Download citation
Download citation
link to html
The com­pound [5,10,15,20-tetra­kis­(4-fluoro-2,6-di­methyl­phen­yl)por­phy­rinato]platinum(II), [Pt(C52H40F4N4)] or Pt(II)TFP, has been synthesized and structurally characterized by single-crystal X-ray crystallography. The Pt por­phy­rin exhibits a long-lived phospho­rescent excited state (τ0 = 66 µs), which has been characterized by transient absorption and emission spectroscopy. The phos­pho­res­cence is extremely sensitive to oxygen, as reflected by a quenching rate constant of 5.0 × 108M−1 s−1, and as measured by Stern–Volmer quenching analysis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229624001621/yd3039sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624001621/yd3039Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229624001621/yd3039sup3.pdf
Additional Tables and Figures

CCDC reference: 2333699

Computing details top

[5,10,15,20-Tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrinato]platinum(II) top
Crystal data top
[Pt(C52H40F4N4)]Dx = 1.224 Mg m3
Mr = 991.97Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mCell parameters from 9892 reflections
a = 17.1883 (13) Åθ = 2.4–25.0°
c = 9.1123 (9) ŵ = 2.65 mm1
V = 2692.1 (5) Å3T = 100 K
Z = 2Plate, red-orange
F(000) = 9880.18 × 0.09 × 0.08 mm
Data collection top
Bruker D8 goniometer with Photon III C14 area detector
diffractometer
1773 reflections with I > 2σ(I)
Radiation source: IµS microfocus tubeRint = 0.062
ω and phi scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(TWINABS; Krause et al., 2015)
h = 1314
Tmin = 0.391, Tmax = 0.490k = 020
1785 measured reflectionsl = 010
1785 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0383P)2 + 3.793P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1785 reflectionsΔρmax = 1.22 e Å3
85 parametersΔρmin = 0.73 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. All non-H atoms were located in difference-Fourier maps, and then refined anisotropically.

The crystal is non-merohedrol twin, but we have well refined the structure by using reflections in hkl5 format that is created by Cell_Now/Twinabs.

Twin law to convert hkl from first to -0.588 0.804 -0.150 this domain (SHELXL TWIN matrix): 0.806 0.592 0.065 0.037 -0.029 -0.996

The disorder solvent molecules could not be located in the Fourier map and have been masked out using PLATON/SQUEEZE.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.5000000.5000000.5000000.02585 (16)
F10.2649 (4)0.9701 (2)0.5000000.0799 (16)
N10.3894 (2)0.5388 (3)0.5000000.0240 (9)
C10.3230 (3)0.4934 (3)0.5000000.0261 (13)
C20.2561 (3)0.5429 (3)0.5000000.0298 (13)
H20.2032920.5267060.5000000.036*
C30.2815 (3)0.6174 (4)0.5000000.0329 (14)
H30.2501970.6629420.5000000.039*
C40.3651 (3)0.6142 (3)0.5000000.0257 (13)
C50.4126 (3)0.6804 (3)0.5000000.0267 (11)
C60.3739 (3)0.7583 (3)0.5000000.0287 (12)
C70.3550 (2)0.7940 (2)0.3663 (5)0.0338 (9)
C80.3184 (3)0.8660 (3)0.3683 (5)0.0438 (11)
H80.3052910.8920130.2793920.053*
C90.3009 (4)0.8998 (4)0.5000000.0465 (16)
C100.3740 (3)0.7560 (3)0.2217 (5)0.0445 (11)
H10A0.4272490.7357890.2241870.053*
H10B0.3692990.7944990.1427870.053*
H10C0.3376090.7131190.2041770.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02198 (17)0.02198 (17)0.0336 (3)0.0000.0000.000
F10.124 (4)0.039 (2)0.076 (3)0.048 (3)0.0000.000
N10.023 (2)0.024 (2)0.025 (2)0.001 (2)0.0000.000
C10.024 (3)0.029 (3)0.025 (3)0.003 (2)0.0000.000
C20.022 (3)0.030 (3)0.038 (3)0.001 (2)0.0000.000
C30.027 (3)0.032 (3)0.039 (4)0.004 (3)0.0000.000
C40.023 (3)0.026 (3)0.029 (3)0.004 (2)0.0000.000
C50.030 (3)0.025 (3)0.025 (3)0.001 (2)0.0000.000
C60.028 (3)0.025 (3)0.033 (3)0.001 (2)0.0000.000
C70.035 (2)0.032 (2)0.035 (2)0.0045 (17)0.0033 (19)0.0055 (18)
C80.054 (3)0.040 (2)0.037 (3)0.010 (2)0.003 (2)0.009 (2)
C90.051 (4)0.030 (3)0.059 (5)0.014 (3)0.0000.000
C100.052 (3)0.047 (2)0.035 (2)0.011 (2)0.003 (2)0.003 (2)
Geometric parameters (Å, º) top
Pt1—N1i2.014 (4)C3—H30.9500
Pt1—N1ii2.014 (4)C4—C51.400 (8)
Pt1—N1iii2.014 (4)C5—C61.494 (7)
Pt1—N12.014 (4)C6—C7iv1.403 (5)
F1—C91.358 (7)C6—C71.403 (5)
N1—C41.362 (8)C7—C81.389 (6)
N1—C11.383 (7)C7—C101.506 (6)
C1—C5ii1.391 (8)C8—C91.367 (6)
C1—C21.430 (8)C8—H80.9517
C2—C31.352 (8)C10—H10A0.9800
C2—H20.9496C10—H10B0.9801
C3—C41.437 (8)C10—H10C0.9800
N1i—Pt1—N1ii180.0C1i—C5—C4123.3 (5)
N1i—Pt1—N1iii90.0C1i—C5—C6118.8 (5)
N1ii—Pt1—N1iii90.0C4—C5—C6117.9 (5)
N1i—Pt1—N189.999 (1)C7iv—C6—C7120.6 (5)
N1ii—Pt1—N190.0C7iv—C6—C5119.7 (2)
N1iii—Pt1—N1180.0C7—C6—C5119.7 (2)
C4—N1—C1106.4 (4)C8—C7—C6118.9 (4)
C4—N1—Pt1127.2 (4)C8—C7—C10119.7 (4)
C1—N1—Pt1126.3 (4)C6—C7—C10121.3 (3)
N1—C1—C5ii126.7 (5)C9—C8—C7119.3 (4)
N1—C1—C2109.1 (5)C9—C8—H8119.7
C5ii—C1—C2124.1 (5)C7—C8—H8121.0
C3—C2—C1107.7 (5)F1—C9—C8iv118.6 (3)
C3—C2—H2125.9F1—C9—C8118.6 (3)
C1—C2—H2126.4C8iv—C9—C8122.9 (6)
C2—C3—C4106.7 (6)C7—C10—H10A109.6
C2—C3—H3126.7C7—C10—H10B109.4
C4—C3—H3126.7H10A—C10—H10B109.5
N1—C4—C5126.4 (5)C7—C10—H10C109.3
N1—C4—C3110.1 (5)H10A—C10—H10C109.4
C5—C4—C3123.5 (5)H10B—C10—H10C109.6
C4—N1—C1—C5ii180.0N1—C4—C5—C6180.0
Pt1—N1—C1—C5ii0.0C3—C4—C5—C60.0
C4—N1—C1—C20.0C1i—C5—C6—C7iv90.8 (5)
Pt1—N1—C1—C2180.0C4—C5—C6—C7iv89.2 (5)
N1—C1—C2—C30.0C1i—C5—C6—C790.8 (5)
C5ii—C1—C2—C3180.0C4—C5—C6—C789.2 (5)
C1—C2—C3—C40.0C7iv—C6—C7—C80.9 (9)
C1—N1—C4—C5180.0C5—C6—C7—C8179.4 (5)
Pt1—N1—C4—C50.0C7iv—C6—C7—C10179.3 (4)
C1—N1—C4—C30.0C5—C6—C7—C100.8 (8)
Pt1—N1—C4—C3180.0C6—C7—C8—C90.7 (8)
C2—C3—C4—N10.0C10—C7—C8—C9179.5 (5)
C2—C3—C4—C5180.0C7—C8—C9—F1179.8 (6)
N1—C4—C5—C1i0.0C7—C8—C9—C8iv0.6 (11)
C3—C4—C5—C1i180.0
Symmetry codes: (i) y, x+1, z+1; (ii) y+1, x, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
Experimental structural details top
Crystal data
Chemical formula[Pt(C52H40F4N4)]
Mw991.97
Crystal systemTetragonal
Space groupI4/m
Temperature (K)100
a (Å)17.1883 (13)
b (Å)17.1883 (13)
c (Å)9.1123 (9)
α (°)90
β (°)90
γ (°)90
V3)2692.1 (5)
Z2
Radiation typeMo Kα
µ (mm-1)2.65
Crystal size (mm)0.18 × 0.09 × 0.08
Data Collection
DiffractometerBruker D8
Absorption correctionMulti-scan (TWINABS; Krause et al., 2015)
Tmin, Tmax0.391, 0.490
No. of meas. independent1785, 1785, 1773
and obsd [I > 2σ(I)] reflns
Rint0.062
(sin θ/λ)max (Å-1)0.596
Refinement
R[F2 > 2σ (F2)], wR(F2), S0.033, 0.072, 1.05
No. of reflns1785
No. of parameters85
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.22, -0.73
Computer programs: APEX3 (Bruker, 2019), SAINT (Bruker, 2019), SHELXT2019 (Sheldrick, 2015a), SHELXL2019 (Sheldrick, 2015b), and SHELXTL (Sheldrick, 2008).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds