Download citation
Download citation
link to html
Two acyl­hydrazone complexes, bis{6-methyl-N′-[1-(pyrazin-2-yl-κN1)ethyl­idene]nicotinohydrazidato-κ2N′,O}nickel(II), [Ni(C13H12N5O)2], (I), and di-μ-azido-κ4N1:N1-bis­({6-methyl-N′-[1-(pyrazin-2-yl-κN1)ethyl­idene]nicotinohydrazidato-κ2N′,O}nickel(II)), [Cu2(C13H12N5O)2(N3)2], (II), derived from 6-methyl-N′-[1-(pyrazin-2-yl)ethyl­idene]nicotinohydrazide (HL) and azide salts, have been synthesized. HL acts as an N,N′,O-tridentate ligand in both complexes. Complex (I) crystallizes in the ortho­rhom­bic space group Pbcn and has a mononuclear structure, the azide co-ligand is not involved in crystallization and the Ni2+ centre lies in a distorted {N4O2} octa­hedral coordination environment. Complex (II) crystallizes in the triclinic space group P\overline{1} and is a centrosymmetric binuclear complex with a crystallographically independent Cu2+ centre coordinating to three donor atoms from the deprotonated L ligand and to two N atoms belonging to two bridging azide anions. The two- and one-dimensional supra­molecular structures are constructed by hydrogen-bonding inter­actions in (I) and (II), respectively. The in vitro urease inhibitory evaluation revealed that complex (II) showed a better inhibitory activity, with the IC50 value being 1.32±0.4 µM. Both complexes can effectively bind to bovine serum albumin (BSA) by 1:1 binding, which was assessed via tryptophan emission–quenching measurements. The bioactivities of the two complexes towards jack bean urease were also studied by mol­ecular docking. The effects of the metal ions and the coordination environments in the two complexes on in vitro urease inhibitory activity are preliminarily discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619008040/yp3182sup1.cif
Contains datablocks global, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619008040/yp3182Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619008040/yp3182IIsup3.hkl
Contains datablock II

CCDC references: 1920797; 1920796

Computing details top

For both structures, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis{6-methyl-N'-[1-(pyrazin-2-yl-κN1)ethylidene]nicotinohydrazidato-κ2N',O}nickel(II) (I) top
Crystal data top
[Ni(C13H12N5O)2]Dx = 1.439 Mg m3
Mr = 567.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 8956 reflections
a = 11.9385 (6) Åθ = 2.5–26.2°
b = 9.7023 (4) ŵ = 0.79 mm1
c = 22.5975 (10) ÅT = 273 K
V = 2617.5 (2) Å3Block, green
Z = 40.24 × 0.15 × 0.13 mm
F(000) = 1176
Data collection top
CCD area detector
diffractometer
2307 independent reflections
Radiation source: fine-focus sealed tube1720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1414
Tmin = 0.834, Tmax = 0.905k = 119
23203 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0569P)2 + 2.7448P]
where P = (Fo2 + 2Fc2)/3
2307 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.24251 (5)0.75000.0356 (2)
C10.0214 (3)0.4757 (4)0.84393 (15)0.0533 (9)
H10.05580.47080.84930.064*
C20.0821 (4)0.5697 (4)0.87618 (16)0.0664 (10)
H20.04490.62570.90320.080*
C30.2404 (3)0.4995 (3)0.83124 (15)0.0529 (8)
H30.31740.50620.82580.063*
C40.1818 (2)0.4031 (3)0.79856 (13)0.0402 (7)
C50.2322 (2)0.3108 (3)0.75412 (12)0.0379 (7)
C60.3558 (3)0.3024 (4)0.74455 (16)0.0560 (9)
H6A0.38940.25070.77620.084*
H6B0.38690.39360.74380.084*
H6C0.37060.25730.70760.084*
C70.0996 (3)0.0900 (3)0.66016 (13)0.0434 (7)
C80.1161 (3)0.0018 (3)0.60861 (14)0.0550 (9)
C90.2162 (4)0.0139 (5)0.57894 (19)0.0853 (13)
H90.27800.03840.59020.102*
C100.2234 (5)0.1051 (6)0.5322 (2)0.1057 (18)
H100.29100.11570.51220.127*
C110.1331 (6)0.1789 (4)0.51517 (19)0.1000 (19)
C120.0303 (5)0.0817 (5)0.5879 (2)0.0993 (17)
H120.03850.07490.60700.119*
C130.1392 (7)0.2780 (5)0.4635 (2)0.146 (3)
H13A0.08400.34910.46840.220*
H13B0.21240.31870.46190.220*
H13C0.12500.22900.42730.220*
N10.06958 (19)0.3924 (2)0.80568 (10)0.0404 (6)
N20.1916 (3)0.5830 (3)0.87003 (14)0.0675 (9)
N30.1596 (2)0.2387 (2)0.72554 (12)0.0385 (6)
N40.1912 (2)0.1529 (3)0.68041 (11)0.0444 (6)
N50.0378 (5)0.1688 (5)0.54224 (18)0.1206 (18)
O10.00128 (16)0.1004 (2)0.68171 (10)0.0454 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0229 (3)0.0408 (3)0.0432 (3)0.0000.0000 (2)0.000
C10.053 (2)0.054 (2)0.053 (2)0.0030 (16)0.0068 (16)0.0048 (17)
C20.086 (3)0.056 (2)0.057 (2)0.003 (2)0.003 (2)0.0080 (18)
C30.0490 (19)0.054 (2)0.0556 (19)0.0142 (17)0.0106 (17)0.0053 (17)
C40.0344 (16)0.0405 (16)0.0455 (17)0.0057 (13)0.0083 (13)0.0077 (14)
C50.0243 (15)0.0412 (16)0.0483 (17)0.0013 (12)0.0008 (13)0.0108 (14)
C60.0275 (16)0.063 (2)0.078 (3)0.0055 (16)0.0029 (15)0.0105 (18)
C70.0477 (19)0.0404 (16)0.0419 (17)0.0001 (14)0.0055 (14)0.0021 (14)
C80.074 (2)0.0470 (18)0.0439 (18)0.0052 (18)0.0120 (17)0.0008 (15)
C90.085 (3)0.097 (3)0.074 (3)0.008 (3)0.017 (2)0.022 (2)
C100.135 (5)0.103 (4)0.079 (3)0.013 (4)0.045 (3)0.028 (3)
C110.191 (6)0.051 (2)0.058 (3)0.025 (3)0.044 (3)0.005 (2)
C120.121 (4)0.100 (4)0.077 (3)0.053 (3)0.042 (3)0.038 (3)
C130.284 (10)0.077 (3)0.079 (3)0.040 (5)0.069 (5)0.028 (3)
N10.0341 (14)0.0423 (14)0.0448 (14)0.0016 (11)0.0021 (11)0.0011 (12)
N20.084 (2)0.0570 (19)0.0613 (19)0.0162 (18)0.0083 (17)0.0069 (16)
N30.0279 (13)0.0415 (14)0.0459 (13)0.0002 (10)0.0022 (11)0.0015 (11)
N40.0383 (14)0.0470 (15)0.0480 (14)0.0015 (12)0.0099 (12)0.0030 (12)
N50.183 (5)0.101 (3)0.079 (3)0.074 (3)0.053 (3)0.042 (2)
O10.0351 (12)0.0517 (12)0.0495 (12)0.0071 (10)0.0019 (9)0.0078 (10)
Geometric parameters (Å, º) top
Ni1—N12.095 (2)C6—H6B0.9600
Ni1—N1i2.095 (2)C6—H6C0.9600
Ni1—N31.984 (2)C7—C81.480 (4)
Ni1—N3i1.984 (2)C7—N41.333 (4)
Ni1—O1i2.069 (2)C7—O11.275 (3)
Ni1—O12.069 (2)C8—C91.376 (5)
C1—H10.9300C8—C121.367 (6)
C1—C21.374 (5)C9—H90.9300
C1—N11.316 (4)C9—C101.381 (6)
C2—H20.9300C10—H100.9300
C2—N21.322 (5)C10—C111.350 (7)
C3—H30.9300C11—C131.515 (6)
C3—C41.382 (4)C11—N51.295 (7)
C3—N21.328 (4)C12—H120.9300
C4—C51.474 (4)C12—N51.336 (5)
C4—N11.354 (4)C13—H13A0.9600
C5—C61.493 (4)C13—H13B0.9600
C5—N31.288 (4)C13—H13C0.9600
C6—H6A0.9600N3—N41.370 (3)
N1—Ni1—N1i92.07 (13)H6B—C6—H6C109.5
N3i—Ni1—N1103.09 (10)N4—C7—C8115.9 (3)
N3—Ni1—N178.43 (10)O1—C7—C8118.1 (3)
N3—Ni1—N1i103.09 (10)O1—C7—N4126.0 (3)
N3i—Ni1—N1i78.43 (10)C9—C8—C7123.4 (3)
N3i—Ni1—N3177.86 (13)C12—C8—C7120.8 (3)
N3i—Ni1—O1i76.86 (9)C12—C8—C9115.8 (4)
N3—Ni1—O1i101.68 (9)C8—C9—H9120.6
N3i—Ni1—O1101.68 (9)C8—C9—C10118.8 (5)
N3—Ni1—O176.86 (9)C10—C9—H9120.6
O1—Ni1—N1i91.00 (9)C9—C10—H10119.7
O1i—Ni1—N1i155.16 (8)C11—C10—C9120.5 (5)
O1—Ni1—N1155.16 (8)C11—C10—H10119.7
O1i—Ni1—N191.00 (9)C10—C11—C13121.2 (5)
O1i—Ni1—O196.45 (13)N5—C11—C10121.8 (4)
C2—C1—H1119.2N5—C11—C13117.0 (6)
N1—C1—H1119.2C8—C12—H12117.5
N1—C1—C2121.7 (3)N5—C12—C8124.9 (5)
C1—C2—H2119.0N5—C12—H12117.5
N2—C2—C1122.1 (4)C11—C13—H13A109.5
N2—C2—H2119.0C11—C13—H13B109.5
C4—C3—H3118.5C11—C13—H13C109.5
N2—C3—H3118.5H13A—C13—H13B109.5
N2—C3—C4122.9 (3)H13A—C13—H13C109.5
C3—C4—C5124.7 (3)H13B—C13—H13C109.5
N1—C4—C3119.3 (3)C1—N1—Ni1130.3 (2)
N1—C4—C5116.0 (3)C1—N1—C4117.6 (3)
C4—C5—C6122.4 (3)C4—N1—Ni1112.00 (19)
N3—C5—C4113.4 (3)C2—N2—C3116.3 (3)
N3—C5—C6124.2 (3)C5—N3—Ni1119.8 (2)
C5—C6—H6A109.5C5—N3—N4121.2 (3)
C5—C6—H6B109.5N4—N3—Ni1118.93 (19)
C5—C6—H6C109.5C7—N4—N3107.9 (2)
H6A—C6—H6B109.5C11—N5—C12118.1 (5)
H6A—C6—H6C109.5C7—O1—Ni1110.16 (18)
Ni1—N3—N4—C72.4 (3)N1i—Ni1—N3—N488.3 (2)
C1—C2—N2—C30.6 (6)N1—Ni1—N3—N4177.7 (2)
C2—C1—N1—Ni1179.0 (3)N1i—Ni1—O1—C7101.3 (2)
C2—C1—N1—C40.6 (5)N1—Ni1—O1—C74.2 (3)
C3—C4—C5—C66.7 (5)N1—C1—C2—N20.9 (6)
C3—C4—C5—N3174.0 (3)N1—C4—C5—C6175.0 (3)
C3—C4—N1—Ni1178.7 (2)N1—C4—C5—N34.3 (4)
C3—C4—N1—C10.0 (4)N2—C3—C4—C5178.5 (3)
C4—C3—N2—C20.0 (5)N2—C3—C4—N10.3 (5)
C4—C5—N3—Ni17.2 (3)N3—Ni1—N1—C1175.5 (3)
C4—C5—N3—N4176.5 (2)N3i—Ni1—N1—C16.1 (3)
C5—C4—N1—Ni10.3 (3)N3—Ni1—N1—C42.99 (19)
C5—C4—N1—C1178.3 (3)N3i—Ni1—N1—C4175.47 (19)
C5—N3—N4—C7178.7 (3)N3i—Ni1—N3—C5129.6 (2)
C6—C5—N3—Ni1172.0 (2)N3i—Ni1—N3—N446.8 (2)
C6—C5—N3—N44.3 (4)N3i—Ni1—O1—C7179.7 (2)
C7—C8—C9—C10178.5 (4)N3—Ni1—O1—C71.9 (2)
C7—C8—C12—N5179.1 (5)N4—C7—C8—C96.0 (5)
C8—C7—N4—N3176.7 (2)N4—C7—C8—C12173.5 (4)
C8—C7—O1—Ni1176.9 (2)N4—C7—O1—Ni14.4 (4)
C8—C9—C10—C111.4 (8)O1—Ni1—N1—C1169.4 (3)
C8—C12—N5—C110.2 (9)O1i—Ni1—N1—C182.8 (3)
C9—C8—C12—N50.5 (8)O1—Ni1—N1—C49.0 (3)
C9—C10—C11—C13179.2 (5)O1i—Ni1—N1—C498.7 (2)
C9—C10—C11—N51.1 (9)O1i—Ni1—N3—C582.7 (2)
C10—C11—N5—C120.5 (9)O1—Ni1—N3—C5176.7 (2)
C12—C8—C9—C101.0 (7)O1—Ni1—N3—N40.36 (19)
C13—C11—N5—C12179.8 (5)O1i—Ni1—N3—N493.6 (2)
N1i—Ni1—N1—C172.5 (3)O1i—Ni1—O1—C7102.4 (2)
N1i—Ni1—N1—C4105.9 (2)O1—C7—C8—C9175.2 (4)
N1i—Ni1—N3—C595.3 (2)O1—C7—C8—C125.3 (5)
N1—Ni1—N3—C55.9 (2)O1—C7—N4—N34.6 (4)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N5ii0.932.543.448 (6)164
C3—H3···O1iii0.932.383.278 (4)161
Symmetry codes: (ii) x, y+1, z+3/2; (iii) x+1/2, y+1/2, z+3/2.
Di-µ-azido-κ4N1:N1-bis({6-methyl-N'-[1-(pyrazin-2-yl-κN1)ethylidene]nicotinohydrazidato-κ2N',O}nickel(II)) (II) top
Crystal data top
[Cu2(C13H12N5O)2(N3)2]Z = 1
Mr = 719.71F(000) = 366
Triclinic, P1Dx = 1.638 Mg m3
a = 7.8491 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8762 (6) ÅCell parameters from 3711 reflections
c = 12.3391 (8) Åθ = 2.7–26.4°
α = 100.236 (2)°µ = 1.51 mm1
β = 94.225 (2)°T = 293 K
γ = 101.865 (2)°Block, blue
V = 729.81 (9) Å30.24 × 0.2 × 0.17 mm
Data collection top
CCD area detector
diffractometer
3163 independent reflections
Radiation source: fine-focus sealed tube2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 27.1°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 108
Tmin = 0.713, Tmax = 0.783k = 1010
7758 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0317P)2 + 0.4086P]
where P = (Fo2 + 2Fc2)/3
3163 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.48975 (4)0.69878 (4)0.00180 (3)0.03177 (13)
C10.4083 (4)0.5429 (4)0.2461 (2)0.0435 (7)
H10.32110.45420.23040.052*
C20.4464 (5)0.5393 (4)0.3541 (2)0.0538 (9)
H20.38550.44530.40910.065*
C30.6506 (4)0.7945 (4)0.3010 (2)0.0444 (7)
H30.73360.88560.31810.053*
C40.6197 (3)0.8001 (3)0.1912 (2)0.0323 (6)
C50.7154 (3)0.9364 (3)0.0967 (2)0.0302 (6)
C60.8551 (4)1.0884 (4)0.1088 (2)0.0411 (7)
H6A0.89031.16750.03840.062*
H6B0.81121.15000.16130.062*
H6C0.95401.04590.13460.062*
C70.6608 (3)0.9474 (3)0.1760 (2)0.0306 (6)
C80.7331 (3)1.0384 (3)0.2907 (2)0.0316 (6)
C90.8744 (4)1.1820 (4)0.3129 (2)0.0398 (7)
H90.92301.22820.25500.048*
C100.9423 (4)1.2556 (4)0.4195 (2)0.0428 (7)
H101.03781.35160.43460.051*
C110.8694 (4)1.1875 (4)0.5048 (2)0.0452 (8)
C120.6652 (4)0.9781 (4)0.3811 (2)0.0442 (7)
H120.56910.88280.36800.053*
C130.9416 (5)1.2654 (5)0.6235 (3)0.0721 (12)
H13A0.84991.29870.66410.108*
H13B1.03371.36790.62660.108*
H13C0.98731.17920.65570.108*
N10.4956 (3)0.6724 (3)0.16489 (17)0.0331 (5)
N20.5656 (4)0.6634 (4)0.3827 (2)0.0540 (7)
N30.6642 (3)0.9067 (3)0.00367 (17)0.0286 (5)
N40.7384 (3)1.0147 (3)0.09616 (17)0.0319 (5)
N50.7310 (4)1.0502 (4)0.4864 (2)0.0530 (7)
N60.6952 (3)0.5074 (3)0.00231 (19)0.0349 (5)
N70.7937 (3)0.5260 (3)0.0673 (2)0.0373 (6)
N80.8893 (4)0.5527 (4)0.1304 (3)0.0647 (8)
O10.5340 (2)0.8106 (2)0.16055 (14)0.0360 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0343 (2)0.0281 (2)0.0298 (2)0.00161 (13)0.00432 (14)0.00316 (13)
C10.0509 (18)0.0366 (17)0.0368 (17)0.0012 (14)0.0028 (14)0.0043 (13)
C20.075 (2)0.0443 (19)0.0319 (17)0.0039 (17)0.0035 (16)0.0028 (14)
C30.0541 (19)0.0433 (18)0.0345 (16)0.0070 (15)0.0100 (14)0.0068 (14)
C40.0353 (15)0.0323 (15)0.0317 (15)0.0120 (12)0.0039 (12)0.0077 (12)
C50.0315 (14)0.0292 (14)0.0321 (15)0.0096 (12)0.0056 (12)0.0076 (11)
C60.0409 (17)0.0422 (17)0.0373 (16)0.0014 (14)0.0080 (13)0.0078 (13)
C70.0287 (14)0.0290 (14)0.0334 (15)0.0089 (12)0.0037 (12)0.0015 (12)
C80.0348 (15)0.0304 (14)0.0294 (14)0.0078 (12)0.0052 (12)0.0041 (11)
C90.0448 (17)0.0396 (17)0.0330 (16)0.0028 (14)0.0075 (13)0.0079 (13)
C100.0446 (17)0.0394 (17)0.0342 (16)0.0079 (13)0.0018 (14)0.0032 (13)
C110.0533 (19)0.0441 (18)0.0343 (16)0.0047 (15)0.0003 (14)0.0068 (14)
C120.0480 (18)0.0410 (17)0.0393 (17)0.0000 (14)0.0060 (14)0.0081 (14)
C130.094 (3)0.071 (3)0.0342 (18)0.011 (2)0.0101 (19)0.0060 (17)
N10.0375 (13)0.0313 (12)0.0290 (12)0.0070 (10)0.0014 (10)0.0048 (10)
N20.0734 (19)0.0508 (17)0.0317 (14)0.0052 (15)0.0070 (13)0.0014 (12)
N30.0323 (12)0.0262 (11)0.0262 (11)0.0063 (9)0.0038 (10)0.0020 (9)
N40.0338 (12)0.0320 (12)0.0277 (12)0.0041 (10)0.0048 (10)0.0030 (10)
N50.0651 (18)0.0545 (17)0.0343 (15)0.0002 (14)0.0059 (13)0.0105 (13)
N60.0328 (13)0.0313 (13)0.0384 (13)0.0020 (10)0.0054 (11)0.0064 (10)
N70.0323 (13)0.0303 (13)0.0465 (15)0.0032 (10)0.0026 (12)0.0059 (11)
N80.0599 (19)0.064 (2)0.075 (2)0.0091 (15)0.0360 (17)0.0213 (16)
O10.0375 (11)0.0334 (10)0.0321 (10)0.0017 (8)0.0063 (9)0.0036 (8)
Geometric parameters (Å, º) top
Cu1—Cu1i3.1610 (7)C7—C81.481 (4)
Cu1—N12.035 (2)C7—N41.328 (3)
Cu1—N31.921 (2)C7—O11.283 (3)
Cu1—N6i1.933 (2)C8—C91.383 (4)
Cu1—N62.423 (2)C8—C121.388 (4)
Cu1—O11.9733 (18)C9—H90.9300
C1—H10.9300C9—C101.359 (4)
C1—C21.384 (4)C10—H100.9300
C1—N11.328 (3)C10—C111.373 (4)
C2—H20.9300C11—C131.503 (4)
C2—N21.323 (4)C11—N51.340 (4)
C3—H30.9300C12—H120.9300
C3—C41.388 (4)C12—N51.340 (4)
C3—N21.332 (4)C13—H13A0.9600
C4—C51.474 (4)C13—H13B0.9600
C4—N11.351 (3)C13—H13C0.9600
C5—C61.485 (4)N3—N41.378 (3)
C5—N31.288 (3)N6—Cu1i1.933 (2)
C6—H6A0.9600N6—N71.205 (3)
C6—H6B0.9600N7—N81.137 (3)
C6—H6C0.9600
N1—Cu1—Cu1i92.99 (6)O1—C7—C8119.2 (2)
N1—Cu1—N688.24 (8)O1—C7—N4125.2 (2)
N3—Cu1—Cu1i132.40 (6)C9—C8—C7122.1 (2)
N3—Cu1—N179.57 (9)C9—C8—C12117.0 (3)
N3—Cu1—N6i175.77 (9)C12—C8—C7120.9 (2)
N3—Cu1—N694.82 (8)C8—C9—H9120.0
N3—Cu1—O179.90 (8)C10—C9—C8120.0 (3)
N6—Cu1—Cu1i37.67 (5)C10—C9—H9120.0
N6i—Cu1—Cu1i49.99 (7)C9—C10—H10120.1
N6i—Cu1—N197.11 (9)C9—C10—C11119.7 (3)
N6i—Cu1—N687.66 (9)C11—C10—H10120.1
N6i—Cu1—O1103.19 (9)C10—C11—C13121.1 (3)
O1—Cu1—Cu1i104.09 (6)N5—C11—C10121.9 (3)
O1—Cu1—N1159.01 (8)N5—C11—C13117.0 (3)
O1—Cu1—N697.79 (8)C8—C12—H12118.3
C2—C1—H1119.9N5—C12—C8123.4 (3)
N1—C1—H1119.9N5—C12—H12118.3
N1—C1—C2120.3 (3)C11—C13—H13A109.5
C1—C2—H2118.5C11—C13—H13B109.5
N2—C2—C1123.0 (3)C11—C13—H13C109.5
N2—C2—H2118.5H13A—C13—H13B109.5
C4—C3—H3118.8H13A—C13—H13C109.5
N2—C3—H3118.8H13B—C13—H13C109.5
N2—C3—C4122.3 (3)C1—N1—Cu1129.3 (2)
C3—C4—C5124.9 (3)C1—N1—C4118.1 (2)
N1—C4—C3119.9 (2)C4—N1—Cu1112.23 (17)
N1—C4—C5115.3 (2)C2—N2—C3116.4 (3)
C4—C5—C6123.3 (2)C5—N3—Cu1120.73 (18)
N3—C5—C4112.0 (2)C5—N3—N4122.2 (2)
N3—C5—C6124.7 (2)N4—N3—Cu1117.00 (15)
C5—C6—H6A109.5C7—N4—N3107.8 (2)
C5—C6—H6B109.5C11—N5—C12118.0 (2)
C5—C6—H6C109.5Cu1i—N6—Cu192.34 (9)
H6A—C6—H6B109.5N7—N6—Cu1i125.40 (19)
H6A—C6—H6C109.5N7—N6—Cu1111.79 (17)
H6B—C6—H6C109.5N8—N7—N6176.4 (3)
N4—C7—C8115.6 (2)C7—O1—Cu1109.78 (16)
Cu1i—Cu1—N1—C144.7 (2)N1—Cu1—N6—Cu1i97.19 (9)
Cu1i—Cu1—N1—C4128.65 (17)N1—Cu1—N6—N732.66 (19)
Cu1i—Cu1—N3—C580.8 (2)N1—Cu1—O1—C717.7 (3)
Cu1i—Cu1—N3—N495.32 (17)N1—C1—C2—N21.7 (5)
Cu1i—Cu1—N6—N7129.8 (2)N1—C4—C5—C6179.3 (2)
Cu1i—Cu1—O1—C7125.85 (16)N1—C4—C5—N31.2 (3)
Cu1—N3—N4—C72.6 (3)N2—C3—C4—C5176.8 (3)
Cu1i—N6—N7—N8167 (5)N2—C3—C4—N12.2 (4)
Cu1—N6—N7—N857 (5)N3—Cu1—N1—C1177.4 (3)
C1—C2—N2—C30.6 (5)N3—Cu1—N1—C43.95 (17)
C2—C1—N1—Cu1172.2 (2)N3—Cu1—N6—Cu1i176.56 (9)
C2—C1—N1—C40.9 (4)N3—Cu1—N6—N746.72 (19)
C3—C4—C5—C61.6 (4)N3—Cu1—O1—C75.56 (17)
C3—C4—C5—N3177.9 (3)N4—C7—C8—C91.2 (4)
C3—C4—N1—Cu1175.2 (2)N4—C7—C8—C12178.7 (3)
C3—C4—N1—C11.0 (4)N4—C7—O1—Cu16.6 (3)
C4—C3—N2—C21.4 (5)N6—Cu1—N1—C182.1 (2)
C4—C5—N3—Cu12.5 (3)N6i—Cu1—N1—C15.3 (3)
C4—C5—N3—N4178.4 (2)N6i—Cu1—N1—C4178.70 (18)
C5—C4—N1—Cu13.9 (3)N6—Cu1—N1—C491.27 (18)
C5—C4—N1—C1178.1 (2)N6i—Cu1—N3—C542.1 (13)
C5—N3—N4—C7178.6 (2)N6—Cu1—N3—C583.6 (2)
C6—C5—N3—Cu1177.0 (2)N6i—Cu1—N3—N4141.8 (12)
C6—C5—N3—N41.1 (4)N6—Cu1—N3—N492.47 (17)
C7—C8—C9—C10176.5 (3)N6i—Cu1—N6—Cu1i0.0
C7—C8—C12—N5176.7 (3)N6i—Cu1—N6—N7129.8 (2)
C8—C7—N4—N3175.4 (2)N6i—Cu1—O1—C7177.39 (17)
C8—C7—O1—Cu1171.71 (18)N6—Cu1—O1—C787.98 (17)
C8—C9—C10—C110.4 (5)O1—Cu1—N1—C1170.5 (2)
C8—C12—N5—C110.0 (5)O1—Cu1—N1—C416.1 (3)
C9—C8—C12—N50.9 (5)O1—Cu1—N3—C5179.3 (2)
C9—C10—C11—C13179.8 (3)O1—Cu1—N3—N44.60 (16)
C9—C10—C11—N50.5 (5)O1—Cu1—N6—Cu1i103.00 (9)
C10—C11—N5—C120.7 (5)O1—Cu1—N6—N7127.16 (18)
C12—C8—C9—C101.1 (4)O1—C7—C8—C9177.2 (2)
C13—C11—N5—C12179.6 (3)O1—C7—C8—C120.3 (4)
N1—Cu1—N3—C53.7 (2)O1—C7—N4—N32.9 (3)
N1—Cu1—N3—N4179.79 (18)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6C···N4ii0.962.583.450 (4)150
Symmetry code: (ii) x+2, y+2, z.
Inhibition of jack bean urease by HL, (I) and (II) top
CompoundIC50M)CompoundIC50M)
(I)9.68±1.4Ni(N3)25.94±1.1
(II)1.32±0.4Cu(N3)21.76±0.7
HL105±4.8AHA7.82±1.6
The BSA binding constants and parameters top
ComplexKSV (M-1)kq (M-1s-1)K (M-1)n
(I)3.14±0.01 × 1043.14±0.01 × 10122.36±0.09 × 1041.37
(II)7.71±0.06 × 1047.71±0.06 × 10121.74±0.11 × 1041.23
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds