metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N′-Bis-(o-sulfido­benzyl­­idene)-1,3-di­amino­propane]­nickel(II) 1,4-dioxane solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral St., Glasgow G1 1XL, Scotland
*Correspondence e-mail: michelle.k.taylor@strath.ac.uk

(Received 5 May 2004; accepted 17 May 2004; online 22 May 2004)

The title tetradentate Schiff base complex (systematic name: {2,2′-[propane-1,3-diyl­bis­(nitrilo­methyl­idyne)]­benzene­thiol­ato-κ4S,N,N′,S′}nickel(II) 1,4-dioxane solvate), [Ni(C17H16N2S2)]·C4H8O2, contains an Ni atom coordinated within a tetrahedrally distorted planar N2S2 environment, with average Ni—N and Ni—S bond lengths of 1.922 (1) and 2.167 (1) Å, respectively.

Comment

As part of our ongoing studies (Reglinski et al., 2002a[Reglinski, J., Morris, S. & Stevenson, D. E. (2002a). Polyhedron, 21, 2167-2174.],b[Reglinski, J., Morris, S. & Stevenson, D. E. (2002b). Polyhedron, 21, 2175-2182.]) on tetradentate Schiff base complexes with N2X2 donor sets and varying backbone lengths, the preparation of N2S2 complexes of this type was of interest. Eichorn & Goswami (1999[Eichorn, D. M. & Goswami, N. (1999). Inorg. Chem. 38, 4329-4333.]) reported the use of a novel Schiff base semi-template for the formation of NiII complexes with mixed N/S-donating chelates. This method involves the reaction in ethanol of NiII complexes containing primary amine chelates and 2,2′-di­thio­dibenz­aldehyde (DTDB). In order to assess the applicability of extending this method to the preparation of complexes with longer backbones, the title compound, (I[link]), was prepared by this method. Crystals were obtained and the unit cell was found to be different from that of the previously reported structure of this compound (Gomes et al., 1999[Gomes, L., Pereira, E. & De Castro, B. (1999). Acta Cryst. C55, 1061-1063.]), which has two independent nickel complex mol­ecules in the asymmetric unit.[link]

[Scheme 1]
[Figure 1]
Figure 1
View of (I[link]) (50% probability displacement ellipsoids). The solvent mol­ecule has been omitted.

Experimental

The reaction of tris­(propyl­enedi­amine)­nickel(II)­chloride and DTDB (Kasmai & Mischke, 1989[Kasmai, H. S. & Mischke, S. G. (1989). Synthesis, pp. 763-765.]) in ethanol produced a brown solid. Analysis found: C 54.28, H 4.58, N 7.04, S 16.62%; calculated for C17H16N2NiS2: C 55.01, H 4.34, N 7.55, S 17.28%; 1H NMR (270 MHz; solvent CDCl3): δ 7.83 (s, 2H, CH=N), 7.69 (d, 2H, aromatic), 7.22 (d, 2H, aromatic), 7.15 (t, 2H, aromatic), 7.00 (t, 2H, aromatic), 3.99 (t, 4H, =NCH2—), 2.09 (p, 2H, CCH2C). Dark-brown crystals suitable for X-ray analysis were obtained by slow evaporation of a dioxane solution of the brown solid.

Crystal data
  • [Ni(C17H16N2S2)]·C4H8O2

  • Mr = 459.25

  • Triclinic, [P\overline 1]

  • a = 9.2099 (3) Å

  • b = 9.3828 (2) Å

  • c = 13.2522 (4) Å

  • α = 77.392 (2)°

  • β = 88.719 (2)°

  • γ = 66.761 (2)°

  • V = 1024.30 (5) Å3

  • Z = 2

  • Dx = 1.489 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4660 reflections

  • θ = 1.6–27.5°

  • μ = 1.17 mm−1

  • T = 123 (2) K

  • Prism, brown

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 9186 measured reflections

  • 4660 independent reflections

  • 3758 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 27.5°

  • h = −11 → 11

  • k = −11 → 12

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.057

  • S = 1.03

  • 4660 reflections

  • 349 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0146P)2 + 0.5180P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.033

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Ni1 1.9140 (14)
N2—Ni1 1.9307 (15)
S1—Ni1 2.1760 (5)
S2—Ni1 2.1574 (5)
N1—Ni1—S2 170.86 (4)
N2—Ni1—S1 169.35 (4)

All H atoms were found in a difference Fourier map and were refined isotropically [C—H = 0.90 (2)–1.02 (2) Å].

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT'; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I) top
Crystal data top
[Ni(C17H16N2S2)]·C4H8O2Z = 2
Mr = 459.25F(000) = 480
Triclinic, P1Dx = 1.489 Mg m3
a = 9.2099 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3828 (2) ÅCell parameters from 4660 reflections
c = 13.2522 (4) Åθ = 1.6–27.5°
α = 77.392 (2)°µ = 1.17 mm1
β = 88.719 (2)°T = 123 K
γ = 66.761 (2)°Prism, brown
V = 1024.30 (5) Å30.25 × 0.25 × 0.2 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.029
φ and ω scansθmax = 27.5°, θmin = 1.6°
9186 measured reflectionsh = 1111
4660 independent reflectionsk = 1112
3758 reflections with I > 2σ(I)l = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0146P)2 + 0.518P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.033
S = 1.03Δρmax = 0.36 e Å3
4660 reflectionsΔρmin = 0.29 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2710 (2)0.7389 (2)0.57855 (14)0.0159 (4)
C20.1408 (2)0.7676 (2)0.63999 (15)0.0189 (4)
C30.1601 (2)0.7008 (2)0.74544 (15)0.0216 (4)
C40.3099 (2)0.6008 (2)0.79286 (16)0.0235 (4)
C50.4386 (2)0.5709 (2)0.73374 (15)0.0209 (4)
C60.4231 (2)0.6404 (2)0.62742 (14)0.0163 (4)
C70.5667 (2)0.5992 (2)0.57264 (14)0.0173 (4)
C80.7439 (2)0.6049 (2)0.44351 (15)0.0169 (4)
C90.8365 (2)0.7036 (2)0.45712 (16)0.0193 (4)
C100.7314 (2)0.8817 (2)0.43429 (15)0.0192 (4)
C110.6252 (2)1.0193 (2)0.26429 (14)0.0165 (4)
C120.5229 (2)1.0864 (2)0.16979 (14)0.0178 (4)
C130.5847 (2)1.1463 (2)0.08023 (16)0.0224 (4)
C140.4958 (2)1.2121 (2)0.01327 (16)0.0257 (5)
C150.3415 (2)1.2220 (2)0.01875 (15)0.0240 (4)
C160.2771 (2)1.1676 (2)0.06836 (15)0.0213 (4)
C170.3659 (2)1.0981 (2)0.16450 (14)0.0168 (4)
N10.58507 (17)0.67295 (17)0.48251 (11)0.0147 (3)
N20.61009 (17)0.92791 (17)0.34786 (11)0.0156 (3)
S10.23398 (5)0.81892 (5)0.44491 (3)0.01690 (10)
S20.26934 (5)1.04149 (6)0.27094 (4)0.02131 (11)
Ni10.44140 (3)0.85851 (3)0.387643 (18)0.01469 (7)
O10.87627 (16)0.38996 (16)0.74835 (10)0.0273 (3)
O20.91928 (17)0.23564 (16)0.96165 (10)0.0287 (3)
C190.9658 (2)0.2222 (2)0.78346 (16)0.0240 (4)
C200.9075 (3)0.1581 (3)0.88208 (16)0.0267 (5)
C210.8345 (3)0.4039 (3)0.92787 (17)0.0309 (5)
C220.8898 (3)0.4680 (3)0.82688 (18)0.0325 (5)
H20.041 (2)0.834 (2)0.6093 (14)0.020 (5)*
H30.071 (2)0.725 (2)0.7839 (15)0.020 (5)*
H40.323 (2)0.553 (2)0.8650 (16)0.028 (6)*
H50.544 (2)0.504 (2)0.7636 (15)0.029 (6)*
H70.657 (2)0.506 (2)0.6091 (13)0.013 (5)*
H8A0.799 (2)0.495 (2)0.4793 (13)0.012 (5)*
H8B0.729 (2)0.607 (2)0.3686 (15)0.021 (5)*
H9A0.879 (2)0.674 (2)0.5288 (15)0.017 (5)*
H9B0.919 (2)0.684 (2)0.4129 (14)0.016 (5)*
H10A0.676 (2)0.909 (2)0.4961 (15)0.016 (5)*
H10B0.794 (2)0.944 (2)0.4160 (14)0.014 (5)*
H110.721 (2)1.047 (2)0.2618 (13)0.015 (5)*
H130.688 (2)1.140 (2)0.0862 (16)0.030 (6)*
H140.537 (2)1.248 (2)0.0743 (15)0.022 (5)*
H150.281 (2)1.264 (2)0.0846 (15)0.018 (5)*
H160.172 (2)1.173 (2)0.0642 (14)0.019 (5)*
H19A0.955 (2)0.172 (2)0.7274 (15)0.024 (5)*
H19B1.079 (2)0.202 (2)0.7942 (14)0.020 (5)*
H20A0.795 (2)0.172 (2)0.8714 (15)0.027 (6)*
H20B0.976 (2)0.040 (2)0.9083 (15)0.028 (5)*
H21A0.853 (2)0.455 (2)0.9808 (16)0.027 (6)*
H21B0.716 (3)0.432 (3)0.9209 (16)0.036 (6)*
H22A0.999 (3)0.455 (2)0.8372 (15)0.027 (6)*
H22B0.824 (2)0.583 (3)0.7993 (16)0.033 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0180 (9)0.0101 (8)0.0197 (9)0.0052 (7)0.0012 (7)0.0044 (7)
C20.0155 (9)0.0148 (9)0.0263 (11)0.0061 (8)0.0007 (8)0.0046 (8)
C30.0217 (10)0.0197 (10)0.0237 (10)0.0085 (8)0.0080 (9)0.0056 (8)
C40.0266 (11)0.0213 (10)0.0192 (10)0.0085 (9)0.0033 (9)0.0003 (8)
C50.0191 (10)0.0196 (10)0.0211 (10)0.0071 (8)0.0028 (8)0.0003 (8)
C60.0170 (9)0.0126 (9)0.0185 (9)0.0057 (7)0.0010 (8)0.0026 (7)
C70.0165 (9)0.0132 (9)0.0215 (10)0.0051 (8)0.0020 (8)0.0036 (8)
C80.0140 (9)0.0127 (9)0.0211 (10)0.0025 (7)0.0018 (8)0.0034 (8)
C90.0152 (9)0.0204 (10)0.0215 (10)0.0074 (8)0.0012 (8)0.0023 (8)
C100.0197 (10)0.0187 (10)0.0213 (10)0.0095 (8)0.0021 (8)0.0052 (8)
C110.0143 (9)0.0129 (9)0.0227 (10)0.0050 (7)0.0033 (8)0.0060 (8)
C120.0209 (10)0.0124 (9)0.0191 (10)0.0059 (7)0.0017 (8)0.0032 (7)
C130.0194 (10)0.0180 (10)0.0276 (11)0.0060 (8)0.0048 (9)0.0037 (8)
C140.0300 (11)0.0215 (11)0.0201 (11)0.0077 (9)0.0050 (9)0.0011 (8)
C150.0310 (11)0.0189 (10)0.0188 (10)0.0079 (9)0.0034 (9)0.0010 (8)
C160.0205 (10)0.0176 (10)0.0239 (10)0.0069 (8)0.0033 (8)0.0019 (8)
C170.0187 (9)0.0117 (9)0.0190 (9)0.0049 (7)0.0016 (8)0.0037 (7)
N10.0134 (7)0.0115 (7)0.0190 (8)0.0042 (6)0.0017 (6)0.0044 (6)
N20.0159 (8)0.0118 (7)0.0189 (8)0.0049 (6)0.0010 (6)0.0045 (6)
S10.0150 (2)0.0171 (2)0.0173 (2)0.00633 (18)0.00101 (18)0.00146 (18)
S20.0148 (2)0.0223 (3)0.0207 (2)0.00485 (19)0.00009 (19)0.0028 (2)
Ni10.01358 (12)0.01291 (12)0.01610 (12)0.00437 (9)0.00019 (9)0.00203 (9)
O10.0315 (8)0.0223 (7)0.0221 (7)0.0061 (6)0.0015 (6)0.0019 (6)
O20.0351 (8)0.0277 (8)0.0203 (7)0.0094 (7)0.0020 (6)0.0048 (6)
C190.0222 (11)0.0226 (11)0.0251 (11)0.0063 (9)0.0007 (9)0.0060 (9)
C200.0319 (12)0.0236 (11)0.0254 (11)0.0120 (10)0.0002 (9)0.0053 (9)
C210.0341 (13)0.0282 (12)0.0280 (12)0.0072 (10)0.0000 (10)0.0117 (10)
C220.0353 (13)0.0208 (12)0.0379 (13)0.0082 (10)0.0017 (11)0.0049 (10)
Geometric parameters (Å, º) top
C1—C21.404 (3)C12—C171.408 (3)
C1—C61.412 (2)C13—C141.378 (3)
C1—S11.7495 (18)C13—H130.94 (2)
C2—C31.385 (3)C14—C151.390 (3)
C2—H20.921 (19)C14—H140.94 (2)
C3—C41.392 (3)C15—C161.377 (3)
C3—H30.933 (19)C15—H150.963 (18)
C4—C51.375 (3)C16—C171.407 (3)
C4—H40.95 (2)C16—H160.948 (19)
C5—C61.402 (3)C17—S21.7471 (19)
C5—H50.96 (2)N1—Ni11.9140 (14)
C6—C71.450 (3)N2—Ni11.9307 (15)
C7—N11.287 (2)S1—Ni12.1760 (5)
C7—H70.973 (18)S2—Ni12.1574 (5)
C8—N11.479 (2)O1—C221.430 (2)
C8—C91.523 (3)O1—C191.431 (2)
C8—H8A0.968 (18)O2—C211.427 (2)
C8—H8B0.999 (19)O2—C201.434 (2)
C9—C101.529 (3)C19—C201.496 (3)
C9—H9A0.975 (18)C19—H19A0.990 (19)
C9—H9B0.937 (19)C19—H19B0.990 (19)
C10—N21.485 (2)C20—H20A1.00 (2)
C10—H10A0.984 (19)C20—H20B1.02 (2)
C10—H10B0.965 (19)C21—C221.507 (3)
C11—N21.286 (2)C21—H21A0.98 (2)
C11—C121.447 (2)C21—H21B1.02 (2)
C11—H111.009 (19)C22—H22A0.97 (2)
C12—C131.407 (3)C22—H22B0.99 (2)
C2—C1—C6118.10 (17)C15—C14—H14118.7 (12)
C2—C1—S1117.96 (13)C16—C15—C14120.51 (19)
C6—C1—S1123.85 (14)C16—C15—H15120.1 (12)
C3—C2—C1121.20 (17)C14—C15—H15119.4 (11)
C3—C2—H2119.9 (12)C15—C16—C17121.23 (19)
C1—C2—H2118.9 (12)C15—C16—H16120.4 (12)
C2—C3—C4120.49 (19)C17—C16—H16118.4 (12)
C2—C3—H3118.6 (12)C16—C17—C12118.25 (17)
C4—C3—H3120.9 (12)C16—C17—S2117.24 (14)
C5—C4—C3119.05 (19)C12—C17—S2124.42 (14)
C5—C4—H4120.2 (12)C7—N1—C8115.75 (15)
C3—C4—H4120.7 (12)C7—N1—Ni1131.25 (13)
C4—C5—C6121.69 (18)C8—N1—Ni1113.00 (11)
C4—C5—H5121.6 (12)C11—N2—C10115.91 (16)
C6—C5—H5116.7 (13)C11—N2—Ni1130.86 (12)
C5—C6—C1119.42 (17)C10—N2—Ni1112.78 (12)
C5—C6—C7116.91 (16)C1—S1—Ni1107.57 (6)
C1—C6—C7123.59 (16)C17—S2—Ni1109.63 (6)
N1—C7—C6126.55 (17)N1—Ni1—N290.94 (6)
N1—C7—H7118.3 (11)N1—Ni1—S2170.86 (4)
C6—C7—H7115.2 (11)N2—Ni1—S294.62 (5)
N1—C8—C9109.44 (15)N1—Ni1—S193.17 (5)
N1—C8—H8A110.1 (11)N2—Ni1—S1169.35 (4)
C9—C8—H8A111.4 (10)S2—Ni1—S182.624 (19)
N1—C8—H8B107.8 (11)C22—O1—C19109.04 (15)
C9—C8—H8B110.6 (11)C21—O2—C20110.24 (15)
H8A—C8—H8B107.4 (14)O1—C19—C20110.75 (16)
C8—C9—C10111.96 (15)O1—C19—H19A107.1 (11)
C8—C9—H9A109.7 (11)C20—C19—H19A111.4 (12)
C10—C9—H9A106.7 (11)O1—C19—H19B108.9 (11)
C8—C9—H9B109.0 (11)C20—C19—H19B110.2 (11)
C10—C9—H9B109.8 (11)H19A—C19—H19B108.4 (15)
H9A—C9—H9B109.7 (15)O2—C20—C19110.81 (17)
N2—C10—C9111.59 (15)O2—C20—H20A109.5 (11)
N2—C10—H10A107.9 (10)C19—C20—H20A111.1 (12)
C9—C10—H10A109.6 (11)O2—C20—H20B106.8 (11)
N2—C10—H10B108.2 (10)C19—C20—H20B109.9 (12)
C9—C10—H10B110.9 (11)H20A—C20—H20B108.6 (16)
H10A—C10—H10B108.4 (15)O2—C21—C22111.31 (18)
N2—C11—C12127.90 (17)O2—C21—H21A108.6 (12)
N2—C11—H11117.6 (10)C22—C21—H21A108.6 (12)
C12—C11—H11114.4 (10)O2—C21—H21B110.3 (12)
C13—C12—C17119.45 (17)C22—C21—H21B110.5 (12)
C13—C12—C11117.09 (17)H21A—C21—H21B107.4 (16)
C17—C12—C11123.43 (17)O1—C22—C21111.26 (18)
C14—C13—C12121.09 (19)O1—C22—H22A110.3 (12)
C14—C13—H13121.1 (13)C21—C22—H22A109.7 (12)
C12—C13—H13117.9 (13)O1—C22—H22B105.5 (12)
C13—C14—C15119.4 (2)C21—C22—H22B111.7 (13)
C13—C14—H14121.8 (12)H22A—C22—H22B108.3 (17)
C6—C1—C2—C30.3 (3)C9—C8—N1—Ni178.07 (16)
S1—C1—C2—C3176.39 (14)C12—C11—N2—C10177.98 (17)
C1—C2—C3—C41.2 (3)C12—C11—N2—Ni16.4 (3)
C2—C3—C4—C50.8 (3)C9—C10—N2—C11113.05 (19)
C3—C4—C5—C61.0 (3)C9—C10—N2—Ni173.81 (18)
C4—C5—C6—C12.5 (3)C2—C1—S1—Ni1152.10 (12)
C4—C5—C6—C7179.45 (17)C6—C1—S1—Ni131.40 (16)
C2—C1—C6—C52.1 (3)C16—C17—S2—Ni1156.60 (12)
S1—C1—C6—C5174.40 (14)C12—C17—S2—Ni126.83 (17)
C2—C1—C6—C7178.84 (16)C7—N1—Ni1—N2142.94 (16)
S1—C1—C6—C72.3 (2)C8—N1—Ni1—N237.06 (12)
C5—C6—C7—N1164.25 (17)C7—N1—Ni1—S127.23 (16)
C1—C6—C7—N118.9 (3)C8—N1—Ni1—S1152.77 (11)
N1—C8—C9—C1038.6 (2)C11—N2—Ni1—N1155.57 (16)
C8—C9—C10—N236.3 (2)C10—N2—Ni1—N132.60 (12)
N2—C11—C12—C13163.22 (18)C11—N2—Ni1—S217.17 (16)
N2—C11—C12—C1718.7 (3)C10—N2—Ni1—S2154.66 (11)
C17—C12—C13—C141.9 (3)C11—N2—Ni1—S191.7 (3)
C11—C12—C13—C14179.87 (17)C10—N2—Ni1—S180.1 (3)
C12—C13—C14—C151.2 (3)C17—S2—Ni1—N228.01 (8)
C13—C14—C15—C160.4 (3)C17—S2—Ni1—S1162.34 (6)
C14—C15—C16—C171.2 (3)C1—S1—Ni1—N135.44 (7)
C15—C16—C17—C120.5 (3)C1—S1—Ni1—N277.1 (3)
C15—C16—C17—S2177.25 (15)C1—S1—Ni1—S2152.71 (6)
C13—C12—C17—C161.1 (3)C22—O1—C19—C2058.8 (2)
C11—C12—C17—C16179.17 (17)C21—O2—C20—C1956.4 (2)
C13—C12—C17—S2175.45 (14)O1—C19—C20—O259.1 (2)
C11—C12—C17—S22.6 (3)C20—O2—C21—C2255.0 (2)
C6—C7—N1—C8179.34 (16)C19—O1—C22—C2157.4 (2)
C6—C7—N1—Ni10.7 (3)O2—C21—C22—O156.4 (2)
C9—C8—N1—C7101.93 (18)
 

Acknowledgements

JR wishes to thank the Cunningham Trust (Scotland) for financial assistance.

References

First citationEichorn, D. M. & Goswami, N. (1999). Inorg. Chem. 38, 4329–4333.  Web of Science CSD CrossRef Google Scholar
First citationGomes, L., Pereira, E. & De Castro, B. (1999). Acta Cryst. C55, 1061–1063.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKasmai, H. S. & Mischke, S. G. (1989). Synthesis, pp. 763–765.  CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReglinski, J., Morris, S. & Stevenson, D. E. (2002a). Polyhedron, 21, 2167–2174.  Web of Science CSD CrossRef CAS Google Scholar
First citationReglinski, J., Morris, S. & Stevenson, D. E. (2002b). Polyhedron, 21, 2175–2182.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds