031 (19)
H10.060 (14)0.032 (6)0.058 (6)0.003 (6)0.015 (6)0.002 (5)
H110.024 (14)0.049 (7)0.113 (12)0.010 (8)0.010 (8)0.001 (7)
H120.088 (15)0.075 (8)0.035 (5)0.020 (8)0.013 (6)0.022 (5)
H210.056 (18)0.082 (9)0.078 (9)0.042 (10)0.007 (8)0.011 (7)
H220.065 (15)0.083 (9)0.057 (7)0.020 (8)0.007 (7)0.031 (6)
H30.031 (12)0.066 (8)0.056 (7)0.005 (7)0.008 (6)0.002 (5)
H40.045 (13)0.043 (6)0.048 (6)0.003 (6)0.005 (5)0.004 (4)
Geometric parameters (Å, º) top
P1—O11.556 (9)O5—H41.214 (15)
P1—O21.520 (8)N1—C11.326 (9)
P1—O31.585 (9)N1—H111.05 (2)
P1—O41.458 (9)N1—H120.991 (12)
O1—H11.01 (2)N2—C11.314 (8)
O3—H30.988 (16)N2—H210.98 (2)
O4—H41.226 (13)N2—H221.003 (12)
O5—C11.285 (7)
O1—P1—O2110.3 (4)C1—N1—H11122.4 (8)
O1—P1—O3106.6 (5)C1—N1—H12117.9 (11)
O1—P1—O4105.3 (6)H11—N1—H12119.0 (13)
O2—P1—O3106.7 (6)C1—N2—H21124.2 (9)
O2—P1—O4115.2 (5)C1—N2—H22121.6 (12)
O3—P1—O4112.5 (5)H21—N2—H22113.5 (12)
P1—O1—H1115.8 (8)O5—C1—N1119.6 (6)
P1—O3—H3115.2 (11)O5—C1—N2119.3 (6)
P1—O4—H4124.3 (7)N1—C1—N2121.1 (5)
C1—O5—H4117.7 (7)
Hydrogen-bond geometry (Å) top
D—H···AD—HH···AD···A
O1—H1···O2i1.01 (2)1.679 (17)2.687 (12)
O3—H3···O2ii0.988 (16)1.570 (12)2.554 (8)
O5—H4···O41.214 (15)1.226 (13)2.430 (9)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.

Experimental details

(150K)(250K)(280K)(290K)
Crystal data
Chemical formulaCH7N2O5PCH7N2O5PCH7N2O5PCH7N2O5P
Mr158.0158.0158.0158.0
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, PbcaOrthorhombic, PbcaOrthorhombic, Pbca
Temperature (K)150250280290
a, b, c (Å)17.420, 7.421, 8.93917.549, 7.446, 8.95917.576, 7.456, 8.96317.589, 7.458, 8.967
V3)1155.61170.61174.41176.3
Z8888
Radiation typeNeutron, λ = 0.5-5.0 ÅNeutron, λ = 0.5-5.0 ÅNeutron, λ = 0.5-5.0 ÅNeutron, λ = 0.5-5.0 Å
µ (mm1)1.96, at 1 Angstrom1.96, at 1 Angstrom1.96, at 1 Angstrom1.96, at 1 Angstrom
Crystal size (mm)3.0 × 2.5 × 1.53.0 × 2.5 × 1.53.0 × 2.5 × 1.53.0 × 2.5 × 1.5
Data collection
DiffractometerSXD
diffractometer
SXD
diffractometer
SXD
diffractometer
SXD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Tmin, Tmax0.36, 0.780.36, 0.780.36, 0.780.36, 0.78
No. of measured, independent and
observed [ > 3σ(I)] reflections
2327, 1037, 1037 1798, 782, 782 2087, 705, 705 2010, 686, 686
Rint0.0790.0660.0870.071
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.103, 0.185, 1.20 0.093, 0.171, 1.18 0.121, 0.191, 1.29 0.097, 0.159, 1.22
No. of reflections1037782705686
No. of parameters145145145145
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)2.00, 1.771.11, 1.371.34, 1.351.22, 1.18


(295K)(300K)(305K)(310K)
Crystal data
Chemical formulaCH7N2O5PCH7N2O5PCH7N2O5PCH7N2O5P
Mr158.0158.0158.0158.0
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, PbcaOrthorhombic, PbcaOrthorhombic, Pbca
Temperature (K)295300305310
a, b, c (Å)17.595, 7.460, 8.96817.601, 7.461, 8.96817.608, 7.462, 8.97017.614, 7.463, 8.971
V3)1177.11177.71178.41179.1
Z8888
Radiation typeNeutron, λ = 0.5-5.0 ÅNeutron, λ = 0.5-5.0 ÅNeutron, λ = 0.5-5.0 ÅNeutron, λ = 0.5-5.0 Å
µ (mm1)1.96, at 1 Angstrom1.96, at 1 Angstrom1.96, at 1 Angstrom1.96, at 1 Angstrom
Crystal size (mm)3.0 × 2.5 × 1.53.0 × 2.5 × 1.53.0 × 2.5 × 1.53.0 × 2.5 × 1.5
Data collection
DiffractometerSXD
diffractometer
SXD
diffractometer
SXD
diffractometer
SXD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Tmin, Tmax0.36, 0.780.36, 0.780.36, 0.780.36, 0.78
No. of measured, independent and
observed [ > 3σ(I)] reflections
1928, 677, 677 1858, 649, 649 1817, 645, 645 1804, 636, 636
Rint0.0740.0640.0660.066
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.163, 1.25 0.090, 0.154, 1.21 0.099, 0.165, 1.29 0.101, 0.167, 1.23
No. of reflections677649645636
No. of parameters145145145145
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.05, 1.090.88, 0.961.19, 1.071.14, 1.19


(315K)(320K)(330K)(335K)
Crystal data
Chemical formulaCH7N2O5PCH7N2O5PCH7N2O5PCH7N2O5P
Mr158.0158.0158.0158.0
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, PbcaOrthorhombic, PbcaOrthorhombic, Pbca
Temperature (K)315320330335
a, b, c (Å)17.621, 7.463, 8.97217.629, 7.465, 8.97417.639, 7.466, 8.97517.648, 7.467, 8.976
V3)1179.71180.91181.91182.8
Z8888
Radiation typeNeutron, λ = 0.5-5.0 ÅNeutron, λ = 0.5-5.0 ÅNeutron, λ = 0.5-5.0 ÅNeutron, λ = 0.5-5.0 Å
µ (mm1)1.96, at 1 Angstrom1.96, at 1 Angstrom1.96, at 1 Angstrom1.96, at 1 Angstrom
Crystal size (mm)3.0 × 2.5 × 1.53.0 × 2.5 × 1.53.0 × 2.5 × 1.53.0 × 2.5 × 1.5
Data collection
DiffractometerSXD
diffractometer
SXD
diffractometer
SXD
diffractometer
SXD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Empirical (using intensity measurements)
The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 1.00 + 0.96 * lambda [cm-1]
Tmin, Tmax0.36, 0.780.36, 0.780.36, 0.780.36, 0.78
No. of measured, independent and
observed [ > 3σ(I)] reflections
1756, 617, 617 1694, 594, 594 1661, 606, 606 1395, 553, 553
Rint0.0690.0700.0750.084
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.102, 0.166, 1.27 0.103, 0.161, 1.28 0.101, 0.163, 1.29 0.101, 0.163, 1.26
No. of reflections617594606553
No. of parameters145145145145
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.03, 1.060.97, 0.970.92, 0.970.93, 0.92

Computer programs: GSAS (Larsen & von Dreele, 1994), GSAS (Larsen and von Dreele, 1994), ORTEP (Johnson, 1994).

Selected geometric parameters (Å, º) for (150K) top
P1—O11.571 (5)O5—H41.178 (8)
P1—O21.510 (5)N1—C11.319 (4)
P1—O31.544 (6)N1—H111.026 (10)
P1—O41.496 (6)N1—H120.995 (8)
O1—H10.985 (10)N2—C11.313 (4)
O3—H31.008 (7)N2—H211.009 (9)
O4—H41.231 (8)N2—H220.996 (7)
O5—C11.294 (4)
O1—P1—O2111.2 (3)C1—N1—H11119.9 (5)
O1—P1—O3108.4 (3)C1—N1—H12119.9 (7)
O1—P1—O4104.6 (3)H11—N1—H12120.1 (8)
O2—P1—O3107.6 (3)C1—N2—H21120.9 (5)
O2—P1—O4113.7 (3)C1—N2—H22121.4 (6)
O3—P1—O4111.4 (3)H21—N2—H22117.7 (7)
P1—O1—H1111.4 (5)O5—C1—N1118.8 (3)
P1—O3—H3117.5 (6)O5—C1—N2120.9 (3)
P1—O4—H4125.6 (5)N1—C1—N2120.3 (3)
C1—O5—H4117.1 (4)
Hydrogen-bond geometry (Å, º) for (150K) top
D—H···AD—HH···AD···A
O1—H1···O2i0.985 (10)1.658 (9)2.642 (6)
O3—H3···O2ii1.008 (7)1.561 (7)2.568 (5)
O5—H4···O41.178 (8)1.231 (8)2.400 (5)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (250K) top
P1—O11.562 (5)O5—H41.176 (10)
P1—O21.516 (5)N1—C11.317 (5)
P1—O31.539 (6)N1—H111.032 (12)
P1—O41.490 (7)N1—H121.009 (8)
O1—H10.974 (12)N2—C11.302 (5)
O3—H31.003 (9)N2—H210.965 (11)
O4—H41.237 (9)N2—H220.988 (8)
O5—C11.290 (5)
O1—P1—O2111.4 (3)C1—N1—H11121.8 (5)
O1—P1—O3107.6 (3)C1—N1—H12122.2 (7)
O1—P1—O4104.7 (4)H11—N1—H12115.5 (9)
O2—P1—O3107.3 (4)C1—N2—H21120.6 (6)
O2—P1—O4113.8 (3)C1—N2—H22121.3 (7)
O3—P1—O4112.0 (3)H21—N2—H22118.0 (9)
P1—O1—H1112.9 (6)O5—C1—N1118.4 (4)
P1—O3—H3117.6 (8)O5—C1—N2120.6 (4)
P1—O4—H4125.7 (5)N1—C1—N2121.0 (3)
C1—O5—H4117.9 (5)
Hydrogen-bond geometry (Å, º) for (250K) top
D—H···AD—HH···AD···A
O1—H1···O2i0.974 (12)1.676 (11)2.648 (7)
O3—H3···O2ii1.003 (9)1.573 (8)2.575 (6)
O5—H4···O41.176 (10)1.237 (9)2.405 (6)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (280K) top
P1—O11.560 (8)O5—H41.195 (12)
P1—O21.507 (7)N1—C11.329 (7)
P1—O31.558 (9)N1—H111.051 (17)
P1—O41.477 (9)N1—H120.979 (16)
O1—H11.003 (14)N2—C11.306 (7)
O3—H31.032 (12)N2—H210.972 (13)
O4—H41.240 (11)N2—H221.022 (11)
O5—C11.294 (6)
O1—P1—O2111.8 (4)C1—N1—H11121.2 (6)
O1—P1—O3108.2 (4)C1—N1—H12120.2 (11)
O1—P1—O4105.6 (5)H11—N1—H12118.6 (12)
O2—P1—O3106.2 (5)C1—N2—H21122.6 (7)
O2—P1—O4113.8 (4)C1—N2—H22118.1 (9)
O3—P1—O4111.2 (4)H21—N2—H22119.4 (11)
P1—O1—H1112.7 (7)O5—C1—N1118.7 (5)
P1—O3—H3115.4 (10)O5—C1—N2120.7 (5)
P1—O4—H4123.4 (7)N1—C1—N2120.5 (4)
C1—O5—H4115.5 (6)
Hydrogen-bond geometry (Å, º) for (280K) top
D—H···AD—HH···AD···A
O1—H1···O2i1.003 (14)1.668 (12)2.669 (10)
O3—H3···O2ii1.032 (12)1.563 (10)2.593 (6)
O5—H4···O41.195 (12)1.240 (11)2.417 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (290K) top
P1—O11.572 (7)O5—H41.179 (11)
P1—O21.509 (6)N1—C11.321 (6)
P1—O31.553 (7)N1—H111.012 (15)
P1—O41.490 (7)N1—H120.992 (11)
O1—H10.960 (16)N2—C11.308 (5)
O3—H31.030 (10)N2—H210.996 (14)
O4—H41.235 (10)N2—H220.971 (9)
O5—C11.293 (5)
O1—P1—O2111.1 (3)C1—N1—H11120.4 (5)
O1—P1—O3107.8 (3)C1—N1—H12119.8 (8)
O1—P1—O4105.4 (5)H11—N1—H12119.7 (10)
O2—P1—O3106.8 (5)C1—N2—H21123.3 (6)
O2—P1—O4114.3 (3)C1—N2—H22123.4 (9)
O3—P1—O4111.3 (4)H21—N2—H22113.3 (10)
P1—O1—H1113.6 (6)O5—C1—N1118.6 (4)
P1—O3—H3117.7 (8)O5—C1—N2120.4 (4)
P1—O4—H4125.1 (6)N1—C1—N2120.9 (4)
C1—O5—H4117.6 (5)
Hydrogen-bond geometry (Å, º) for (290K) top
D—H···AD—HH···AD···A
O1—H1···O2i0.960 (16)1.702 (13)2.659 (8)
O3—H3···O2ii1.030 (10)1.545 (8)2.573 (5)
O5—H4···O41.179 (11)1.235 (10)2.403 (6)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (295K) top
P1—O11.560 (6)O5—H41.180 (11)
P1—O21.506 (6)N1—C11.328 (6)
P1—O31.554 (8)N1—H111.038 (15)
P1—O41.493 (7)N1—H121.009 (11)
O1—H10.994 (14)N2—C11.301 (6)
O3—H31.016 (11)N2—H210.971 (14)
O4—H41.252 (10)N2—H220.958 (10)
O5—C11.287 (5)
O1—P1—O2111.8 (4)C1—N1—H11121.4 (6)
O1—P1—O3107.9 (4)C1—N1—H12119.4 (9)
O1—P1—O4105.2 (5)H11—N1—H12119.2 (10)
O2—P1—O3106.3 (5)C1—N2—H21123.8 (7)
O2—P1—O4114.5 (3)C1—N2—H22123.3 (9)
O3—P1—O4111.0 (4)H21—N2—H22112.8 (10)
P1—O1—H1114.4 (7)O5—C1—N1117.9 (4)
P1—O3—H3116.7 (9)O5—C1—N2121.2 (4)
P1—O4—H4124.6 (6)N1—C1—N2120.8 (4)
C1—O5—H4117.1 (5)
Hydrogen-bond geometry (Å, º) for (295K) top
D—H···AD—HH···AD···A
O1—H1···O2i0.994 (14)1.677 (12)2.665 (9)
O3—H3···O2ii1.016 (11)1.566 (9)2.580 (6)
O5—H4···O41.180 (11)1.252 (10)2.420 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (300K) top
P1—O11.556 (7)O5—H41.193 (11)
P1—O21.512 (6)N1—C11.323 (6)
P1—O31.570 (7)N1—H111.023 (14)
P1—O41.485 (7)N1—H120.989 (12)
O1—H10.971 (14)N2—C11.297 (6)
O3—H31.016 (10)N2—H210.980 (15)
O4—H41.238 (10)N2—H220.946 (11)
O5—C11.285 (5)
O1—P1—O2111.7 (3)C1—N1—H11119.6 (6)
O1—P1—O3107.2 (4)C1—N1—H12120.3 (9)
O1—P1—O4105.8 (5)H11—N1—H12119.9 (10)
O2—P1—O3106.5 (5)C1—N2—H21121.9 (7)
O2—P1—O4114.9 (3)C1—N2—H22124.4 (9)
O3—P1—O4110.5 (4)H21—N2—H22113.7 (10)
P1—O1—H1114.4 (6)O5—C1—N1117.9 (4)
P1—O3—H3118.7 (9)O5—C1—N2121.6 (5)
P1—O4—H4124.8 (5)N1—C1—N2120.4 (4)
C1—O5—H4117.2 (5)
Hydrogen-bond geometry (Å, º) for (300K) top
D—H···AD—HH···AD···A
O1—H1···O2i0.971 (14)1.693 (12)2.661 (8)
O3—H3···O2ii1.016 (10)1.547 (9)2.562 (6)
O5—H4···O41.193 (11)1.238 (10)2.422 (6)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (305K) top
P1—O11.572 (7)O5—H41.199 (11)
P1—O21.513 (6)N1—C11.321 (7)
P1—O31.567 (8)N1—H110.99 (2)
P1—O41.474 (8)N1—H120.995 (12)
O1—H10.964 (17)N2—C11.299 (6)
O3—H31.033 (13)N2—H210.990 (15)
O4—H41.231 (10)N2—H220.953 (11)
O5—C11.293 (5)
O1—P1—O2111.8 (4)C1—N1—H11123.1 (7)
O1—P1—O3106.8 (4)C1—N1—H12116.3 (10)
O1—P1—O4105.9 (5)H11—N1—H12120.5 (12)
O2—P1—O3105.9 (5)C1—N2—H21122.9 (7)
O2—P1—O4115.3 (4)C1—N2—H22121.6 (10)
O3—P1—O4110.8 (4)H21—N2—H22115.5 (12)
P1—O1—H1114.3 (7)O5—C1—N1117.6 (5)
P1—O3—H3117.6 (9)O5—C1—N2120.6 (5)
P1—O4—H4125.1 (6)N1—C1—N2121.8 (4)
C1—O5—H4117.7 (5)
Hydrogen-bond geometry (Å, º) for (305K) top
D—H···AD—HH···AD···A
O1—H1···O2i0.964 (17)1.690 (14)2.651 (10)
O3—H3···O2ii1.033 (13)1.540 (11)2.570 (6)
O5—H4···O41.199 (11)1.231 (10)2.422 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (310K) top
P1—O11.570 (7)O5—H41.201 (11)
P1—O21.524 (6)N1—C11.319 (7)
P1—O31.569 (8)N1—H111.01 (2)
P1—O41.459 (8)N1—H121.007 (12)
O1—H10.977 (17)N2—C11.289 (6)
O3—H31.024 (14)N2—H210.980 (16)
O4—H41.239 (10)N2—H220.979 (11)
O5—C11.293 (6)
O1—P1—O2111.5 (4)C1—N1—H11123.1 (7)
O1—P1—O3106.7 (4)C1—N1—H12118.1 (10)
O1—P1—O4105.9 (5)H11—N1—H12118.8 (11)
O2—P1—O3105.4 (5)C1—N2—H21122.9 (8)
O2—P1—O4115.3 (4)C1—N2—H22123.6 (10)
O3—P1—O4111.8 (4)H21—N2—H22113.5 (11)
P1—O1—H1114.4 (7)O5—C1—N1117.1 (5)
P1—O3—H3116.9 (10)O5—C1—N2121.1 (5)
P1—O4—H4125.2 (6)N1—C1—N2121.8 (4)
C1—O5—H4117.2 (6)
Hydrogen-bond geometry (Å, º) for (310K) top
D—H···AD—HH···AD···A
O1—H1···O2i0.977 (17)1.682 (14)2.656 (9)
O3—H3···O2ii1.024 (14)1.546 (11)2.568 (7)
O5—H4···O41.201 (11)1.239 (10)2.431 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (315K) top
P1—O11.547 (7)O5—H41.221 (11)
P1—O21.507 (6)N1—C11.323 (7)
P1—O31.562 (8)N1—H111.03 (2)
P1—O41.477 (8)N1—H120.982 (14)
O1—H11.014 (15)N2—C11.307 (6)
O3—H31.038 (13)N2—H210.969 (16)
O4—H41.219 (11)N2—H220.982 (12)
O5—C11.282 (6)
O1—P1—O2112.4 (4)C1—N1—H11121.8 (7)
O1—P1—O3107.8 (4)C1—N1—H12116.1 (9)
O1—P1—O4104.8 (5)H11—N1—H12122.0 (11)
O2—P1—O3106.5 (5)C1—N2—H21124.0 (7)
O2—P1—O4114.4 (4)C1—N2—H22123.3 (10)
O3—P1—O4110.7 (4)H21—N2—H22112.7 (11)
P1—O1—H1113.7 (7)O5—C1—N1118.4 (5)
P1—O3—H3118.0 (10)O5—C1—N2120.0 (5)
P1—O4—H4125.7 (6)N1—C1—N2121.5 (4)
C1—O5—H4118.6 (5)
Hydrogen-bond geometry (Å, º) for (315K) top
D—H···AD—HH···AD···A
O1—H1···O2i1.014 (15)1.686 (12)2.696 (9)
O3—H3···O2ii1.038 (13)1.534 (11)2.571 (7)
O5—H4···O41.221 (11)1.219 (11)2.433 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (320K) top
P1—O11.549 (7)O5—H41.214 (12)
P1—O21.519 (7)N1—C11.326 (7)
P1—O31.574 (9)N1—H110.98 (2)
P1—O41.471 (8)N1—H121.015 (12)
O1—H11.015 (17)N2—C11.295 (7)
O3—H31.016 (16)N2—H210.986 (15)
O4—H41.222 (11)N2—H220.972 (13)
O5—C11.281 (6)
O1—P1—O2111.5 (4)C1—N1—H11121.4 (8)
O1—P1—O3107.7 (4)C1—N1—H12114.8 (10)
O1—P1—O4105.4 (5)H11—N1—H12123.8 (12)
O2—P1—O3106.0 (5)C1—N2—H21122.0 (8)
O2—P1—O4115.1 (4)C1—N2—H22126.0 (11)
O3—P1—O4111.0 (4)H21—N2—H22111.9 (12)
P1—O1—H1114.6 (7)O5—C1—N1117.3 (5)
P1—O3—H3117.1 (11)O5—C1—N2121.2 (5)
P1—O4—H4125.0 (6)N1—C1—N2121.5 (4)
C1—O5—H4118.8 (6)
Hydrogen-bond geometry (Å, º) for (320K) top
D—H···AD—HH···AD···A
O1—H1···O2i1.015 (17)1.684 (13)2.695 (10)
O3—H3···O2ii1.016 (16)1.546 (13)2.561 (7)
O5—H4···O41.214 (12)1.222 (11)2.425 (8)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (330K) top
P1—O11.552 (7)O5—H41.208 (13)
P1—O21.505 (7)N1—C11.317 (7)
P1—O31.552 (8)N1—H111.02 (2)
P1—O41.482 (8)N1—H121.004 (13)
O1—H10.994 (18)N2—C11.312 (7)
O3—H31.002 (12)N2—H210.982 (19)
O4—H41.221 (12)N2—H220.963 (12)
O5—C11.290 (6)
O1—P1—O2111.6 (4)C1—N1—H11120.4 (7)
O1—P1—O3107.6 (4)C1—N1—H12119.4 (10)
O1—P1—O4105.1 (5)H11—N1—H12119.8 (11)
O2—P1—O3107.5 (5)C1—N2—H21122.9 (8)
O2—P1—O4113.8 (4)C1—N2—H22123.6 (10)
O3—P1—O4111.0 (4)H21—N2—H22113.6 (11)
P1—O1—H1113.9 (7)O5—C1—N1118.8 (5)
P1—O3—H3118.5 (10)O5—C1—N2120.9 (5)
P1—O4—H4126.0 (7)N1—C1—N2120.2 (4)
C1—O5—H4118.4 (6)
Hydrogen-bond geometry (Å, º) for (330K) top
D—H···AD—HH···AD···A
O1—H1···O2i0.994 (18)1.685 (14)2.676 (10)
O3—H3···O2ii1.002 (12)1.567 (10)2.568 (7)
O5—H4···O41.208 (13)1.221 (12)2.419 (8)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (335K) top
P1—O11.556 (9)O5—H41.214 (15)
P1—O21.520 (8)N1—C11.326 (9)
P1—O31.585 (9)N1—H111.05 (2)
P1—O41.458 (9)N1—H120.991 (12)
O1—H11.01 (2)N2—C11.314 (8)
O3—H30.988 (16)N2—H210.98 (2)
O4—H41.226 (13)N2—H221.003 (12)
O5—C11.285 (7)
O1—P1—O2110.3 (4)C1—N1—H11122.4 (8)
O1—P1—O3106.6 (5)C1—N1—H12117.9 (11)
O1—P1—O4105.3 (6)H11—N1—H12119.0 (13)
O2—P1—O3106.7 (6)C1—N2—H21124.2 (9)
O2—P1—O4115.2 (5)C1—N2—H22121.6 (12)
O3—P1—O4112.5 (5)H21—N2—H22113.5 (12)
P1—O1—H1115.8 (8)O5—C1—N1119.6 (6)
P1—O3—H3115.2 (11)O5—C1—N2119.3 (6)
P1—O4—H4124.3 (7)N1—C1—N2121.1 (5)
C1—O5—H4117.7 (7)
Hydrogen-bond geometry (Å, º) for (335K) top
D—H···AD—HH···AD···A
O1—H1···O2i1.012 (22)1.679 (17)2.687 (12)
O3—H3···O2ii0.988 (16)1.570 (12)2.554 (8)
O5—H4···O41.214 (15)1.226 (13)2.430 (9)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds