Download citation
Download citation
link to html
The title compound, also known as 5-nitro­caffeic acid phenethyl ester, C17H15NO6, was prepared by the condensation reaction of 3,4-dihydr­oxy-5-nitro­benzaldehyde, Meldrum's acid and 2-phenyl­ethanol. The dihedral angle between the phenyl and benzene rings is 78.12 (5)°. Inter- and intra­molecular hydrogen bonds help to stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705859X/wn2218sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705859X/wn2218Isup2.hkl
Contains datablock I

CCDC reference: 673003

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.043
  • wR factor = 0.124
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT031_ALERT_4_C Refined Extinction Parameter within Range ...... 2.88 Sigma PLAT230_ALERT_2_C Hirshfeld Test Diff for N1 - C3 .. 7.00 su
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Caffeic acid and its derivatives are widely distributed in the plant kingdom (Chen et al., 1999). The compounds are known to have anti-atherosclerotic, antibacterial, anti-inflammatory, antiproliferative, immunostimulatory, anti-oxidative, antiviral, and neuroprotective properties (Son et al., 2002). In a continuation of our work on the structure-activity relationship of caffeic acid derivatives, we have obtained, by a one-pot method (Hu et al., 2006), the title compound, 5-nitroCAPE, as light brown crystals.

The molecular structure of 5-nitroCAPE is illustrated in Fig. 1. The molecule displays an E configuration, with the benzene ring and carboxylate group located on opposite sides of the C7C8 double bond. The bond lengths and angles are similar to those of caffeic acid phenethyl ester (CAPE), reported by Son et al. (2001). Atoms C1—C9, N1 and O1—O5 are essentially coplanar, with a mean deviation from the least-squares plane of 0.052 (1) Å; atom C10 deviates from this plane by 0.211 (2) Å. The crystal packing (Fig. 2) is stabilized by intramolecular O—H···O and O—H···N hydrogen bonds; the crystal structure also involves intermolecular C—H···O hydrogen bonds (Table 1). The molecules of 5-nitroCAPE form stacks along the b axis in a head-to-tail manner forming a dimeric structure; this differs from the head-to-head stacking found in CAPE.

Related literature top

For related literature, see: Chen et al. (1999); Hu et al. (2006); Son & Lewis (2002); Son et al. (2001).

Experimental top

5-NitroCAPE was obtained by the method of Hu et al. (2006). Crystals suitable for structure analysis were obtained by slow evaporation of a solution of a mixture of tetrahydrofuran and acetone (2:1, v/v) as light brown crystalline prisms.

Refinement top

Carbon-bound H atoms were included at calculated positions and refined using a riding model; C—H = 0.97 Å for methylene and 0.93 Å for Csp2; Uiso(H) = 1.2Ueq(C). The hydroxy atoms H3X and H4X were located in difference Fourier maps and refined isotropically with the O—H restraints of 0.88 (2) and 0.83 (2) Å, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of 5-nitroCAPE, shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of 5-nitroCAPE, viewed along the b axis. Dashed lines indicate hydrogen bonds.
(E)-Phenethyl 3-(3,4-dihydroxy-5-nitrophenyl)acrylate top
Crystal data top
C17H15NO6F(000) = 688
Mr = 329.30Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2071 reflections
a = 8.5840 (17) Åθ = 2.4–24.2°
b = 5.3725 (11) ŵ = 0.11 mm1
c = 33.904 (7) ÅT = 296 K
β = 91.757 (3)°Prismatic, light brown
V = 1562.8 (5) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3509 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 106
Tmin = 0.974, Tmax = 0.986k = 66
9258 measured reflectionsl = 4343
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.128P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3509 reflectionsΔρmax = 0.16 e Å3
226 parametersΔρmin = 0.16 e Å3
3 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0046 (16)
Crystal data top
C17H15NO6V = 1562.8 (5) Å3
Mr = 329.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5840 (17) ŵ = 0.11 mm1
b = 5.3725 (11) ÅT = 296 K
c = 33.904 (7) Å0.25 × 0.20 × 0.10 mm
β = 91.757 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3509 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2268 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.986Rint = 0.026
9258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
3509 reflectionsΔρmin = 0.16 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.02260 (16)1.0979 (2)0.05897 (4)0.0718 (4)
O20.95350 (17)1.0519 (2)0.12012 (4)0.0732 (4)
O30.76239 (17)0.7050 (3)0.14242 (3)0.0665 (4)
H3X0.826 (2)0.831 (3)0.1453 (6)0.088 (7)*
O40.59294 (16)0.3310 (3)0.12109 (3)0.0649 (4)
H4X0.538 (2)0.223 (4)0.1112 (6)0.085 (7)*
O50.57612 (18)0.0167 (3)0.08346 (3)0.0802 (5)
O60.73569 (15)0.3321 (2)0.09845 (3)0.0581 (3)
N10.94801 (17)0.9898 (3)0.08490 (4)0.0550 (4)
C10.75303 (18)0.5211 (3)0.02353 (4)0.0439 (4)
C20.84387 (18)0.7183 (3)0.03486 (4)0.0461 (4)
H20.90090.80870.01600.055*
C30.85022 (18)0.7820 (3)0.07455 (4)0.0445 (4)
C40.76560 (19)0.6537 (3)0.10382 (4)0.0464 (4)
C50.67344 (18)0.4518 (3)0.09193 (4)0.0466 (4)
C60.66815 (18)0.3901 (3)0.05288 (4)0.0466 (4)
H60.60630.25680.04550.056*
C70.74503 (18)0.4516 (3)0.01813 (4)0.0481 (4)
H70.79630.55390.03650.058*
C80.6712 (2)0.2558 (3)0.03185 (4)0.0545 (4)
H80.62400.15030.01330.065*
C90.6564 (2)0.1890 (3)0.07324 (4)0.0535 (4)
C100.7142 (2)0.2802 (3)0.14011 (4)0.0560 (5)
H10A0.74800.11200.14640.067*
H10B0.60510.29550.14630.067*
C110.8094 (2)0.4642 (4)0.16361 (4)0.0614 (5)
H11A0.78010.63200.15590.074*
H11B0.91900.44160.15840.074*
C120.7826 (2)0.4277 (3)0.20708 (4)0.0518 (4)
C130.6843 (2)0.5827 (4)0.22689 (5)0.0674 (5)
H130.63730.71560.21360.081*
C140.6541 (3)0.5445 (4)0.26612 (6)0.0820 (7)
H140.58780.65190.27910.098*
C150.7209 (3)0.3504 (4)0.28595 (5)0.0778 (6)
H150.69970.32390.31240.093*
C160.8195 (3)0.1940 (4)0.26687 (6)0.0781 (6)
H160.86590.06130.28040.094*
C170.8500 (2)0.2332 (4)0.22766 (5)0.0674 (5)
H170.91730.12630.21490.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0780 (9)0.0685 (9)0.0685 (8)0.0313 (7)0.0021 (7)0.0013 (6)
O20.0860 (9)0.0773 (9)0.0565 (7)0.0254 (8)0.0078 (7)0.0172 (6)
O30.0834 (10)0.0783 (9)0.0378 (6)0.0229 (8)0.0016 (6)0.0106 (6)
O40.0823 (9)0.0784 (9)0.0338 (6)0.0338 (8)0.0015 (6)0.0013 (6)
O50.1063 (11)0.0848 (9)0.0495 (7)0.0534 (9)0.0003 (7)0.0065 (6)
O60.0772 (8)0.0644 (8)0.0328 (5)0.0260 (6)0.0032 (5)0.0010 (5)
N10.0568 (9)0.0536 (8)0.0549 (8)0.0082 (7)0.0065 (7)0.0045 (7)
C10.0467 (9)0.0500 (9)0.0350 (7)0.0057 (7)0.0024 (6)0.0028 (6)
C20.0484 (9)0.0505 (9)0.0396 (8)0.0078 (8)0.0007 (7)0.0044 (7)
C30.0446 (9)0.0452 (9)0.0440 (8)0.0079 (7)0.0057 (7)0.0019 (7)
C40.0498 (9)0.0538 (10)0.0359 (8)0.0032 (8)0.0043 (7)0.0024 (7)
C50.0512 (9)0.0531 (9)0.0356 (8)0.0085 (8)0.0013 (7)0.0028 (7)
C60.0510 (9)0.0499 (9)0.0389 (8)0.0115 (8)0.0037 (7)0.0007 (7)
C70.0528 (10)0.0554 (10)0.0362 (8)0.0103 (8)0.0017 (7)0.0047 (7)
C80.0662 (11)0.0606 (10)0.0365 (8)0.0194 (9)0.0004 (7)0.0036 (7)
C90.0624 (11)0.0579 (10)0.0400 (8)0.0158 (9)0.0011 (8)0.0003 (7)
C100.0725 (12)0.0637 (11)0.0318 (8)0.0157 (9)0.0033 (7)0.0045 (7)
C110.0797 (13)0.0640 (11)0.0406 (9)0.0193 (10)0.0048 (8)0.0016 (8)
C120.0616 (11)0.0551 (10)0.0386 (8)0.0129 (9)0.0006 (7)0.0033 (7)
C130.0867 (14)0.0624 (12)0.0532 (10)0.0046 (11)0.0041 (10)0.0006 (9)
C140.1038 (17)0.0859 (15)0.0573 (12)0.0011 (13)0.0190 (11)0.0158 (11)
C150.0981 (16)0.0972 (16)0.0382 (9)0.0266 (14)0.0022 (10)0.0002 (10)
C160.0931 (16)0.0859 (15)0.0542 (11)0.0053 (13)0.0156 (11)0.0169 (11)
C170.0723 (13)0.0701 (13)0.0598 (11)0.0063 (10)0.0004 (9)0.0009 (9)
Geometric parameters (Å, º) top
O1—N11.2189 (17)C7—H70.9300
O2—N11.2420 (17)C8—C91.458 (2)
O3—C41.3366 (18)C8—H80.9300
O3—H3X0.878 (15)C10—C111.496 (2)
O4—C51.3544 (18)C10—H10A0.9700
O4—H4X0.826 (15)C10—H10B0.9700
O5—C91.2105 (19)C11—C121.511 (2)
O6—C91.3227 (19)C11—H11A0.9700
O6—C101.4569 (16)C11—H11B0.9700
N1—C31.447 (2)C12—C171.374 (2)
C1—C21.377 (2)C12—C131.375 (2)
C1—C61.404 (2)C13—C141.378 (2)
C1—C71.465 (2)C13—H130.9300
C2—C31.391 (2)C14—C151.358 (3)
C2—H20.9300C14—H140.9300
C3—C41.394 (2)C15—C161.369 (3)
C4—C51.408 (2)C15—H150.9300
C5—C61.367 (2)C16—C171.379 (2)
C6—H60.9300C16—H160.9300
C7—C81.320 (2)C17—H170.9300
C4—O3—H3X105.9 (14)O6—C9—C8114.86 (14)
C5—O4—H4X109.0 (14)O6—C10—C11107.86 (13)
C9—O6—C10115.93 (12)O6—C10—H10A110.1
O1—N1—O2122.06 (14)C11—C10—H10A110.1
O1—N1—C3119.26 (13)O6—C10—H10B110.1
O2—N1—C3118.68 (14)C11—C10—H10B110.1
C2—C1—C6118.29 (13)H10A—C10—H10B108.4
C2—C1—C7120.60 (14)C10—C11—C12109.68 (14)
C6—C1—C7121.11 (14)C10—C11—H11A109.7
C1—C2—C3119.89 (14)C12—C11—H11A109.7
C1—C2—H2120.1C10—C11—H11B109.7
C3—C2—H2120.1C12—C11—H11B109.7
C2—C3—C4122.14 (14)H11A—C11—H11B108.2
C2—C3—N1117.69 (14)C17—C12—C13117.88 (15)
C4—C3—N1120.17 (13)C17—C12—C11121.29 (16)
O3—C4—C3126.12 (14)C13—C12—C11120.77 (16)
O3—C4—C5116.37 (14)C12—C13—C14121.15 (19)
C3—C4—C5117.51 (13)C12—C13—H13119.4
O4—C5—C6124.00 (14)C14—C13—H13119.4
O4—C5—C4116.01 (13)C15—C14—C13120.2 (2)
C6—C5—C4119.99 (14)C15—C14—H14119.9
C5—C6—C1122.18 (14)C13—C14—H14119.9
C5—C6—H6118.9C14—C15—C16119.68 (18)
C1—C6—H6118.9C14—C15—H15120.2
C8—C7—C1125.48 (15)C16—C15—H15120.2
C8—C7—H7117.3C15—C16—C17120.0 (2)
C1—C7—H7117.3C15—C16—H16120.0
C7—C8—C9126.34 (15)C17—C16—H16120.0
C7—C8—H8116.8C12—C17—C16121.07 (19)
C9—C8—H8116.8C12—C17—H17119.5
O5—C9—O6123.07 (14)C16—C17—H17119.5
O5—C9—C8122.07 (15)
C6—C1—C2—C30.3 (2)C2—C1—C7—C8174.75 (17)
C7—C1—C2—C3180.00 (15)C6—C1—C7—C85.6 (3)
C1—C2—C3—C40.7 (2)C1—C7—C8—C9177.28 (17)
C1—C2—C3—N1179.69 (14)C10—O6—C9—O53.5 (3)
O1—N1—C3—C21.2 (2)C10—O6—C9—C8175.86 (15)
O2—N1—C3—C2178.96 (15)C7—C8—C9—O5174.04 (19)
O1—N1—C3—C4179.13 (15)C7—C8—C9—O65.3 (3)
O2—N1—C3—C40.7 (2)C9—O6—C10—C11178.53 (15)
C2—C3—C4—O3178.60 (16)O6—C10—C11—C12176.41 (15)
N1—C3—C4—O31.0 (3)C10—C11—C12—C1776.2 (2)
C2—C3—C4—C50.9 (2)C10—C11—C12—C13101.0 (2)
N1—C3—C4—C5179.52 (14)C17—C12—C13—C140.0 (3)
O3—C4—C5—O40.6 (2)C11—C12—C13—C14177.26 (18)
C3—C4—C5—O4179.90 (14)C12—C13—C14—C150.4 (3)
O3—C4—C5—C6178.84 (15)C13—C14—C15—C160.6 (3)
C3—C4—C5—C60.7 (2)C14—C15—C16—C170.3 (3)
O4—C5—C6—C1179.71 (15)C13—C12—C17—C160.3 (3)
C4—C5—C6—C10.3 (3)C11—C12—C17—C16176.97 (18)
C2—C1—C6—C50.1 (2)C15—C16—C17—C120.1 (3)
C7—C1—C6—C5179.84 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3X···O20.88 (2)1.81 (2)2.5807 (19)145 (2)
O3—H3X···N10.88 (2)2.43 (2)2.914 (2)116 (2)
O4—H4X···O5i0.83 (2)1.89 (2)2.7088 (18)174 (2)
C6—H6···O5i0.932.483.180 (2)132
C7—H7···O1ii0.932.543.404 (2)156
C15—H15···O4iii0.932.603.507 (2)166
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15NO6
Mr329.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.5840 (17), 5.3725 (11), 33.904 (7)
β (°) 91.757 (3)
V3)1562.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
9258, 3509, 2268
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.06
No. of reflections3509
No. of parameters226
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3X···O20.878 (15)1.810 (18)2.5807 (19)145.3 (19)
O3—H3X···N10.878 (15)2.43 (2)2.914 (2)115.5 (16)
O4—H4X···O5i0.826 (15)1.886 (15)2.7088 (18)174 (2)
C6—H6···O5i0.932.483.180 (2)132.3
C7—H7···O1ii0.932.543.404 (2)155.6
C15—H15···O4iii0.932.603.507 (2)165.9
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z; (iii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds