organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-(2,4-Di­fluoro­phen­yl)-2-(1H-1,2,4-triazol-1-yl)ethanone oxime

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: taoxiao@njut.edu.cn

(Received 8 November 2011; accepted 22 November 2011; online 30 November 2011)

In the title compound, C10H8F2N4O, the dihedral angle between the rings is 65.4 (1)°. In the crystal, inter­molecular O—H⋯N and C—H⋯F hydrogen bonds link the mol­ecules in a stacked arrangement along the a and c axes, respectively.

Related literature

For applications of related compounds, see: Foroumadi et al. (2003[Foroumadi, A., Soltani, F. & Asadipour, A. (2003). Boll. Chim. Farm. 142, 130-134.]); Mixich & Thiele (1979[Mixich, G. & Thiele, K. (1979). Arzneim. Forsch. 29, 1510-1513.]); Wolfgang et al. (1981[Wolfgang, K., Karl, H. B., Helmut, T., Wilhelm, B. & Paul-Ernst, F. (1981). US Patent 4 264 772.]). For a related structure, see: Tao et al. (2007[Tao, X., Yuan, L., Zhang, X.-Q., Jing, C. & Wang, J.-T. (2007). Acta Cryst. E63, o1330-o1331.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8F2N4O

  • Mr = 238.20

  • Monoclinic, P 21 /n

  • a = 8.6320 (17) Å

  • b = 12.433 (3) Å

  • c = 10.417 (2) Å

  • β = 104.85 (3)°

  • V = 1080.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.964, Tmax = 0.988

  • 3127 measured reflections

  • 1987 independent reflections

  • 1217 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.171

  • S = 1.01

  • 1987 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N4i 0.82 1.94 2.764 (3) 176
C10—H10⋯F1ii 0.93 2.47 3.289 (4) 148
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, C10H8O1N4F2, is the key intermediate in the synthesis of a new kind of antifungal drug (Tao et al., 2007; Foroumadi et al., 2003; Wolfgang et al., 1981) and exhibits a chemical structure similar to oxiconazole (Mixich & Thiele, 1979). We designed and synthesized the title compound, and we herein report its crystal structure (Fig. 1).

The bond lengths are within normal ranges (Allen et al., 1987). The dihedral angle between rings A (N2-N4/C9/C10) and B (C1-C6) is 65.4 (1) °. In the crystal structure, intermolecular intermolecular O–H···N and C-H···F hydrogen bonds (Table 2) link the molecules in a stacked arrangement along along the a and c axes, respectively (Fig. 2).

Related literature top

For applications of related compounds, see: Foroumadi et al. (2003); Mixich & Thiele (1979); Wolfgang et al. (1981). For a related structure, see: Tao et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Hydroxylammonium chloride (3 g, 43.2 mmol) dissolved in ethanol (20 ml) was dropwise added to a solution of 1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone (5 g,22.4 mmol) in ethanol (50 ml) which contained CH3COONa (4 g, 48.8 mmol) under reflux conditions for 4 h. The mixture was placed in ice-water (100 ml), and the crystalline product was isolated by filtration, washed with water (100 ml). The crystals were obtained by dissolving the product in ethanol (20 ml) and evaporating acetone slowly at room temperature for about 7 d.

Refinement top

The H atom of the hydroxy group was located in a Fourier difference map but was constrained to ride on the parent atom with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The other H atoms were positioned geometrically with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound, C10H8O1N4F2, is the key intermediate in the synthesis of a new kind of antifungal drug (Tao et al., 2007; Foroumadi et al., 2003; Wolfgang et al., 1981) and exhibits a chemical structure similar to oxiconazole (Mixich & Thiele, 1979). We designed and synthesized the title compound, and we herein report its crystal structure (Fig. 1).

The bond lengths are within normal ranges (Allen et al., 1987). The dihedral angle between rings A (N2-N4/C9/C10) and B (C1-C6) is 65.4 (1) °. In the crystal structure, intermolecular intermolecular O–H···N and C-H···F hydrogen bonds (Table 2) link the molecules in a stacked arrangement along along the a and c axes, respectively (Fig. 2).

For applications of related compounds, see: Foroumadi et al. (2003); Mixich & Thiele (1979); Wolfgang et al. (1981). For a related structure, see: Tao et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(Z)-1-(2,4-Difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone oxime top
Crystal data top
C10H8F2N4OF(000) = 488
Mr = 238.20Dx = 1.464 Mg m3
Monoclinic, P21/nMelting point: 400 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.6320 (17) ÅCell parameters from 25 reflections
b = 12.433 (3) Åθ = 9–13°
c = 10.417 (2) ŵ = 0.12 mm1
β = 104.85 (3)°T = 293 K
V = 1080.6 (4) Å3Black, white
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1217 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.4°, θmin = 2.6°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 514
Tmin = 0.964, Tmax = 0.988l = 1212
3127 measured reflections3 standard reflections every 200 reflections
1987 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1987 reflectionsΔρmax = 0.53 e Å3
154 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (5)
Crystal data top
C10H8F2N4OV = 1080.6 (4) Å3
Mr = 238.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6320 (17) ŵ = 0.12 mm1
b = 12.433 (3) ÅT = 293 K
c = 10.417 (2) Å0.30 × 0.20 × 0.10 mm
β = 104.85 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1217 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.964, Tmax = 0.9883 standard reflections every 200 reflections
3127 measured reflections intensity decay: 1%
1987 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.01Δρmax = 0.53 e Å3
1987 reflectionsΔρmin = 0.22 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0689 (3)0.1304 (2)0.0266 (2)0.0885 (7)
H1A0.16700.13250.01020.133*
F10.0628 (2)0.39466 (19)0.12253 (18)0.1082 (8)
N10.0109 (3)0.2303 (3)0.0363 (2)0.0787 (8)
C10.3526 (3)0.3487 (3)0.1896 (3)0.0689 (8)
H10.38620.29440.25200.083*
N20.3725 (2)0.13025 (17)0.0097 (2)0.0535 (6)
C20.4296 (4)0.4452 (3)0.2083 (3)0.0880 (11)
H20.51420.45720.28260.106*
F20.4618 (4)0.61943 (18)0.1316 (3)0.1508 (12)
N30.3361 (2)0.1384 (2)0.1226 (2)0.0654 (7)
C30.3801 (5)0.5240 (3)0.1156 (4)0.0917 (10)
N40.6005 (2)0.1436 (2)0.0387 (2)0.0679 (7)
C40.2564 (4)0.5106 (3)0.0065 (3)0.0944 (11)
H40.22290.56590.05450.113*
C50.1822 (3)0.4114 (3)0.0101 (3)0.0707 (9)
C60.2250 (3)0.3288 (2)0.0798 (2)0.0538 (7)
C70.1461 (3)0.2225 (3)0.0625 (2)0.0619 (8)
C80.2467 (3)0.1224 (2)0.0803 (3)0.0605 (8)
H8A0.29510.11100.17410.073*
H8B0.17890.06090.04710.073*
C90.4781 (3)0.1454 (2)0.1470 (3)0.0663 (8)
H90.49180.15110.23240.080*
C100.5286 (3)0.1362 (2)0.0578 (3)0.0597 (7)
H100.58100.13530.14770.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0712 (14)0.0982 (19)0.0951 (17)0.0097 (14)0.0198 (12)0.0037 (14)
F10.0744 (12)0.160 (2)0.0717 (12)0.0057 (12)0.0146 (10)0.0297 (11)
N10.0610 (14)0.115 (3)0.0608 (15)0.0278 (15)0.0177 (11)0.0027 (15)
C10.0595 (16)0.078 (2)0.0599 (16)0.0107 (16)0.0024 (13)0.0075 (15)
N20.0337 (10)0.0662 (15)0.0611 (13)0.0045 (10)0.0133 (9)0.0006 (11)
C20.095 (2)0.087 (3)0.0639 (19)0.012 (2)0.0120 (18)0.0177 (19)
F20.183 (3)0.0744 (16)0.161 (2)0.0211 (16)0.017 (2)0.0079 (15)
N30.0441 (11)0.093 (2)0.0577 (13)0.0116 (12)0.0107 (10)0.0005 (12)
C30.106 (3)0.067 (2)0.091 (2)0.002 (2)0.004 (2)0.014 (2)
N40.0449 (12)0.0795 (18)0.0822 (16)0.0011 (11)0.0216 (12)0.0008 (13)
C40.108 (3)0.078 (3)0.085 (2)0.016 (2)0.002 (2)0.014 (2)
C50.0594 (16)0.100 (3)0.0456 (15)0.0192 (18)0.0007 (13)0.0074 (16)
C60.0283 (11)0.084 (2)0.0503 (14)0.0060 (12)0.0120 (10)0.0023 (14)
C70.0463 (13)0.096 (2)0.0464 (14)0.0039 (15)0.0175 (11)0.0027 (14)
C80.0363 (12)0.080 (2)0.0674 (17)0.0076 (13)0.0175 (12)0.0078 (15)
C90.0470 (14)0.089 (2)0.0659 (17)0.0109 (15)0.0205 (13)0.0046 (16)
C100.0297 (11)0.075 (2)0.0724 (17)0.0046 (12)0.0091 (11)0.0088 (14)
Geometric parameters (Å, º) top
O1—N11.334 (3)N3—C91.317 (3)
O1—H1A0.8200C3—C41.356 (5)
F1—C51.364 (3)N4—C101.313 (3)
N1—C71.315 (3)N4—C91.333 (3)
C1—C21.362 (4)C4—C51.380 (5)
C1—C61.392 (3)C4—H40.9300
C1—H10.9300C5—C61.375 (4)
N2—C101.314 (3)C6—C71.477 (4)
N2—N31.337 (3)C7—C81.502 (4)
N2—C81.463 (3)C8—H8A0.9700
C2—C31.365 (5)C8—H8B0.9700
C2—H20.9300C9—H90.9300
F2—C31.368 (4)C10—H100.9300
N1—O1—H1A109.5F1—C5—C4117.9 (3)
C7—N1—O1107.1 (3)C6—C5—C4123.2 (3)
C2—C1—C6121.9 (3)C5—C6—C1116.4 (3)
C2—C1—H1119.0C5—C6—C7123.4 (2)
C6—C1—H1119.0C1—C6—C7120.1 (3)
C10—N2—N3109.6 (2)N1—C7—C6112.2 (3)
C10—N2—C8129.3 (2)N1—C7—C8128.2 (3)
N3—N2—C8120.97 (18)C6—C7—C8119.5 (2)
C1—C2—C3118.6 (3)N2—C8—C7111.3 (2)
C1—C2—H2120.7N2—C8—H8A109.4
C3—C2—H2120.7C7—C8—H8A109.4
C9—N3—N2102.7 (2)N2—C8—H8B109.4
C4—C3—C2122.8 (4)C7—C8—H8B109.4
C4—C3—F2118.6 (4)H8A—C8—H8B108.0
C2—C3—F2118.6 (3)N3—C9—N4114.2 (2)
C10—N4—C9102.8 (2)N3—C9—H9122.9
C3—C4—C5117.1 (3)N4—C9—H9122.9
C3—C4—H4121.5N4—C10—N2110.6 (2)
C5—C4—H4121.5N4—C10—H10124.7
F1—C5—C6118.8 (3)N2—C10—H10124.7
C6—C1—C2—C30.5 (5)O1—N1—C7—C6178.2 (2)
C10—N2—N3—C92.1 (3)O1—N1—C7—C80.5 (4)
C8—N2—N3—C9179.0 (2)C5—C6—C7—N150.9 (3)
C1—C2—C3—C40.7 (6)C1—C6—C7—N1130.8 (3)
C1—C2—C3—F2177.3 (3)C5—C6—C7—C8131.1 (3)
C2—C3—C4—C51.5 (6)C1—C6—C7—C847.1 (3)
F2—C3—C4—C5176.6 (3)C10—N2—C8—C7112.4 (3)
C3—C4—C5—F1176.8 (3)N3—N2—C8—C763.8 (3)
C3—C4—C5—C62.0 (5)N1—C7—C8—N2135.8 (3)
F1—C5—C6—C1177.1 (2)C6—C7—C8—N246.7 (3)
C4—C5—C6—C11.7 (4)N2—N3—C9—N40.9 (3)
F1—C5—C6—C71.2 (4)C10—N4—C9—N30.7 (4)
C4—C5—C6—C7180.0 (3)C9—N4—C10—N22.0 (3)
C2—C1—C6—C50.9 (4)N3—N2—C10—N42.7 (3)
C2—C1—C6—C7179.3 (3)C8—N2—C10—N4179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N4i0.821.942.764 (3)176
C10—H10···F1ii0.932.473.289 (4)148
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8F2N4O
Mr238.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.6320 (17), 12.433 (3), 10.417 (2)
β (°) 104.85 (3)
V3)1080.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.964, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
3127, 1987, 1217
Rint0.042
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.171, 1.01
No. of reflections1987
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N4i0.821.942.764 (3)176
C10—H10···F1ii0.932.473.289 (4)148
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationForoumadi, A., Soltani, F. & Asadipour, A. (2003). Boll. Chim. Farm. 142, 130–134.  PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMixich, G. & Thiele, K. (1979). Arzneim. Forsch. 29, 1510–1513.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148-155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, X., Yuan, L., Zhang, X.-Q., Jing, C. & Wang, J.-T. (2007). Acta Cryst. E63, o1330–o1331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWolfgang, K., Karl, H. B., Helmut, T., Wilhelm, B. & Paul-Ernst, F. (1981). US Patent 4 264 772.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds