Download citation
Download citation
link to html
The title compound, trans-[Ru(NCS)2(C5H5N)4]·2CH2Cl2, was prepared by the reaction between trans-di­chloro­tetra­pyridine­ruthenium(II) and excess KSCN in refluxing aqueous pyri­dine. The Ru atom is in a pseudo-octahedral environment, with two N-donors from two monodentate NCS groups and four N-donors from the pyridine ligands. The complex molecule lies on a crystallographic twofold rotation axis, passing through Ru and the two pyridine ligands

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802017300/ac6015sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802017300/ac6015Isup2.hkl
Contains datablock I

CCDC reference: 198317

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.047
  • wR factor = 0.117
  • Data-to-parameter ratio = 16.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The crystal structure of the title compound, (I), consists of discrete trans-[Ru(NCS)2(C5H5N)4] molecules and dichloromethane solvate molecules. The Ru atom is coordinated octahedrally by four N atoms from the pyridine ligands and by two N atoms from the monodentate NCS groups in an octahedral arrangement. The Ru—N(C5H5N) lengths are in the range 2.072 (5)–2.096 (5) Å, close to those in the reported compounds trans-Ru(CN)2(C5H5N)4·2MeCN (Coe et al., 1995a) and trans-[RuCl(C5H5N)4(PhCN)]PF6 (Coe et al., 1995b). The NCS groups are essentially linear. The N4—C1 [1.159 (5) Å] and C1—S1 [1.632 (4) Å] lengths indicate triple- and single-bond character, respectively, and are similar to those in the reported complexes Ni(NCS)2(C5H5N)4 (Valach et al., 1984) and Ni(en)2(NCS)2·C6H6 (Squattrito et al., 1996). The C—C [1.339 (9)–1.389 (7) Å] and C—N [1.323 (6)–1.346 (5) Å] lengths are in the normal ranges for pyridine ligands (Evans et al., 1973; Coe et al., 1995). The mean bond angles in the pyridine [C—N—C = 116.2 (7)°, N—C—C = 123.4 (8)°, and C—C—C = 118.4 (4) and 119.6 (4)°] are similar to those observed in Ni(NCS)2(py)4 [C—N—C = 116.8 (5)°, N—C—C = 122.8 (5)°, and C—C—C = 117.1 (6) and 120.2 (6)°; Valach et al., 1984].

Experimental top

The title compound was synthesized by the reaction of a pyridine solution of trans-RuCl2(C5H5N)4 (Evans et al., 1973) with an excess aqueous solution of KSCN. After refluxing for 1 h, the solution was put aside at room temperature to give a yellow precipitate. The solid was then filtered off, washed with methanol and ether, and dried in air. Well shaped crystals were grown by slow diffusion of hexane into the dichloromethane solution at room temperature.

Refinement top

The positions of the H atoms were genetared geometrically (C—H bond fixed at 0.96 Å), assigned isotropic displacement parameters and allowed to ride on their respective parent C atoms before the final cycle of least-squares refinement.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS96 (Sheldrick, 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the title complex with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Trans-bis(isothiocyanato)tetrakis(pyridine)ruthenium(II) top
Crystal data top
[Ru(NCS)2(C5H5N)4]·2CH2Cl2F(000) = 1416
Mr = 703.48Dx = 1.474 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.9410 (8) ÅCell parameters from 3186 reflections
b = 16.1308 (11) Åθ = 2.0–25.0°
c = 15.4715 (11) ŵ = 0.99 mm1
β = 100.988 (2)°T = 293 K
V = 3170.4 (4) Å3Prism, yellow
Z = 40.40 × 0.35 × 0.28 mm
Data collection top
Siemens SMART CCD
diffractometer
2765 independent reflections
Radiation source: fine-focus sealed tube2352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.681, Tmax = 0.759k = 1910
4923 measured reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0355P)2 + 11.5869P]
where P = (Fo2 + 2Fc2)/3
2765 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Ru(NCS)2(C5H5N)4]·2CH2Cl2V = 3170.4 (4) Å3
Mr = 703.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.9410 (8) ŵ = 0.99 mm1
b = 16.1308 (11) ÅT = 293 K
c = 15.4715 (11) Å0.40 × 0.35 × 0.28 mm
β = 100.988 (2)°
Data collection top
Siemens SMART CCD
diffractometer
2765 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2352 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.759Rint = 0.028
4923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0355P)2 + 11.5869P]
where P = (Fo2 + 2Fc2)/3
2765 reflectionsΔρmax = 0.51 e Å3
170 parametersΔρmin = 0.86 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.50000.27597 (3)0.75000.04076 (17)
Cl10.1692 (3)0.4684 (2)1.0558 (3)0.2039 (16)
Cl20.3637 (2)0.43891 (18)1.0005 (2)0.1525 (10)
S10.15016 (10)0.27837 (10)0.81361 (11)0.0709 (4)
N10.50000.4059 (3)0.75000.0498 (13)
N20.5533 (3)0.2763 (2)0.8858 (2)0.0464 (8)
N30.50000.1475 (3)0.75000.0465 (12)
N40.3503 (3)0.2757 (2)0.7712 (2)0.0448 (8)
C10.2672 (3)0.2768 (3)0.7889 (3)0.0427 (9)
C20.2545 (8)0.3953 (6)1.0315 (6)0.137 (3)
H2A0.21830.36050.98420.165*
H2B0.27700.36041.08270.165*
C120.4372 (5)0.4496 (4)0.7907 (5)0.092 (2)
H12A0.39200.42130.82060.110*
C130.4355 (6)0.5348 (4)0.7911 (6)0.113 (3)
H13A0.38910.56260.82010.136*
C140.50000.5782 (6)0.75000.093 (3)
H14A0.50000.63590.75000.112*
C220.6299 (4)0.3278 (3)0.9244 (3)0.0573 (12)
H22A0.66040.36300.88870.069*
C230.6658 (5)0.3311 (4)1.0139 (4)0.0746 (16)
H23A0.71920.36761.03790.090*
C240.6217 (6)0.2797 (4)1.0673 (3)0.0820 (19)
H24A0.64440.28111.12800.098*
C250.5438 (5)0.2265 (4)1.0300 (3)0.0779 (17)
H25A0.51310.19081.06510.093*
C260.5109 (4)0.2262 (3)0.9392 (3)0.0615 (13)
H26A0.45750.18990.91430.074*
C320.5857 (4)0.1030 (3)0.7852 (3)0.0600 (13)
H32A0.64660.13150.81010.072*
C330.5880 (5)0.0176 (4)0.7865 (4)0.0815 (18)
H33A0.64920.01020.81200.098*
C340.50000.0257 (5)0.75000.089 (3)
H34A0.50000.08340.75000.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0378 (3)0.0470 (3)0.0384 (3)0.0000.00963 (19)0.000
Cl10.219 (4)0.166 (3)0.264 (4)0.026 (3)0.141 (3)0.022 (3)
Cl20.157 (2)0.149 (2)0.158 (2)0.0054 (18)0.0447 (19)0.0049 (18)
S10.0489 (7)0.0770 (9)0.0947 (10)0.0012 (7)0.0334 (7)0.0080 (8)
N10.048 (3)0.052 (3)0.048 (3)0.0000.005 (2)0.000
N20.0443 (19)0.053 (2)0.0428 (19)0.0067 (17)0.0102 (16)0.0030 (17)
N30.044 (3)0.060 (3)0.036 (3)0.0000.007 (2)0.000
N40.043 (2)0.051 (2)0.0411 (19)0.0003 (17)0.0097 (15)0.0002 (17)
C10.046 (2)0.039 (2)0.043 (2)0.001 (2)0.0102 (18)0.0039 (19)
C20.175 (9)0.102 (6)0.133 (7)0.028 (6)0.024 (7)0.023 (6)
C120.099 (5)0.062 (4)0.130 (6)0.011 (3)0.059 (4)0.029 (4)
C130.120 (6)0.060 (4)0.173 (8)0.002 (4)0.061 (6)0.039 (5)
C140.104 (8)0.060 (6)0.108 (8)0.0000.002 (6)0.000
C220.060 (3)0.062 (3)0.047 (3)0.005 (2)0.001 (2)0.006 (2)
C230.082 (4)0.077 (4)0.055 (3)0.010 (3)0.010 (3)0.016 (3)
C240.103 (5)0.101 (5)0.037 (3)0.033 (4)0.002 (3)0.006 (3)
C250.088 (4)0.102 (5)0.049 (3)0.025 (4)0.027 (3)0.014 (3)
C260.063 (3)0.073 (3)0.051 (3)0.000 (3)0.016 (2)0.010 (3)
C320.059 (3)0.054 (3)0.062 (3)0.004 (2)0.002 (2)0.003 (2)
C330.083 (4)0.060 (4)0.096 (5)0.013 (3)0.004 (3)0.012 (3)
C340.110 (8)0.045 (5)0.111 (7)0.0000.018 (6)0.000
Geometric parameters (Å, º) top
Ru1—N4i2.025 (3)C13—C141.339 (9)
Ru1—N42.025 (3)C13—H13A0.9300
Ru1—N32.072 (5)C14—C13i1.339 (9)
Ru1—N2i2.082 (3)C14—H14A0.9300
Ru1—N22.082 (3)C22—C231.376 (7)
Ru1—N12.096 (5)C22—H22A0.9300
Cl1—C21.705 (10)C23—C241.368 (9)
Cl2—C21.727 (9)C23—H23A0.9300
S1—C11.632 (4)C24—C251.366 (9)
N1—C12i1.323 (6)C24—H24A0.9300
N1—C121.323 (6)C25—C261.389 (7)
N2—C221.343 (6)C25—H25A0.9300
N2—C261.346 (6)C26—H26A0.9300
N3—C32i1.346 (5)C32—C331.378 (7)
N3—C321.346 (5)C32—H32A0.9300
N4—C11.159 (5)C33—C341.364 (7)
C2—H2A0.9700C33—H33A0.9300
C2—H2B0.9700C34—C33i1.364 (7)
C12—C131.375 (9)C34—H34A0.9300
C12—H12A0.9300
N4i—Ru1—N4179.8 (2)N1—C12—H12A118.4
N4i—Ru1—N389.88 (11)C13—C12—H12A118.4
N4—Ru1—N389.88 (11)C14—C13—C12120.6 (7)
N4i—Ru1—N2i88.84 (13)C14—C13—H13A119.7
N4—Ru1—N2i91.16 (13)C12—C13—H13A119.7
N3—Ru1—N2i90.16 (11)C13—C14—C13i117.0 (9)
N4i—Ru1—N291.16 (13)C13—C14—H14A121.5
N4—Ru1—N288.84 (13)C13i—C14—H14A121.5
N3—Ru1—N290.16 (11)N2—C22—C23123.4 (5)
N2i—Ru1—N2179.7 (2)N2—C22—H22A118.3
N4i—Ru1—N190.12 (11)C23—C22—H22A118.3
N4—Ru1—N190.12 (11)C24—C23—C22119.0 (6)
N3—Ru1—N1180.000 (1)C24—C23—H23A120.5
N2i—Ru1—N189.84 (11)C22—C23—H23A120.5
N2—Ru1—N189.84 (11)C25—C24—C23119.1 (5)
C12i—N1—C12115.6 (7)C25—C24—H24A120.5
C12i—N1—Ru1122.2 (4)C23—C24—H24A120.5
C12—N1—Ru1122.2 (4)C24—C25—C26119.2 (6)
C22—N2—C26116.9 (4)C24—C25—H25A120.4
C22—N2—Ru1121.6 (3)C26—C25—H25A120.4
C26—N2—Ru1121.5 (3)N2—C26—C25122.5 (5)
C32i—N3—C32115.5 (6)N2—C26—H26A118.8
C32i—N3—Ru1122.2 (3)C25—C26—H26A118.8
C32—N3—Ru1122.2 (3)N3—C32—C33123.6 (5)
C1—N4—Ru1175.6 (3)N3—C32—H32A118.2
N4—C1—S1179.9 (5)C33—C32—H32A118.2
Cl1—C2—Cl2112.2 (5)C34—C33—C32119.5 (6)
Cl1—C2—H2A109.2C34—C33—H33A120.2
Cl2—C2—H2A109.2C32—C33—H33A120.2
Cl1—C2—H2B109.2C33—C34—C33i118.3 (8)
Cl2—C2—H2B109.2C33—C34—H34A120.9
H2A—C2—H2B107.9C33i—C34—H34A120.9
N1—C12—C13123.1 (6)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Ru(NCS)2(C5H5N)4]·2CH2Cl2
Mr703.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.9410 (8), 16.1308 (11), 15.4715 (11)
β (°) 100.988 (2)
V3)3170.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.40 × 0.35 × 0.28
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.681, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
4923, 2765, 2352
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.117, 1.15
No. of reflections2765
No. of parameters170
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0355P)2 + 11.5869P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.51, 0.86

Computer programs: SMART (Bruker, 1999), SMART, SHELXTL (Bruker, 1997), SHELXS96 (Sheldrick, 1996), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Ru1—N42.025 (3)Ru1—N12.096 (5)
Ru1—N32.072 (5)S1—C11.632 (4)
Ru1—N22.082 (3)N4—C11.159 (5)
N4i—Ru1—N4179.8 (2)N2i—Ru1—N2179.7 (2)
N4—Ru1—N389.88 (11)N4—Ru1—N190.12 (11)
N4i—Ru1—N2i88.84 (13)N2—Ru1—N189.84 (11)
N4—Ru1—N2i91.16 (13)C1—N4—Ru1175.6 (3)
N4—Ru1—N288.84 (13)N4—C1—S1179.9 (5)
N3—Ru1—N290.16 (11)
Symmetry code: (i) x+1, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds