Download citation
Download citation
link to html
The title compound, C14H18O4, comprises discrete centrosymmetric mol­ecules. The crystal structure is stabilized by inter­molecular contacts of the type C—H...O.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051926/tk2202sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051926/tk2202Isup2.hkl
Contains datablock I

CCDC reference: 667481

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • R factor = 0.056
  • wR factor = 0.170
  • Data-to-parameter ratio = 18.1

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Molecules of (I) are centrosymmetric being disposed about a centre of inversion, as is the case in the crystal structures of related compounds (Brisse & Pérez, 1976; Bailey, 1949; Hašek et al., 1982 & Ciajolo et al., 1991). Similarly, all bond lengths and angles have normal values. The C1/C2/C4/O2 dihedral angle of 161.2 (2)° indicates a deviation from planarity.

The structure comprises essentially discrete molecules, with the closest intermolecular contacts being of the type C—H···O: C3—H···O1 = 3.53 Å (-1 + x, 1/2 - y, -1/2 + z), C1—H···O1 = 3.55 Å (-1 + x, 1/2 - y, -1/2 + z), and C7—H···O1 = 3.560 Å (-2 + x, 1 - y, -3/2 + z). The molecules have an elongated shape and their orientation is almost parallel with the 2a + c vector, being inclined at an angle of 7.3°. Such a tendency for parallel arrangement is also seen in the structure of the di-p-tolyl terephtalate (Ciajolo et al., 1991) derivative, but not in the structures of dimethyl (Brisse & Pérez, 1976) and diethyl (Bailey, 1949; Hašek et al., 1982) esters.

Related literature top

For related structures, see: dimethyl terephtalate (Brisse & Pérez, 1976), diethyl terephtelate (Bailey, 1949; Hašek et al., 1982) and di-p-tolyl terephtalate (Ciajolo et al., 1991).

Experimental top

Compound (I) was prepared unintentionally during an attempt to isolate a triketone derived from terephtalic acid. In an isooctane (20 ml) solution of sodium 2,2,6,6-tetramethylheptane-3,5-dionate (0.21 g), terephtaloyl dichloride (0.20 g) was added and the mixture heated for 15 min. The NaCl precipitate was filtered off, the filtrate evaporated to approximately 5 ml, 2-propanol (10 ml) added and the mixture left for 24 h, after which crystallized large colourless plates of (I).

Refinement top

All H atoms were placed geometrically and included in the refinement in the riding-model approximation, with C—H = 0.93, and with Uiso = 1.2Ueq(C).

Structure description top

Molecules of (I) are centrosymmetric being disposed about a centre of inversion, as is the case in the crystal structures of related compounds (Brisse & Pérez, 1976; Bailey, 1949; Hašek et al., 1982 & Ciajolo et al., 1991). Similarly, all bond lengths and angles have normal values. The C1/C2/C4/O2 dihedral angle of 161.2 (2)° indicates a deviation from planarity.

The structure comprises essentially discrete molecules, with the closest intermolecular contacts being of the type C—H···O: C3—H···O1 = 3.53 Å (-1 + x, 1/2 - y, -1/2 + z), C1—H···O1 = 3.55 Å (-1 + x, 1/2 - y, -1/2 + z), and C7—H···O1 = 3.560 Å (-2 + x, 1 - y, -3/2 + z). The molecules have an elongated shape and their orientation is almost parallel with the 2a + c vector, being inclined at an angle of 7.3°. Such a tendency for parallel arrangement is also seen in the structure of the di-p-tolyl terephtalate (Ciajolo et al., 1991) derivative, but not in the structures of dimethyl (Brisse & Pérez, 1976) and diethyl (Bailey, 1949; Hašek et al., 1982) esters.

For related structures, see: dimethyl terephtalate (Brisse & Pérez, 1976), diethyl terephtelate (Bailey, 1949; Hašek et al., 1982) and di-p-tolyl terephtalate (Ciajolo et al., 1991).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom labeling scheme. Displacement ellipsoids of are shown at 30% probability.
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the y axis. Hydrogen atoms have been omitted for clarity.
Diisopropyl terephthalate top
Crystal data top
C14H18O4F(000) = 268
Mr = 250.28Dx = 1.174 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1344 reflections
a = 9.208 (3) Åθ = 4.6–52.0°
b = 9.718 (3) ŵ = 0.09 mm1
c = 15.844 (5) ÅT = 298 K
β = 150.03 (2)°Prismatic, colourless
V = 708.2 (6) Å30.75 × 0.49 × 0.42 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1267 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 27.0°, θmin = 4.9°
ω scansh = 1111
3803 measured reflectionsk = 712
1521 independent reflectionsl = 2019
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0956P)2 + 0.1119P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.17(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.28 e Å3
1521 reflectionsΔρmin = 0.31 e Å3
84 parameters
Crystal data top
C14H18O4V = 708.2 (6) Å3
Mr = 250.28Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.208 (3) ŵ = 0.09 mm1
b = 9.718 (3) ÅT = 298 K
c = 15.844 (5) Å0.75 × 0.49 × 0.42 mm
β = 150.03 (2)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1267 reflections with I > 2σ(I)
3803 measured reflectionsRint = 0.055
1521 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.17H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
1521 reflectionsΔρmin = 0.31 e Å3
84 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.6575 (2)0.08936 (11)0.44294 (13)0.0556 (4)
C20.2478 (3)0.01186 (14)0.17469 (18)0.0427 (4)
C30.2212 (3)0.09717 (15)0.10444 (19)0.0475 (4)
H30.3690.1620.17430.057*
C10.0255 (3)0.10864 (15)0.06930 (19)0.0485 (4)
H10.04290.18130.11590.058*
C40.5081 (3)0.02752 (14)0.36151 (18)0.0458 (4)
O10.5706 (3)0.13377 (13)0.42786 (15)0.0704 (4)
C50.9128 (3)0.09072 (19)0.62716 (19)0.0574 (5)
H50.87960.02880.65830.069*
C70.9347 (4)0.2370 (2)0.6695 (3)0.0728 (6)
H7A0.94380.29860.62680.109*
H7B1.10710.2470.78990.109*
H7C0.76710.25840.61880.109*
C61.1736 (4)0.0427 (3)0.7094 (3)0.0848 (7)
H6A1.13940.04870.67150.127*
H6B1.34130.04250.82990.127*
H6C1.20650.10370.67920.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0551 (7)0.0525 (7)0.0425 (6)0.0100 (5)0.0399 (6)0.0063 (4)
C20.0446 (7)0.0404 (7)0.0419 (8)0.0014 (5)0.0373 (7)0.0001 (5)
C30.0472 (8)0.0431 (8)0.0458 (8)0.0068 (6)0.0393 (7)0.0040 (6)
C10.0539 (8)0.0425 (7)0.0474 (8)0.0043 (6)0.0437 (8)0.0004 (6)
C40.0456 (7)0.0447 (8)0.0427 (8)0.0007 (6)0.0377 (7)0.0006 (6)
O10.0657 (8)0.0545 (7)0.0485 (7)0.0020 (5)0.0434 (7)0.0057 (5)
C50.0510 (9)0.0657 (11)0.0421 (9)0.0100 (7)0.0384 (8)0.0054 (7)
C70.0743 (12)0.0767 (13)0.0617 (11)0.0183 (10)0.0581 (11)0.0197 (9)
C60.0573 (11)0.0934 (16)0.0656 (12)0.0003 (10)0.0478 (11)0.0053 (11)
Geometric parameters (Å, º) top
O2—C41.3311 (18)C5—C71.509 (3)
O2—C51.469 (2)C5—H50.98
C2—C11.393 (2)C7—H7A0.96
C2—C31.396 (2)C7—H7B0.96
C2—C41.496 (2)C7—H7C0.96
C3—H30.93C6—H6A0.96
C1—H10.93C6—H6B0.96
C4—O11.2058 (19)C6—H6C0.96
C5—C61.504 (3)
C4—O2—C5117.70 (12)O2—C5—H5109.5
C1—C2—C3119.73 (14)C6—C5—H5109.5
C1—C2—C4118.34 (13)C7—C5—H5109.5
C3—C2—C4121.92 (13)C5—C7—H7A109.5
C1i—C3—C2119.93 (13)C5—C7—H7B109.5
C1i—C3—H3120H7A—C7—H7B109.5
C2—C3—H3120C5—C7—H7C109.5
C3i—C1—C2120.34 (14)H7A—C7—H7C109.5
C3i—C1—H1119.8H7B—C7—H7C109.5
C2—C1—H1119.8C5—C6—H6A109.5
O1—C4—O2125.00 (15)C5—C6—H6B109.5
O1—C4—C2123.28 (13)H6A—C6—H6B109.5
O2—C4—C2111.72 (12)C5—C6—H6C109.5
O2—C5—C6108.93 (16)H6A—C6—H6C109.5
O2—C5—C7105.04 (14)H6B—C6—H6C109.5
C6—C5—C7114.16 (17)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.932.903.532 (4)126
C1—H1···O1iii0.932.933.546 (3)125
C7—H7B···O1iv0.962.673.560 (4)153
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x1, y1/2, z1/2; (iv) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H18O4
Mr250.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.208 (3), 9.718 (3), 15.844 (5)
β (°) 150.03 (2)
V3)708.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.75 × 0.49 × 0.42
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3803, 1521, 1267
Rint0.055
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.17, 1.07
No. of reflections1521
No. of parameters84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.903.532 (4)126
C1—H1···O1ii0.932.933.546 (3)125
C7—H7B···O1iii0.962.673.560 (4)153
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y1/2, z1/2; (iii) x+2, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds