research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Novel three-dimensional coordination polymer of 2-(1,3,5-tri­aza-7-phospho­niatri­cyclo­[3.3.1.13,7]decan-7-yl)ethanoic acid with silver(I) tetra­fluoro­borate

crossmark logo

aDepartment of Physical Chemistry, University of Debrecen, Debrecen, Hungary, and bMTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Department of Physical Chemistry, University of Debrecen, Debrecen, Hungary
*Correspondence e-mail: udvardya@unideb.hu, gal.tamas@science.unideb.hu

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 21 December 2021; accepted 21 January 2022; online 1 February 2022)

An AgI-based coordination polymer (CP), namely, poly[[[μ3-2-(1,3,5-tri­aza-7-phospho­niatri­cyclo­[3.3.1.13,7]decan-7-yl)ethano­ate-κ4N:N′:O,O′]silver(I)] tetra­fluoro­borate], {[Ag(C9H16N3O2P)]BF4}n, was synthesized in an aqueous solution of zwitterionic 2-(1,3,5-tri­aza-7-phospho­niatri­cyclo­[3.3.1.13,7]decan-7-yl)ethan­o­ate (L) and AgBF4 with exclusion of light at room temperature. The colourless and light-insensitive CP crystallized in the monoclinic space group Cc. The asymmetric unit consists of an AgI cation, the zwitterionic L ligand and a BF4 counter-ion. Each AgI ion is coordinated by two carboxyl­ate oxygen atoms in a chelating coordination mode, as well as one of the nitro­gen atoms of two neighbouring L ligands. The crystal structure of the CP was classified as a unique three-dimensional arrangement. The CP was also characterized in aqueous solutions by multinuclear NMR and HRMS spectroscopies and elemental analysis.

1. Chemical context

The architectures and anti­microbial properties of self-assembled silver-based coordination polymers (CPs) or MOFs (metal–organic frameworks), bridged by phosphaurotropines, have been widely studied (Guerriero et al., 2018[Guerriero, A., Peruzzini, H. & Gonsalvi, L. (2018). Coord. Chem. Rev. 355, 328-361.]). According to our previous studies, the aqueous reaction of zwitterionic 2-(1,3,5-tri­aza-7-phospho­niatri­cyclo­[3.3.1.13,7]decan-7-yl)ethan­o­ate (L) with AgX (X = PF6, SO3C6H4CH3, SO3CF3) yielded various 1D Ag-based coordination polymers (Udvardy et al., 2021[Udvardy, A., Szolnoki, Cs. T., Kováts, É., Nyul, D., Gál, Gy. T., Papp, G., Joó, F. & Kathó, Á. (2021). Inorg. Chim. Acta, 520, 120299.]). The architectures of these AgI complexes depend on their counter-ions and the position of the ligand, which contains both rigid and flexible mol­ecular moieties.

[Scheme 1]

Herein, we report the crystal structure of a CP prepared by the aqueous reaction of 2-(1,3,5-tri­aza-7-phospho­niatri­cyclo­[3.3.1.13,7]decan-7-yl)ethano­ate and AgBF4 with the exclusion of light at 278 K (Fig. 1[link]). The colourless crystals of the CP were isolated by filtration, dissolved in water and characterized by 1H-, 13C- and 31P-NMR spectroscopy, ESI mass spectrometry, as well as by elemental analysis.

[Figure 1]
Figure 1
Schematic representation of the formation of the title compound.

The chemical shift of the phospho­rus atom in CP (δ = −37.5 ppm in D2O) was the same as that in the free ligand. Similar to the hexa­fluoro­phosphate, tosyl­ate (tos) and triflate (OTf) derivatives (Udvardy et al., 2021[Udvardy, A., Szolnoki, Cs. T., Kováts, É., Nyul, D., Gál, Gy. T., Papp, G., Joó, F. & Kathó, Á. (2021). Inorg. Chim. Acta, 520, 120299.]), the 1H-NMR spectrum showed differences between the P+–CH2–N and N–CH2–N signals, which clearly indicated the coordination of the silver ions to the nitro­gen donor atoms of the L ligand.

The most intense ESI–MS signals of the CP (aqueous solution, positive ion mode) were observed at m/z = 252.0878 ([L+Na]+, C9H16N3NaO2P, calculated. 252.0872), 336.0026 ([L+Ag]+, C9H16N3AgO2P, calculated 336.0026), and 565.1009 ([2L+Ag]+, C18H32N6NaO4P2, calculated 565.1005). Similar ions were detected for the CP formed with AgPF6, AgSO3C6H4CH3, AgSO3CF3 and PTA in aqueous solutions.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The CP crystallized in the monoclinic Cc space group. The asymmetric unit consists of a silver(I) cation, a zwitterionic L ligand and a BF4counter-ion, in which the N,N′,O,O′ coordination mode of the silver(I) ions creates a 3D coordination architecture (Fig. 2[link]).

[Figure 2]
Figure 2
(a) A view of the title CP with atomic labels. Displacement ellipsoids are drawn at the 50% probability level. (b) The coordination architecture of the CP with atomic labels for the coordination sphere. Hydrogen atoms and BF4 ions are omitted for clarity. [Symmetry codes: (1) x, −y, [{1\over 2}] + z; (2) −[{1\over 2}] + x, −[{1\over 2}] − y, [{1\over 2}] + z; (3) x, −y, −[{1\over 2}] + z; (4) [{1\over 2}] + x, −[{1\over 2}] − y, −[{1\over 2}] + z.]

In the CP, the central Ag+ ion is coordinated by an L ligand via two carboxyl­ate oxygen atoms [Ag12—O11 = 2.594 (9) Å and Ag12—O12 = 2.298 (8) Å] and two nitro­gen atoms from two adjacent PTA moieties of L [Ag1—N1 = 2.225 (7) Å and Ag11—N3 = 2.505 (7) Å]. The N1—Ag—N33 and O114—Ag—O124 bond angles are 119.6 (3) and 52.9 (2)°, respectively. Selected bond lengths and bond angles are presented in the supporting information. The coordination geometry exhibits a distorted tetra­hedral shape (τ4 = 0.65 and τ4' = 0.66; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, P. (2007). Dalton Trans. pp. 955-964.]; Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]), in which the AgI ion is located at the centre. The space between the 3D polymer backbones is occupied by the BF4 counter-ions (Fig. 3[link]). The chemical composition was also determined by elemental analysis, which shows a good agreement with the SC-XRD results (see Synthesis and crystallization).

[Figure 3]
Figure 3
(a) Packing arrangement of the three-dimensional structure of the CP in the crystal viewed along the crystallographic a axis. The coordination sphere is labelled and highlighted by a ball-and-stick model. Hydrogen atoms are omitted for clarity. (b) Selected hydrogen-bond geometry in the CP showing the weak C—H⋯F and C—H⋯O secondary inter­actions, as well as the Ag1⋯F3 inter­action. For symmetry codes, see Table 1[link].

3. Supra­molecular features

As a result of the lack of primary H-donor groups, no classical hydrogen bonds are found in the crystal structure of the title coordination polymer. The main inter­molecular inter­actions between the mol­ecules in the crystal are weak C—H⋯F and C—H⋯O type hydrogen bonds. The BF4 anion is generally classified as a non-coordinating anion owing to its weak Lewis base properties (Grabowski, 2020[Grabowski, S. J. (2020). Crystals, 10, 460.]). These secondary inter­actions play a major role in stabilizing the crystal lattice by connecting the mol­ecular units to each other, which results in a 3D coordination polymer. All of the fluorine atoms of a BF4 counter-ion are connected to at least one C—H hydrogen atom by a weak C—H⋯F type hydrogen bond. The shortest C—H⋯F distance is found for the C2—H2B⋯F3 inter­action [C2⋯F3 = 3.183 (13) Å], where the F3 atom of the BF4 counter-ion is also able to coordinate to the central Ag+ ion with a distance of 3.010 (11) Å (Fig. 3[link]). This ionic attraction between the Ag+ and BF4 ions is strong enough to affect the arrangement of part of the whole complex mol­ecule and form a bent 3D structure. In comparison, the value of the longest C—H⋯F distance is 3.417 (14) Å (C4—H4B⋯F2, Fig. 3[link]) owing to the rigid PTA cage, which is unable to change its conformation. There are numerous examples in the literature of where the C—H⋯F distances were investigated in the presence of BF4counter-ions [i.e. BIXBIT03 (Emge et al., 1986[Emge, T. J., Wang, H. H., Beno, M. A., Williams, J. M., Whangbo, M. H. & Evain, M. (1986). J. Am. Chem. Soc. 108, 8215-8223.]) and SUXHID01 (Albinati et al., 2010[Albinati, A., Cesarotti, E., Mason, S. A., Rimoldi, I., Rizzato, S. & Zerla, D. (2010). Tetrahedron Asymmetry, 21, 1162-1165.])]. In case of the bis­[μ2-1,1′-naphthalene-1,8-diyl-bis­(1H-pyrazole)]tris­(aceto­nitrile)­disilver(I) bis­(BF4) aceto­nitrile solvate structure (OGINOI; Liddle et al., 2009[Liddle, B. L., Hall, D., Lindeman, S. J., Smith, M. D. & Gardinier, J. R. (2009). Inorg. Chem. 48, 8404-8414.]), it was found that the typical C⋯F distances are between 3.179 (2) and 3.406 (3) Å, which shows a good agreement with our results. The carboxyl­ate oxygen atoms in the title CP are also able to form weak C—H⋯O type inter­actions with the C—H atoms of the complex mol­ecule. Their atomic distances can also be compared to the C—H⋯F secondary inter­actions. An intra­molecular hydrogen bond also helps to form a bent 3D mol­ecular structure for the CP [C2⋯O12 = 2.812 (12) Å]. For selected hydrogen-bond distances and angles see Fig. 3[link]b and Table 1[link]. The considerably high calculated density (2.102 Mg m−3) and KPI (Kitaigorodskii packing index) of 74.2% (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) indicate the tight packing arrangement of the mol­ecules, resulting in no residual solvent-accessible voids in the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F2 0.97 2.40 3.201 (13) 140
C1—H1B⋯O11i 0.97 2.49 3.213 (12) 131
C2—H2A⋯O11i 0.97 2.56 3.254 (12) 129
C2—H2B⋯F3ii 0.97 2.35 3.183 (13) 143
C2—H2B⋯O12 0.97 2.22 2.812 (12) 118
C3—H3A⋯F4iii 0.97 2.45 3.290 (15) 145
C3—H3B⋯F2 0.97 2.51 3.283 (12) 136
C4—H4A⋯F4iv 0.97 2.43 3.298 (12) 148
C4—H4B⋯F2v 0.97 2.51 3.417 (14) 155
C5—H5A⋯F1 0.97 2.49 3.370 (13) 151
C5—H5B⋯F4iv 0.97 2.54 3.373 (14) 144
C6—H6B⋯F2iv 0.97 2.34 3.314 (13) 177
C7—H7A⋯O11i 0.97 2.48 3.165 (13) 128
C7—H7A⋯F1vi 0.97 2.37 3.137 (12) 135
Symmetry codes: (i) [x, -y-1, z-{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.42, Sept. 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found zwitterionic 2-(1,3,5-tri­aza-7-phospho­niatri­cyclo­[3.3.1.13,7]decan-7-yl)eth­ano­ate dihydrate (L) (SIJPOR; Tang et al., 2007[Tang, X., Zhang, B., He, Z., Gao, R. & He, Z. (2007). Adv. Synth. Catal. 349, 2007-2017.]) and three 1D Ag-based coordination polymers containing L, viz. [Ag(μ3-L-κ3N:O:O′)]n(PF6)n (UPUCAM; Udvardy et al., 2021[Udvardy, A., Szolnoki, Cs. T., Kováts, É., Nyul, D., Gál, Gy. T., Papp, G., Joó, F. & Kathó, Á. (2021). Inorg. Chim. Acta, 520, 120299.]), [Ag(OTf)(μ3-L-κ3N:O:O′)]n (UPUCIU; Udvardy et al., 2021[Udvardy, A., Szolnoki, Cs. T., Kováts, É., Nyul, D., Gál, Gy. T., Papp, G., Joó, F. & Kathó, Á. (2021). Inorg. Chim. Acta, 520, 120299.]) and [Ag(tos)(μ3-L-κ3N:N:O)]n·nH2O (UPUCEQ; Udvardy et al., 2021[Udvardy, A., Szolnoki, Cs. T., Kováts, É., Nyul, D., Gál, Gy. T., Papp, G., Joó, F. & Kathó, Á. (2021). Inorg. Chim. Acta, 520, 120299.]). While in the cases of UPUCAM, UPUCIU and UPUCEQ only 1D polymers were obtained, in the title CP the AgI complex is able to form a 3D coordination polymer owing to the relatively small size of the BF4 counter-ion, which is able to occupy a smaller space compared to the PF6, triflate or tosyl­ate anions. These results show how a counter-ion can influence the packing arrangement and the coordination mode of an [(AgL)X] type polymer.

5. Synthesis and crystallization

Water-soluble PTA (Daigle, 1998[Daigle, D. J. (1998). Inorg. Synth. 32, 40-45.]) and 2-(1,3,5-tri­aza-7-phospho­niatri­cyclo­[3.3.1.13,7]decan-7-yl)ethano­ate (L) (Tang et al., 2007[Tang, X., Zhang, B., He, Z., Gao, R. & He, Z. (2007). Adv. Synth. Catal. 349, 2007-2017.]; Udvardy et al., 2021[Udvardy, A., Szolnoki, Cs. T., Kováts, É., Nyul, D., Gál, Gy. T., Papp, G., Joó, F. & Kathó, Á. (2021). Inorg. Chim. Acta, 520, 120299.]) were prepared according to literature methods.

CP: With the exclusion of light, 4 mL aqueous solution containing 194.7 mg (1 mmol) AgBF4 was added to an aqueous solution (4 mL) of L (100 mg, 0.44 mmol). The reaction mixture was stored at 278 K. After two days, the CP was formed as colourless crystals, which were separated by filtration and dried. Yield (based on L) 112 mg, 60%. 1H NMR (360 MHz, D2O, 298 K) δ 4.73–4.37 (m, 12H, +P–CH2–N, N–CH2–N), 2.58 (dt, J = 24, 7 Hz, 2H, P+–CH2CH2–COO), 2.44–2.22 (m, 2H, P+–CH2CH2–COO) ppm. 13C{1H} NMR (90 MHz, D2O, 298 K) δ 179.5 (s, COO), 71.5 (d, 3JPC = 8 Hz, N–CH2–N), 49.1 (d, 1JPC = 37 Hz, +P-CH2–N), 29.0 (d, 2JPC = 7 Hz, P+–CH2CH2–COO), 18.5 (d, 1JPC = 35 Hz, P+CH2–CH2–COO) ppm. 31P{1H} NMR (145 MHz, D2O, 25 °C) δ −37.5 (s) ppm. Elemental analysis: C9H16AgBF4N3O2P (423.89): calculated C 25.05, H 3.80, N 9.91; found C 25.64, H 4.10, N 9.95.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms of the CP complex were positioned geometrically and refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ag(C9H16N3O2P)]BF4
Mr 423.90
Crystal system, space group Monoclinic, Cc
Temperature (K) 293
a, b, c (Å) 10.116 (5), 12.186 (5), 10.979 (5)
β (°) 98.260 (5)
V3) 1339.4 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.68
Crystal size (mm) 0.35 × 0.2 × 0.15
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.558, 0.755
No. of measured, independent and observed [I > 2σ(I)] reflections 1358, 1313, 1299
Rint 0.009
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.13
No. of reflections 1313
No. of parameters 190
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.20, −1.54
Absolute structure Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter 0.13 (6)
Computer programs: MACH3/PC (Enraf–Nonius, 1992[Enraf-Nonius (1992). MACH3/PC in CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]), PROFIT (Streltsov & Zavodnik, 1989[Streltsov, V. A. & Zavodnik, V. E. (1989). Sov. Phys. Crystallogr. 34, 824-828.]), SIR97 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: MACH3/PC (Enraf–Nonius, 1992); cell refinement: MACH3/PC (Enraf–Nonius, 1992); data reduction: PROFIT (Streltsov & Zavodnik, 1989); program(s) used to solve structure: SIR97 (Burla et al., 2007); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Poly[[[µ3-2-(1,3,5-triaza-7-phosphoniatricyclo[3.3.1.13,7]decan-7-yl)ethanoate-κ4N:N':O,O']silver(I)] tetrafluoroborate] top
Crystal data top
[Ag(C9H16N3O2P)]BF4F(000) = 840
Mr = 423.90Dx = 2.102 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 10.116 (5) ÅCell parameters from 25 reflections
b = 12.186 (5) Åθ = 9.1–17.2°
c = 10.979 (5) ŵ = 1.68 mm1
β = 98.260 (5)°T = 293 K
V = 1339.4 (11) Å3Prism, colourless
Z = 40.35 × 0.2 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.009
profiled ω/2θ scansθmax = 25.5°, θmin = 3.1°
Absorption correction: ψ scan
(North et al., 1968)
h = 012
Tmin = 0.558, Tmax = 0.755k = 014
1358 measured reflectionsl = 1313
1313 independent reflections3 standard reflections every 184 reflections
1299 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0873P)2 + 4.2725P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.13Δρmax = 1.20 e Å3
1313 reflectionsΔρmin = 1.54 e Å3
190 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower
2 restraintsAbsolute structure parameter: 0.13 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0444 (9)0.2414 (7)0.2977 (8)0.0266 (16)
H1A0.05090.25570.28490.032*
H1B0.08200.27370.37580.032*
C20.2914 (9)0.2548 (7)0.2148 (9)0.0302 (19)
H2A0.33230.28700.29180.036*
H2B0.34440.27430.15110.036*
C30.0546 (9)0.2182 (7)0.0445 (8)0.0284 (17)
H3A0.09750.23650.02650.034*
H3B0.04080.22980.02320.034*
C40.2157 (10)0.1011 (7)0.3251 (9)0.0317 (19)
H4A0.23110.02330.33920.038*
H4B0.25320.13970.39940.038*
C50.0139 (9)0.0704 (7)0.1840 (8)0.0269 (16)
H5A0.07980.08970.16460.032*
H5B0.01920.00870.19340.032*
C60.2256 (10)0.0841 (8)0.1135 (10)0.035 (2)
H6A0.27060.11130.04720.042*
H6B0.24180.00570.12030.042*
C70.0690 (9)0.4434 (7)0.1593 (9)0.0311 (19)
H7A0.12810.48680.21780.037*
H7B0.02010.44920.18150.037*
C80.0676 (11)0.4934 (8)0.0308 (9)0.0340 (19)
H8A0.03220.56740.03060.041*
H8B0.00840.45060.02850.041*
C90.2032 (10)0.4967 (8)0.0078 (8)0.0298 (18)
N10.0681 (7)0.1216 (6)0.3016 (6)0.0253 (14)
N20.2837 (7)0.1355 (6)0.2263 (8)0.0323 (17)
N30.0822 (8)0.1022 (6)0.0806 (7)0.0278 (15)
O110.2377 (9)0.5691 (6)0.0750 (8)0.0444 (17)
O120.2793 (8)0.4175 (6)0.0319 (7)0.0408 (16)
P10.1202 (2)0.30412 (17)0.1746 (2)0.0234 (4)
B10.3222 (13)0.2721 (10)0.1875 (11)0.039 (2)
Ag10.03866 (7)0.03737 (7)0.43859 (7)0.0488 (3)
F10.2885 (9)0.1691 (6)0.2226 (8)0.062 (2)
F20.2229 (8)0.3155 (7)0.1250 (9)0.066 (2)
F30.4361 (8)0.2745 (9)0.1032 (10)0.082 (3)
F40.3319 (16)0.3351 (7)0.2846 (9)0.104 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (4)0.023 (4)0.033 (4)0.002 (3)0.013 (3)0.004 (3)
C20.022 (4)0.022 (4)0.047 (5)0.005 (3)0.006 (4)0.005 (4)
C30.029 (4)0.027 (4)0.029 (4)0.007 (3)0.003 (3)0.001 (3)
C40.028 (5)0.027 (4)0.040 (5)0.001 (3)0.001 (4)0.008 (3)
C50.029 (4)0.025 (4)0.027 (4)0.004 (3)0.008 (3)0.003 (3)
C60.031 (5)0.028 (4)0.049 (5)0.010 (4)0.019 (4)0.001 (4)
C70.026 (4)0.029 (4)0.042 (5)0.001 (3)0.016 (4)0.000 (4)
C80.040 (5)0.031 (4)0.030 (4)0.004 (4)0.001 (4)0.009 (4)
C90.033 (5)0.026 (4)0.028 (4)0.001 (4)0.002 (3)0.002 (4)
N10.023 (3)0.025 (3)0.027 (3)0.001 (3)0.003 (3)0.005 (3)
N20.023 (4)0.027 (4)0.048 (5)0.001 (3)0.008 (3)0.005 (3)
N30.030 (4)0.021 (3)0.033 (4)0.001 (3)0.009 (3)0.002 (3)
O110.049 (4)0.034 (3)0.052 (4)0.002 (3)0.013 (3)0.016 (3)
O120.042 (4)0.037 (3)0.046 (4)0.011 (3)0.016 (3)0.012 (3)
P10.0211 (10)0.0193 (9)0.0306 (10)0.0024 (8)0.0065 (8)0.0009 (8)
B10.043 (7)0.038 (6)0.037 (5)0.009 (5)0.012 (5)0.008 (5)
Ag10.0465 (4)0.0623 (5)0.0407 (4)0.0149 (4)0.0167 (3)0.0099 (4)
F10.059 (4)0.037 (3)0.090 (6)0.000 (3)0.007 (4)0.016 (3)
F20.040 (4)0.064 (5)0.096 (6)0.004 (3)0.016 (4)0.024 (4)
F30.038 (4)0.114 (8)0.091 (6)0.013 (5)0.003 (4)0.020 (6)
F40.205 (14)0.049 (4)0.065 (5)0.025 (6)0.047 (7)0.003 (4)
Geometric parameters (Å, º) top
C1—H1A0.9700C6—N21.436 (14)
C1—H1B0.9700C6—N31.460 (12)
C1—N11.479 (11)C7—H7A0.9700
C1—P11.815 (9)C7—H7B0.9700
C2—H2A0.9700C7—C81.534 (13)
C2—H2B0.9700C7—P11.775 (9)
C2—N21.461 (11)C8—H8A0.9700
C2—P11.826 (9)C8—H8B0.9700
C3—H3A0.9700C8—C91.494 (15)
C3—H3B0.9700C9—O111.233 (12)
C3—N31.484 (11)C9—O121.272 (12)
C3—P11.818 (9)N1—Ag12.225 (7)
C4—H4A0.9700N3—Ag1i2.505 (7)
C4—H4B0.9700O11—Ag1ii2.594 (9)
C4—N11.499 (12)O12—Ag1ii2.298 (8)
C4—N21.428 (13)B1—F11.343 (14)
C5—H5A0.9700B1—F21.399 (14)
C5—H5B0.9700B1—F31.370 (15)
C5—N11.467 (10)B1—F41.328 (16)
C5—N31.464 (12)Ag1—N3iii2.505 (7)
C6—H6A0.9700Ag1—O11iv2.594 (9)
C6—H6B0.9700Ag1—O12iv2.298 (8)
H1A—C1—H1B108.1C7—C8—H8B109.1
N1—C1—H1A109.5H8A—C8—H8B107.8
N1—C1—H1B109.5C9—C8—C7112.6 (8)
N1—C1—P1110.7 (6)C9—C8—H8A109.1
P1—C1—H1A109.5C9—C8—H8B109.1
P1—C1—H1B109.5O11—C9—C8122.7 (9)
H2A—C2—H2B108.6O11—C9—O12122.6 (10)
N2—C2—H2A110.4O12—C9—C8114.7 (8)
N2—C2—H2B110.4C1—N1—C4108.8 (7)
N2—C2—P1106.7 (6)C1—N1—Ag1112.5 (5)
P1—C2—H2A110.4C4—N1—Ag1112.0 (5)
P1—C2—H2B110.4C5—N1—C1110.9 (6)
H3A—C3—H3B108.5C5—N1—C4108.6 (7)
N3—C3—H3A110.2C5—N1—Ag1104.0 (5)
N3—C3—H3B110.2C4—N2—C2113.3 (7)
N3—C3—P1107.8 (6)C4—N2—C6110.2 (8)
P1—C3—H3A110.2C6—N2—C2112.3 (8)
P1—C3—H3B110.2C3—N3—Ag1i115.1 (5)
H4A—C4—H4B107.7C5—N3—C3111.6 (7)
N1—C4—H4A108.9C5—N3—Ag1i93.4 (5)
N1—C4—H4B108.9C6—N3—C3110.6 (7)
N2—C4—H4A108.9C6—N3—C5109.4 (7)
N2—C4—H4B108.9C6—N3—Ag1i115.4 (5)
N2—C4—N1113.4 (7)C9—O11—Ag1ii85.8 (6)
H5A—C5—H5B107.6C9—O12—Ag1ii98.7 (6)
N1—C5—H5A108.7C1—P1—C299.7 (4)
N1—C5—H5B108.7C1—P1—C3101.4 (4)
N3—C5—H5A108.7C3—P1—C2103.1 (4)
N3—C5—H5B108.7C7—P1—C1108.9 (4)
N3—C5—N1114.2 (7)C7—P1—C2126.3 (4)
H6A—C6—H6B107.6C7—P1—C3114.0 (4)
N2—C6—H6A108.6F1—B1—F2108.8 (9)
N2—C6—H6B108.6F1—B1—F3111.6 (11)
N2—C6—N3114.6 (7)F3—B1—F2104.7 (9)
N3—C6—H6A108.6F4—B1—F1110.8 (10)
N3—C6—H6B108.6F4—B1—F2108.4 (11)
H7A—C7—H7B107.5F4—B1—F3112.2 (12)
C8—C7—H7A108.4N1—Ag1—N3iii119.6 (3)
C8—C7—H7B108.4N1—Ag1—O11iv134.1 (3)
C8—C7—P1115.5 (7)N1—Ag1—O12iv133.5 (3)
P1—C7—H7A108.4N3iii—Ag1—O11iv92.3 (3)
P1—C7—H7B108.4O12iv—Ag1—N3iii103.6 (3)
C7—C8—H8A109.1O12iv—Ag1—O11iv52.9 (2)
C7—C8—C9—O11148.3 (10)N2—C6—N3—C553.5 (10)
C7—C8—C9—O1233.2 (12)N2—C6—N3—Ag1i157.2 (6)
C8—C7—P1—C1153.3 (7)N3—C3—P1—C151.8 (7)
C8—C7—P1—C288.5 (8)N3—C3—P1—C251.1 (7)
C8—C7—P1—C340.9 (8)N3—C3—P1—C7168.7 (6)
C8—C9—O11—Ag1ii177.7 (9)N3—C5—N1—C166.7 (9)
C8—C9—O12—Ag1ii177.7 (7)N3—C5—N1—C452.8 (9)
N1—C1—P1—C254.5 (7)N3—C5—N1—Ag1172.2 (6)
N1—C1—P1—C351.1 (7)N3—C6—N2—C271.6 (10)
N1—C1—P1—C7171.6 (6)N3—C6—N2—C455.7 (10)
N1—C4—N2—C271.1 (10)O11—C9—O12—Ag1ii0.8 (11)
N1—C4—N2—C655.6 (10)O12—C9—O11—Ag1ii0.7 (10)
N1—C5—N3—C370.1 (9)P1—C1—N1—C460.8 (8)
N1—C5—N3—C652.7 (9)P1—C1—N1—C558.5 (8)
N1—C5—N3—Ag1i171.2 (6)P1—C1—N1—Ag1174.5 (4)
N2—C2—P1—C153.2 (7)P1—C2—N2—C464.6 (9)
N2—C2—P1—C351.0 (7)P1—C2—N2—C661.0 (8)
N2—C2—P1—C7175.5 (6)P1—C3—N3—C562.5 (8)
N2—C4—N1—C166.6 (10)P1—C3—N3—C659.5 (8)
N2—C4—N1—C554.2 (9)P1—C3—N3—Ag1i167.4 (3)
N2—C4—N1—Ag1168.4 (6)P1—C7—C8—C962.9 (10)
N2—C6—N3—C369.8 (10)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y1/2, z+1/2; (iii) x, y, z1/2; (iv) x+1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F20.972.403.201 (13)140
C1—H1B···O11v0.972.493.213 (12)131
C2—H2A···O11v0.972.563.254 (12)129
C2—H2B···F3vi0.972.353.183 (13)143
C2—H2B···O120.972.222.812 (12)118
C3—H3A···F4ii0.972.453.290 (15)145
C3—H3B···F20.972.513.283 (12)136
C4—H4A···F4vii0.972.433.298 (12)148
C4—H4B···F2viii0.972.513.417 (14)155
C5—H5A···F10.972.493.370 (13)151
C5—H5B···F4vii0.972.543.373 (14)144
C6—H6B···F2vii0.972.343.314 (13)177
C7—H7A···O11v0.972.483.165 (13)128
C7—H7A···F1ix0.972.373.137 (12)135
Symmetry codes: (ii) x1/2, y1/2, z+1/2; (v) x, y1, z1/2; (vi) x1, y, z; (vii) x1/2, y+1/2, z; (viii) x1/2, y1/2, z1/2; (ix) x1/2, y1/2, z.
 

Acknowledgements

The authors thank Ms Cynthia Nóra Nagy (University of Debrecen) for the HRMS measurements and Dr Attila Kiss for the elemental analysis measurements. We are also grateful to Dr Attila Bényei (University of Debrecen) for recording the diffraction data.

Funding information

The financial support of the Hungarian National Research, Development and Innovation Office (FK-128333) is greatly acknowledged. Project No. TKP2020-NKA-04 has been implemented with support provided from the National Research, Development and Innovation Fund of Hungary, financed under the 2020–4.1.1-TKP2020 funding scheme. The research was supported by the EU and co-financed by the European Regional Development Fund under the projects GINOP-2.3.3–15-2016–00004 and GINOP 2.3.2–15-2016–00008.

References

First citationAlbinati, A., Cesarotti, E., Mason, S. A., Rimoldi, I., Rizzato, S. & Zerla, D. (2010). Tetrahedron Asymmetry, 21, 1162–1165.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDaigle, D. J. (1998). Inorg. Synth. 32, 40–45.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmge, T. J., Wang, H. H., Beno, M. A., Williams, J. M., Whangbo, M. H. & Evain, M. (1986). J. Am. Chem. Soc. 108, 8215–8223.  CSD CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1992). MACH3/PC in CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGrabowski, S. J. (2020). Crystals, 10, 460.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerriero, A., Peruzzini, H. & Gonsalvi, L. (2018). Coord. Chem. Rev. 355, 328–361.  Web of Science CrossRef CAS Google Scholar
First citationLiddle, B. L., Hall, D., Lindeman, S. J., Smith, M. D. & Gardinier, J. R. (2009). Inorg. Chem. 48, 8404–8414.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStreltsov, V. A. & Zavodnik, V. E. (1989). Sov. Phys. Crystallogr. 34, 824–828.  Google Scholar
First citationTang, X., Zhang, B., He, Z., Gao, R. & He, Z. (2007). Adv. Synth. Catal. 349, 2007–2017.  Web of Science CSD CrossRef CAS Google Scholar
First citationUdvardy, A., Szolnoki, Cs. T., Kováts, É., Nyul, D., Gál, Gy. T., Papp, G., Joó, F. & Kathó, Á. (2021). Inorg. Chim. Acta, 520, 120299.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds