Download citation
Download citation
link to html
Four new solvates of the anti-HIV compound etravirine [systematic name: 4-({6-amino-5-bromo-2-[(4-cyano­phen­yl)amino]pyrimidin-4-­yl}­oxy)-3,5-di­methyl­ben­zo­nitrile, C20H15BrN6O] with dimethyl sulfoxide (C2H6OS, two distinct monosolvates), 1,4-dioxane (C4H8O2, the 0.75-solvate) and N,N-di­methyl­acet­amide (C4H9NO, the monosolvate), which exhibit conversion to the same anhydrous etravirine phase upon desolvation, and a stable etravirinium oxalate salt {6-amino-5-bromo-4-(4-cyano-2,6-di­methyl­phen­oxy)-2-[(4-cyano­phen­yl)amino]­pyrimidin-1-ium hemioxalate, C20H16BrN6O+·0.5C2O42−} were obtained. The crystal structures were solved by single-crystal X-ray diffraction and analyzed by powder X-ray diffraction, and the inter­molecular inter­actions were explored by Hirshfeld surface analysis. Lattice energies were evaluated using the atom–atom force field Coulomb–London–Pauli (AA CLP) approximation, which distributes the total energy as four separate contributions: Coulombic, polarization, dispersion and repulsion. The formation of the solvates and the oxalate salt was further characterized by thermal analysis and IR spectroscopy.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621010482/vp3022sup1.cif
Contains datablocks ETR-DMSO1, ETR-DMSO2, ETR-DMA, ETR-Dioxan, ETR-Oxalic, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621010482/vp3022ETR-DMSO1sup2.hkl
Contains datablock ETR-DMSO1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621010482/vp3022ETR-DMSO2sup3.hkl
Contains datablock ETR-DMSO2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621010482/vp3022ETR-DMAsup4.hkl
Contains datablock ETR-DMA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621010482/vp3022ETR-Dioxansup5.hkl
Contains datablock ETR-Dioxan

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621010482/vp3022ETR-Oxalicsup6.hkl
Contains datablock ETR-Oxalic

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621010482/vp3022ETR-DMSO1sup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621010482/vp3022ETR-DMAsup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621010482/vp3022ETR-Dioxansup9.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621010482/vp3022sup11.pdf
Additional information on Hirshfeld analysis, hydrogen bonding and DSC analysis

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621010482/vp3022ETR-Oxalicsup10.cml
Supplementary material

CCDC references: 2086675; 2086673; 2086672; 2086674; 2086671

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012) for ETR-DMSO1, ETR-DMA, ETR-Dioxan; CrysAlis PRO (Oxford Diffraction, 2010) for ETR-DMSO2; CrysAlis PRO (Rigaku OD, 2019) for ETR-Oxalic. Cell refinement: CrysAlis PRO (Agilent, 2012) for ETR-DMSO1, ETR-DMA, ETR-Dioxan; CrysAlis PRO (Oxford Diffraction, 2010) for ETR-DMSO2; CrysAlis PRO (Rigaku OD, 2019) for ETR-Oxalic. Data reduction: CrysAlis PRO (Agilent, 2012) for ETR-DMSO1, ETR-DMA, ETR-Dioxan; CrysAlis PRO (Oxford Diffraction, 2010) for ETR-DMSO2; CrysAlis PRO (Rigaku OD, 2019) for ETR-Oxalic. Program(s) used to solve structure: SHELXD (Sheldrick, 2008) for ETR-DMSO1; SHELXS (Sheldrick, 2008) for ETR-DMSO2, ETR-Dioxan; SHELXT (Sheldrick, 2015a) for ETR-DMA; olex2.solve (Bourhis et al., 2015) for ETR-Oxalic. For all structures, program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-({6-Amino-5-bromo-2-[(4-cyanophenyl)amino]pyrimidin-4-yl}oxy)-3,5-dimethylbenzonitrile dimethyl sulfoxide monosolvate (ETR-DMSO1) top
Crystal data top
C20H15BrN6O·C2H6OSF(000) = 1048
Mr = 513.42Dx = 1.392 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.2801 (6) ÅCell parameters from 3301 reflections
b = 15.4330 (9) Åθ = 3.9–71.3°
c = 17.1702 (11) ŵ = 3.33 mm1
β = 95.116 (6)°T = 293 K
V = 2449.3 (3) Å3Needle, colourless
Z = 40.3 × 0.02 × 0.02 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Eos detector
4663 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3590 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 16.4335 pixels mm-1θmax = 71.7°, θmin = 3.9°
ω scansh = 118
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1814
Tmin = 0.387, Tmax = 1.000l = 1421
8978 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.1282P)2 + 0.5303P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
4663 reflectionsΔρmax = 0.79 e Å3
293 parametersΔρmin = 0.75 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Suitable single crystals were coated in inert oil (Paratone-N) and mounted in the goniometer using a fine nyloon loop. The data collection was acquired with a SuperNova diffractometer (tube operating at 50 kV and 0.8 mA), equipped with dual microsources (Mo and Cu) using Cu Kα radiation, Eos CCD detector at room temperature and CrysAlis PRO software (Rigaku, 2015). All data were corrected for Lorentzian, polarization, and absorption effects. The empirical absorption correction was accomplished using the multi-scan method by spherical harmonics in the SCALE3 ABSPACK scaling algorithm (Rigaku, 2015). The structures of ETR–DMA and ETR-oxalic were solved by SHELXT (Sheldrick, 2015) solution program with Intrinsic Phasing, ETR–DMSO1 was solved with SHELXD (Sheldrick, 2008) by Dual Space, while the ETR–DMSO2 and ETR–Dioxane were solved by SHELXS (Sheldrick, 2008) program using Direct Methods. The structures were further refined with SHELXL (Sheldrick, 2015) refinement package using least-squares minimization, which are implemented in Olex2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.63939 (6)0.45526 (3)0.18484 (3)0.0815 (3)
C80.9723 (4)0.2995 (2)0.0659 (2)0.0527 (8)
C51.1080 (4)0.1658 (2)0.0405 (2)0.0576 (8)
C140.6383 (4)0.1208 (3)0.1788 (2)0.0658 (10)
N21.0728 (4)0.2528 (2)0.0300 (2)0.0620 (8)
H21.1197500.2806290.0029840.074*
O10.7168 (3)0.26599 (19)0.20069 (18)0.0690 (8)
N50.8938 (3)0.25682 (19)0.11601 (18)0.0563 (7)
C90.8612 (4)0.4301 (2)0.0802 (2)0.0557 (8)
C110.7983 (4)0.3043 (2)0.1491 (2)0.0549 (8)
C120.7374 (4)0.1778 (3)0.2155 (2)0.0605 (9)
C150.6485 (5)0.0339 (3)0.2002 (3)0.0701 (11)
H150.5828080.0059790.1770870.084*
O20.7257 (3)0.3226 (2)0.0764 (2)0.0801 (9)
C41.1572 (5)0.1216 (3)0.0229 (2)0.0670 (10)
H41.1627580.1504340.0701260.080*
N30.9605 (3)0.38274 (19)0.04555 (18)0.0567 (7)
C190.8458 (5)0.1525 (3)0.2726 (2)0.0667 (10)
C21.1918 (5)0.0074 (3)0.0534 (3)0.0701 (10)
C31.1975 (5)0.0363 (3)0.0168 (3)0.0725 (11)
H31.2287430.0076740.0598230.087*
C100.7788 (4)0.3912 (2)0.1352 (2)0.0566 (8)
C180.8538 (5)0.0655 (3)0.2916 (3)0.0752 (11)
H180.9255080.0461910.3288600.090*
N40.8474 (4)0.5133 (2)0.0595 (2)0.0708 (9)
H4A0.9002900.5345180.0254540.085*
H4B0.7856580.5456880.0800730.085*
C71.1442 (5)0.0366 (3)0.1171 (3)0.0778 (13)
H71.1396130.0077520.1643720.093*
C11.2338 (6)0.0970 (3)0.0588 (4)0.0881 (14)
C61.1040 (5)0.1220 (3)0.1108 (2)0.0702 (11)
H61.0737450.1508590.1539950.084*
N60.7769 (8)0.1550 (4)0.2933 (4)0.142 (3)
C130.5237 (6)0.1517 (4)0.1184 (3)0.0937 (16)
H13A0.4665950.1956590.1405600.141*
H13B0.4626040.1039920.1010890.141*
H13C0.5682800.1753140.0747130.141*
C200.9503 (6)0.2166 (4)0.3120 (3)0.0905 (15)
H20A1.0072680.2418920.2739630.136*
H20B1.0127320.1874930.3512760.136*
H20C0.8975310.2612680.3360760.136*
C210.5375 (8)0.2815 (6)0.1709 (4)0.126 (3)
H21A0.5767510.3331060.1958050.190*
H21B0.4342430.2814250.1718190.190*
H21C0.5775190.2315600.1981740.190*
N11.2702 (7)0.1671 (3)0.0641 (4)0.122 (2)
S10.58124 (13)0.27884 (7)0.07405 (6)0.0692 (3)
C170.7680 (7)0.0842 (4)0.2766 (4)0.0975 (16)
C160.7562 (5)0.0066 (3)0.2559 (3)0.0748 (11)
C220.4522 (8)0.3545 (5)0.0378 (5)0.145 (3)
H22A0.4712650.3712080.0141640.217*
H22B0.3575080.3292860.0366230.217*
H22C0.4570130.4046700.0710130.217*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0887 (4)0.0730 (4)0.0887 (4)0.0235 (2)0.0405 (3)0.0040 (2)
C80.0519 (18)0.0504 (18)0.0576 (18)0.0005 (14)0.0151 (15)0.0008 (14)
C50.0579 (19)0.0518 (19)0.066 (2)0.0037 (15)0.0196 (16)0.0012 (15)
C140.066 (2)0.074 (3)0.059 (2)0.0000 (19)0.0168 (17)0.0087 (17)
N20.073 (2)0.0473 (15)0.0707 (19)0.0065 (14)0.0350 (16)0.0074 (13)
O10.0698 (17)0.0608 (16)0.0818 (18)0.0115 (13)0.0355 (14)0.0139 (13)
N50.0576 (17)0.0500 (15)0.0641 (17)0.0038 (13)0.0213 (14)0.0034 (12)
C90.0561 (19)0.0484 (17)0.0634 (19)0.0028 (15)0.0103 (15)0.0001 (15)
C110.0535 (19)0.057 (2)0.0558 (18)0.0022 (15)0.0154 (15)0.0046 (14)
C120.061 (2)0.062 (2)0.0618 (19)0.0060 (17)0.0241 (16)0.0086 (16)
C150.074 (3)0.070 (3)0.068 (2)0.005 (2)0.015 (2)0.0039 (18)
O20.0771 (19)0.0703 (18)0.099 (2)0.0187 (15)0.0408 (17)0.0151 (16)
C40.076 (2)0.061 (2)0.068 (2)0.0067 (19)0.0273 (19)0.0022 (17)
N30.0621 (17)0.0474 (15)0.0629 (16)0.0043 (13)0.0190 (14)0.0033 (12)
C190.068 (2)0.072 (2)0.062 (2)0.002 (2)0.0141 (18)0.0008 (17)
C20.066 (2)0.052 (2)0.094 (3)0.0071 (18)0.019 (2)0.0054 (19)
C30.079 (3)0.059 (2)0.083 (3)0.0084 (19)0.031 (2)0.0092 (19)
C100.061 (2)0.0495 (18)0.0609 (19)0.0061 (15)0.0150 (16)0.0013 (14)
C180.074 (3)0.081 (3)0.070 (2)0.017 (2)0.001 (2)0.006 (2)
N40.077 (2)0.0499 (17)0.091 (2)0.0123 (16)0.0349 (18)0.0070 (16)
C70.086 (3)0.069 (3)0.082 (3)0.019 (2)0.030 (2)0.019 (2)
C10.087 (3)0.062 (3)0.120 (4)0.015 (2)0.034 (3)0.010 (3)
C60.083 (3)0.064 (2)0.066 (2)0.016 (2)0.024 (2)0.0084 (18)
N60.166 (6)0.077 (3)0.176 (6)0.014 (4)0.028 (5)0.021 (4)
C130.089 (3)0.106 (4)0.084 (3)0.001 (3)0.005 (3)0.027 (3)
C200.090 (4)0.094 (4)0.086 (3)0.009 (3)0.003 (3)0.012 (3)
C210.112 (5)0.178 (8)0.097 (4)0.025 (5)0.051 (4)0.011 (4)
N10.131 (4)0.071 (3)0.172 (5)0.036 (3)0.045 (4)0.021 (3)
S10.0759 (7)0.0577 (5)0.0776 (6)0.0129 (5)0.0268 (5)0.0115 (4)
C170.113 (4)0.073 (3)0.104 (4)0.009 (3)0.004 (3)0.010 (3)
C160.083 (3)0.065 (3)0.078 (3)0.008 (2)0.014 (2)0.008 (2)
C220.115 (5)0.109 (5)0.198 (9)0.019 (4)0.061 (5)0.045 (5)
Geometric parameters (Å, º) top
Br1—C101.891 (3)C12—C191.396 (6)
C8—N21.368 (4)C15—C161.386 (7)
C8—N51.348 (4)O2—S11.499 (3)
C8—N31.333 (5)C4—C31.368 (6)
C5—N21.390 (5)C19—C181.382 (7)
C5—C41.396 (5)C19—C201.503 (7)
C5—C61.386 (5)C2—C31.386 (6)
C14—C121.383 (6)C2—C71.392 (6)
C14—C151.391 (6)C2—C11.438 (6)
C14—C131.497 (6)C18—C161.387 (7)
O1—C111.351 (4)C7—C61.373 (6)
O1—C121.395 (5)C1—N11.135 (7)
N5—C111.318 (5)N6—C171.130 (7)
C9—N31.355 (5)C21—S11.746 (6)
C9—C101.402 (5)S1—C221.747 (7)
C9—N41.335 (5)C17—C161.447 (7)
C11—C101.372 (5)
N5—C8—N2117.3 (3)C8—N3—C9116.6 (3)
N3—C8—N2115.7 (3)C12—C19—C20121.9 (4)
N3—C8—N5127.0 (3)C18—C19—C12117.2 (4)
N2—C5—C4117.5 (3)C18—C19—C20120.9 (4)
C6—C5—N2123.9 (3)C3—C2—C7119.0 (4)
C6—C5—C4118.5 (4)C3—C2—C1119.6 (4)
C12—C14—C15117.8 (4)C7—C2—C1121.4 (4)
C12—C14—C13121.1 (4)C4—C3—C2120.3 (4)
C15—C14—C13121.2 (4)C9—C10—Br1121.1 (3)
C8—N2—C5127.8 (3)C11—C10—Br1121.1 (3)
C11—O1—C12118.1 (3)C11—C10—C9117.7 (3)
C11—N5—C8115.2 (3)C19—C18—C16120.9 (4)
N3—C9—C10119.8 (3)C6—C7—C2120.6 (4)
N4—C9—N3117.0 (3)N1—C1—C2178.2 (8)
N4—C9—C10123.1 (3)C7—C6—C5120.6 (4)
O1—C11—C10118.0 (3)O2—S1—C21104.3 (3)
N5—C11—O1118.5 (3)O2—S1—C22107.0 (3)
N5—C11—C10123.5 (3)C21—S1—C2296.5 (5)
C14—C12—O1117.5 (4)N6—C17—C16179.5 (8)
C14—C12—C19123.4 (4)C15—C16—C18120.5 (4)
O1—C12—C19118.6 (4)C15—C16—C17119.9 (5)
C16—C15—C14120.2 (4)C18—C16—C17119.6 (5)
C3—C4—C5121.0 (4)
4-({6-Amino-5-bromo-2-[(4-cyanophenyl)amino]pyrimidin-4-yl}oxy)-3,5-dimethylbenzonitrile dimethyl sulfoxide monosolvate (ETR-DMSO2) top
Crystal data top
C20H15BrN6O·C2H6OSZ = 2
Mr = 513.42F(000) = 524
Triclinic, P1Dx = 1.439 Mg m3
a = 8.6953 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.3336 (8) ÅCell parameters from 4741 reflections
c = 15.1494 (11) Åθ = 3.0–70.9°
α = 96.181 (6)°µ = 3.45 mm1
β = 102.323 (6)°T = 293 K
γ = 95.632 (6)°Needle, colourless
V = 1184.87 (15) Å30.1 × 0.03 × 0.01 mm
Data collection top
Oxford Diffraction SuperNova Dual Source
diffractometer with an Eos detector
4449 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3732 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 16.4335 pixels mm-1θmax = 71.0°, θmin = 3.0°
ω scansh = 107
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.482, Tmax = 1.000l = 1818
7279 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.210 w = 1/[σ2(Fo2) + (0.146P)2 + 0.1471P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
4449 reflectionsΔρmax = 0.66 e Å3
294 parametersΔρmin = 1.68 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Suitable single crystals were coated in inert oil (Paratone-N) and mounted in the goniometer using a fine nyloon loop. The data collection was acquired with a SuperNova diffractometer (tube operating at 50 kV and 0.8 mA), equipped with dual microsources (Mo and Cu) using Cu Kα radiation, Eos CCD detector at room temperature and CrysAlis PRO software (Rigaku, 2015). All data were corrected for Lorentzian, polarization, and absorption effects. The empirical absorption correction was accomplished using the multi-scan method by spherical harmonics in the SCALE3 ABSPACK scaling algorithm (Rigaku, 2015). The structures of ETR–DMA and ETR-oxalic were solved by SHELXT (Sheldrick, 2015) solution program with Intrinsic Phasing, ETR–DMSO1 was solved with SHELXD (Sheldrick, 2008) by Dual Space, while the ETR–DMSO2 and ETR–Dioxane were solved by SHELXS (Sheldrick, 2008) program using Direct Methods. The structures were further refined with SHELXL (Sheldrick, 2015) refinement package using least-squares minimization, which are implemented in Olex2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15142 (4)0.39515 (5)0.07791 (3)0.0631 (2)
S10.71828 (12)0.04858 (11)0.43617 (9)0.0661 (3)
O10.4480 (3)0.2464 (3)0.09151 (18)0.0495 (6)
N50.6174 (3)0.3974 (3)0.2109 (2)0.0411 (6)
N30.5264 (4)0.6065 (3)0.2789 (2)0.0445 (6)
C110.4745 (4)0.3661 (3)0.1554 (2)0.0405 (7)
C100.3519 (4)0.4473 (3)0.1570 (2)0.0433 (7)
C80.6366 (4)0.5184 (3)0.2701 (2)0.0397 (7)
C120.5562 (4)0.1440 (3)0.1054 (2)0.0417 (7)
N20.7791 (3)0.5617 (3)0.3291 (2)0.0469 (7)
H20.7822320.6398290.3654590.056*
C60.9480 (4)0.3774 (4)0.2881 (3)0.0508 (8)
H60.8679070.3299410.2400040.061*
C90.3826 (4)0.5704 (3)0.2233 (3)0.0447 (7)
N40.2721 (4)0.6596 (3)0.2330 (3)0.0565 (8)
H4A0.1792730.6103600.2192840.068*
H4B0.2918730.7000550.2886750.068*
C50.9215 (4)0.5005 (3)0.3406 (2)0.0415 (7)
C140.6851 (4)0.1546 (4)0.0652 (3)0.0507 (8)
O20.8308 (4)0.1614 (3)0.4448 (3)0.0795 (10)
C21.2145 (4)0.3938 (4)0.3787 (3)0.0474 (8)
C190.5195 (4)0.0338 (4)0.1541 (3)0.0487 (8)
N11.4800 (5)0.2875 (5)0.4136 (3)0.0765 (12)
C180.6217 (6)0.0717 (4)0.1645 (3)0.0592 (10)
H180.6006630.1483930.1963960.071*
C11.3639 (5)0.3362 (4)0.3989 (3)0.0556 (9)
C71.0937 (5)0.3258 (4)0.3076 (3)0.0546 (9)
H71.1105650.2436780.2721270.066*
C160.7547 (5)0.0636 (5)0.1278 (3)0.0615 (11)
C31.1896 (5)0.5181 (4)0.4305 (3)0.0553 (9)
H31.2703410.5656830.4781850.066*
C130.7171 (6)0.2766 (6)0.0127 (3)0.0724 (12)
H13A0.6209900.2892520.0290140.109*
H13B0.7958400.2544140.0207760.109*
H13C0.7550320.3643960.0540610.109*
C41.0453 (4)0.5708 (4)0.4110 (3)0.0525 (9)
H41.0301240.6547590.4454150.063*
C220.7398 (7)0.0439 (5)0.5481 (4)0.0793 (14)
H22A0.7000050.0211290.5853200.119*
H22B0.6810420.1257590.5451850.119*
H22C0.8499190.0767550.5740660.119*
C150.7854 (5)0.0477 (5)0.0777 (3)0.0603 (10)
H150.8737350.0506760.0521690.072*
C200.3756 (6)0.0299 (5)0.1952 (4)0.0746 (13)
H20A0.3932320.1059330.2455650.112*
H20B0.3576260.0624070.2162160.112*
H20C0.2844470.0436250.1499310.112*
C210.8112 (7)0.0968 (6)0.3918 (4)0.0763 (13)
H21A0.9148950.1286740.4297350.114*
H21B0.7484220.1759610.3905460.114*
H21C0.8204330.0643510.3310070.114*
N60.9503 (8)0.2524 (8)0.1575 (4)0.135 (3)
C170.8632 (7)0.1693 (7)0.1446 (4)0.0883 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0347 (3)0.0633 (3)0.0793 (4)0.0092 (2)0.0134 (2)0.0061 (2)
S10.0390 (5)0.0490 (5)0.0952 (8)0.0085 (4)0.0059 (5)0.0183 (5)
O10.0355 (13)0.0372 (11)0.0623 (14)0.0082 (10)0.0125 (11)0.0088 (10)
N50.0278 (14)0.0336 (12)0.0542 (15)0.0050 (10)0.0043 (11)0.0022 (11)
N30.0387 (16)0.0331 (13)0.0575 (16)0.0098 (11)0.0023 (13)0.0010 (11)
C110.0341 (17)0.0321 (14)0.0488 (17)0.0033 (12)0.0026 (13)0.0019 (12)
C100.0280 (15)0.0371 (15)0.0584 (18)0.0052 (12)0.0058 (13)0.0084 (13)
C80.0326 (16)0.0297 (13)0.0519 (17)0.0041 (12)0.0014 (13)0.0011 (12)
C120.0300 (16)0.0338 (14)0.0503 (17)0.0054 (12)0.0085 (13)0.0092 (12)
N20.0348 (15)0.0356 (13)0.0598 (16)0.0064 (11)0.0038 (12)0.0127 (12)
C60.0348 (18)0.0469 (18)0.059 (2)0.0085 (14)0.0073 (15)0.0128 (15)
C90.0370 (18)0.0347 (15)0.064 (2)0.0109 (13)0.0081 (15)0.0121 (14)
N40.0424 (17)0.0478 (17)0.080 (2)0.0188 (14)0.0103 (16)0.0080 (15)
C50.0358 (17)0.0350 (15)0.0473 (16)0.0036 (12)0.0007 (13)0.0018 (12)
C140.0332 (18)0.055 (2)0.0535 (19)0.0026 (15)0.0025 (15)0.0066 (15)
O20.0551 (19)0.0501 (16)0.112 (3)0.0151 (14)0.0111 (17)0.0297 (16)
C20.0336 (17)0.0426 (17)0.060 (2)0.0060 (13)0.0022 (15)0.0063 (14)
C190.044 (2)0.0376 (16)0.0578 (19)0.0008 (14)0.0063 (16)0.0079 (14)
N10.037 (2)0.073 (2)0.107 (3)0.0165 (17)0.0084 (19)0.001 (2)
C180.065 (3)0.0424 (18)0.061 (2)0.0117 (17)0.0038 (19)0.0013 (16)
C10.035 (2)0.049 (2)0.074 (2)0.0052 (15)0.0024 (17)0.0032 (17)
C70.046 (2)0.0448 (18)0.064 (2)0.0142 (15)0.0028 (17)0.0091 (16)
C160.051 (2)0.060 (2)0.062 (2)0.0237 (19)0.0087 (18)0.0138 (18)
C30.0374 (19)0.051 (2)0.064 (2)0.0005 (15)0.0085 (16)0.0049 (16)
C130.062 (3)0.078 (3)0.071 (3)0.006 (2)0.007 (2)0.014 (2)
C40.0398 (19)0.0403 (17)0.065 (2)0.0022 (14)0.0046 (16)0.0133 (15)
C220.088 (4)0.058 (3)0.094 (4)0.010 (2)0.031 (3)0.003 (2)
C150.0344 (19)0.079 (3)0.060 (2)0.0141 (18)0.0029 (17)0.014 (2)
C200.066 (3)0.059 (2)0.102 (4)0.002 (2)0.032 (3)0.006 (2)
C210.070 (3)0.078 (3)0.071 (3)0.010 (2)0.003 (2)0.006 (2)
N60.121 (5)0.139 (5)0.132 (5)0.097 (5)0.024 (4)0.013 (4)
C170.079 (4)0.095 (4)0.083 (3)0.052 (3)0.009 (3)0.007 (3)
Geometric parameters (Å, º) top
Br1—C101.878 (3)C6—C71.384 (5)
S1—O21.504 (3)C9—N41.352 (4)
S1—C221.781 (5)C5—C41.396 (5)
S1—C211.778 (6)C14—C131.495 (6)
O1—C111.364 (4)C14—C151.390 (6)
O1—C121.407 (4)C2—C11.439 (5)
N5—C111.329 (4)C2—C71.380 (5)
N5—C81.338 (4)C2—C31.391 (5)
N3—C81.341 (4)C19—C181.389 (5)
N3—C91.339 (5)C19—C201.512 (6)
C11—C101.369 (4)N1—C11.137 (5)
C10—C91.406 (5)C18—C161.386 (7)
C8—N21.359 (4)C16—C151.388 (7)
C12—C141.385 (5)C16—C171.436 (6)
C12—C191.379 (5)C3—C41.377 (5)
N2—C51.400 (4)N6—C171.139 (6)
C6—C51.392 (4)
O2—S1—C22106.2 (2)C6—C5—N2125.4 (3)
O2—S1—C21106.3 (2)C6—C5—C4118.6 (3)
C21—S1—C2296.6 (2)C4—C5—N2116.0 (3)
C11—O1—C12116.6 (2)C12—C14—C13121.8 (4)
C11—N5—C8115.0 (3)C12—C14—C15116.7 (4)
C9—N3—C8117.2 (3)C15—C14—C13121.5 (4)
O1—C11—C10117.5 (3)C7—C2—C1120.3 (3)
N5—C11—O1118.1 (3)C7—C2—C3119.1 (3)
N5—C11—C10124.4 (3)C3—C2—C1120.6 (3)
C11—C10—Br1122.3 (3)C12—C19—C18117.1 (4)
C11—C10—C9116.3 (3)C12—C19—C20121.2 (4)
C9—C10—Br1121.4 (2)C18—C19—C20121.7 (4)
N5—C8—N3126.4 (3)C16—C18—C19120.5 (4)
N5—C8—N2119.8 (3)N1—C1—C2178.2 (5)
N3—C8—N2113.8 (3)C2—C7—C6121.3 (3)
C14—C12—O1118.7 (3)C18—C16—C15120.5 (4)
C19—C12—O1116.6 (3)C18—C16—C17119.0 (5)
C19—C12—C14124.6 (3)C15—C16—C17120.4 (5)
C8—N2—C5130.9 (3)C4—C3—C2119.9 (3)
C7—C6—C5119.9 (3)C3—C4—C5121.2 (3)
N3—C9—C10120.7 (3)C16—C15—C14120.6 (4)
N3—C9—N4116.7 (3)N6—C17—C16179.3 (9)
N4—C9—C10122.6 (3)
4-({6-Amino-5-bromo-2-[(4-cyanophenyl)amino]pyrimidin-4-yl}oxy)-3,5-dimethylbenzonitrile dimethylacetamide monosolvate (ETR-DMA) top
Crystal data top
C20H15BrN6O·C4H9NOZ = 2
Mr = 522.41F(000) = 536
Triclinic, P1Dx = 1.368 Mg m3
a = 8.8344 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.2114 (7) ÅCell parameters from 3881 reflections
c = 13.3205 (8) Åθ = 3.4–71.2°
α = 100.065 (5)°µ = 2.49 mm1
β = 98.949 (4)°T = 293 K
γ = 96.828 (4)°Needle, colourless
V = 1268.67 (13) Å30.15 × 0.02 × 0.01 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Eos detector
4816 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3796 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 16.4335 pixels mm-1θmax = 71.3°, θmin = 4.1°
ω scansh = 410
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1312
Tmin = 0.642, Tmax = 1.000l = 1616
7959 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.085P)2 + 0.2663P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
4816 reflectionsΔρmax = 0.57 e Å3
312 parametersΔρmin = 0.70 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Suitable single crystals were coated in inert oil (Paratone-N) and mounted in the goniometer using a fine nyloon loop. The data collection was acquired with a SuperNova diffractometer (tube operating at 50 kV and 0.8 mA), equipped with dual microsources (Mo and Cu) using Cu Kα radiation, Eos CCD detector at room temperature and CrysAlis PRO software (Rigaku, 2015). All data were corrected for Lorentzian, polarization, and absorption effects. The empirical absorption correction was accomplished using the multi-scan method by spherical harmonics in the SCALE3 ABSPACK scaling algorithm (Rigaku, 2015). The structures of ETR–DMA and ETR-oxalic were solved by SHELXT (Sheldrick, 2015) solution program with Intrinsic Phasing, ETR–DMSO1 was solved with SHELXD (Sheldrick, 2008) by Dual Space, while the ETR–DMSO2 and ETR–Dioxane were solved by SHELXS (Sheldrick, 2008) program using Direct Methods. The structures were further refined with SHELXL (Sheldrick, 2015) refinement package using least-squares minimization, which are implemented in Olex2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.99907 (4)0.15393 (4)0.22480 (3)0.07163 (19)
O10.6798 (2)0.1847 (2)0.12166 (16)0.0556 (6)
N30.8182 (3)0.4310 (2)0.3926 (2)0.0511 (6)
N50.6282 (3)0.3393 (2)0.24243 (19)0.0488 (6)
O21.3082 (3)0.2307 (3)0.4992 (2)0.0844 (8)
N41.0479 (3)0.3562 (3)0.4267 (2)0.0623 (8)
H4A1.0712740.4092700.4838640.075*
H4B1.1111760.3065670.4103490.075*
N20.5860 (3)0.5017 (3)0.3637 (2)0.0608 (7)
H20.6260410.5539810.4196160.073*
C100.8685 (3)0.2659 (3)0.2696 (2)0.0469 (6)
C110.7253 (3)0.2649 (3)0.2131 (2)0.0454 (6)
C80.6799 (3)0.4203 (3)0.3305 (2)0.0483 (7)
C90.9129 (3)0.3510 (3)0.3631 (2)0.0482 (6)
C120.5276 (3)0.1827 (3)0.0695 (2)0.0494 (7)
C190.5028 (3)0.2582 (3)0.0007 (2)0.0533 (7)
C140.4140 (4)0.0976 (3)0.0885 (2)0.0515 (7)
C160.2341 (3)0.1677 (3)0.0348 (3)0.0545 (7)
C20.1335 (4)0.5484 (3)0.2485 (3)0.0593 (8)
N10.1493 (4)0.5759 (3)0.1854 (3)0.0834 (10)
C180.3510 (4)0.2514 (3)0.0524 (3)0.0548 (7)
H180.3283580.3028640.0985150.066*
C150.2644 (4)0.0904 (3)0.0335 (2)0.0551 (7)
H150.1848760.0334060.0427960.066*
C50.4341 (3)0.5128 (3)0.3204 (3)0.0540 (7)
N60.0466 (4)0.1526 (4)0.1336 (3)0.0902 (11)
C170.0774 (4)0.1599 (3)0.0905 (3)0.0663 (9)
C10.0243 (4)0.5639 (3)0.2121 (3)0.0664 (9)
C130.4490 (5)0.0183 (4)0.1664 (3)0.0725 (10)
H13A0.5341840.0233640.1515420.109*
H13B0.3593590.0408890.1628810.109*
H13C0.4757350.0683510.2347210.109*
N71.2628 (5)0.0317 (4)0.5058 (3)0.0943 (12)
C40.3636 (4)0.5986 (4)0.3778 (3)0.0737 (11)
H40.4176470.6451230.4406400.088*
C60.3510 (4)0.4434 (4)0.2278 (3)0.0704 (11)
H60.3953770.3838980.1895050.085*
C70.2015 (4)0.4623 (4)0.1922 (3)0.0680 (10)
H70.1468150.4161500.1293580.082*
C30.2146 (4)0.6149 (4)0.3422 (4)0.0800 (12)
H30.1678890.6715100.3818770.096*
C200.6330 (5)0.3460 (4)0.0205 (4)0.0825 (12)
H20A0.6713690.4078890.0407480.124*
H20B0.5952910.3838950.0767850.124*
H20C0.7151760.3020540.0379630.124*
C221.2772 (5)0.1462 (5)0.5473 (4)0.0835 (12)
C231.2883 (8)0.0000 (6)0.3988 (4)0.122 (2)
H23A1.3178920.0735750.3745380.183*
H23B1.1944290.0444390.3553730.183*
H23C1.3691720.0499790.3963680.183*
C241.2238 (10)0.0699 (6)0.5572 (5)0.148 (3)
H24A1.2136860.0381050.6272150.222*
H24B1.3045270.1202080.5577050.222*
H24C1.1277110.1181480.5205470.222*
C211.2543 (11)0.1796 (6)0.6572 (5)0.155 (3)
H21A1.3507170.1834760.7031650.233*
H21B1.1782850.1186640.6706850.233*
H21C1.2194120.2578950.6681060.233*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0587 (2)0.0744 (3)0.0708 (3)0.03088 (19)0.00470 (18)0.01485 (19)
O10.0432 (10)0.0617 (13)0.0484 (11)0.0165 (9)0.0081 (8)0.0167 (10)
N30.0451 (12)0.0501 (14)0.0467 (13)0.0112 (10)0.0084 (10)0.0086 (11)
N50.0406 (11)0.0488 (13)0.0466 (13)0.0083 (10)0.0050 (10)0.0083 (11)
O20.0846 (19)0.0757 (19)0.087 (2)0.0142 (15)0.0097 (15)0.0198 (16)
N40.0524 (14)0.0606 (16)0.0585 (16)0.0207 (12)0.0193 (12)0.0121 (13)
N20.0489 (13)0.0621 (16)0.0549 (16)0.0178 (12)0.0114 (11)0.0209 (13)
C100.0420 (13)0.0446 (15)0.0489 (15)0.0117 (11)0.0002 (12)0.0012 (12)
C110.0429 (13)0.0452 (15)0.0415 (14)0.0069 (11)0.0003 (11)0.0032 (12)
C80.0434 (14)0.0490 (16)0.0454 (15)0.0105 (12)0.0023 (11)0.0036 (12)
C90.0426 (13)0.0464 (15)0.0492 (16)0.0089 (11)0.0044 (12)0.0015 (12)
C120.0422 (13)0.0525 (17)0.0426 (15)0.0121 (12)0.0045 (11)0.0123 (12)
C190.0482 (15)0.0544 (17)0.0489 (17)0.0052 (13)0.0009 (13)0.0035 (13)
C140.0553 (16)0.0544 (17)0.0373 (14)0.0115 (13)0.0011 (12)0.0064 (12)
C160.0451 (15)0.0541 (17)0.0536 (17)0.0073 (13)0.0042 (13)0.0068 (14)
C20.0454 (15)0.0511 (17)0.080 (2)0.0126 (13)0.0038 (15)0.0114 (16)
N10.0559 (17)0.068 (2)0.121 (3)0.0166 (15)0.0062 (18)0.020 (2)
C180.0513 (16)0.0539 (18)0.0513 (17)0.0086 (13)0.0041 (13)0.0005 (14)
C150.0483 (15)0.0565 (18)0.0513 (17)0.0033 (13)0.0025 (13)0.0051 (14)
C50.0475 (15)0.0517 (17)0.0560 (18)0.0133 (13)0.0013 (13)0.0046 (14)
N60.0551 (17)0.086 (2)0.116 (3)0.0072 (16)0.0149 (18)0.013 (2)
C170.0509 (18)0.063 (2)0.076 (2)0.0090 (15)0.0050 (16)0.0028 (18)
C10.0519 (18)0.0528 (19)0.093 (3)0.0140 (14)0.0013 (17)0.0169 (18)
C130.081 (2)0.078 (3)0.055 (2)0.015 (2)0.0033 (18)0.0104 (18)
N70.125 (3)0.080 (3)0.075 (2)0.017 (2)0.014 (2)0.008 (2)
C40.0541 (18)0.072 (2)0.078 (2)0.0183 (17)0.0022 (17)0.0237 (19)
C60.0554 (18)0.081 (2)0.061 (2)0.0296 (17)0.0085 (15)0.0195 (18)
C70.0532 (17)0.077 (2)0.062 (2)0.0190 (16)0.0082 (15)0.0054 (18)
C30.0563 (19)0.070 (2)0.099 (3)0.0219 (17)0.0014 (19)0.021 (2)
C200.061 (2)0.085 (3)0.093 (3)0.010 (2)0.001 (2)0.023 (2)
C220.078 (3)0.086 (3)0.078 (3)0.023 (2)0.003 (2)0.001 (2)
C230.171 (6)0.126 (5)0.070 (3)0.048 (4)0.029 (3)0.004 (3)
C240.245 (9)0.083 (4)0.112 (5)0.011 (5)0.030 (5)0.032 (3)
C210.264 (10)0.112 (5)0.089 (4)0.032 (6)0.059 (5)0.010 (4)
Geometric parameters (Å, º) top
Br1—C101.887 (3)C14—C131.501 (5)
O1—C111.353 (3)C16—C181.387 (5)
O1—C121.410 (3)C16—C151.380 (5)
N3—C81.344 (3)C16—C171.450 (4)
N3—C91.348 (4)C2—C11.444 (4)
N5—C111.321 (4)C2—C71.372 (5)
N5—C81.331 (4)C2—C31.377 (5)
O2—C221.260 (6)N1—C11.138 (4)
N4—C91.340 (4)C5—C41.389 (5)
N2—C81.368 (4)C5—C61.383 (5)
N2—C51.405 (4)N6—C171.141 (5)
C10—C111.366 (4)N7—C221.289 (6)
C10—C91.400 (4)N7—C231.467 (6)
C12—C191.376 (5)N7—C241.463 (7)
C12—C141.384 (5)C4—C31.373 (5)
C19—C181.395 (4)C6—C71.386 (4)
C19—C201.509 (5)C22—C211.497 (7)
C14—C151.394 (4)
C11—O1—C12116.4 (2)C15—C14—C13121.2 (3)
C8—N3—C9116.6 (2)C18—C16—C17119.4 (3)
C11—N5—C8115.8 (2)C15—C16—C18121.3 (3)
C8—N2—C5129.8 (3)C15—C16—C17119.4 (3)
C11—C10—Br1121.2 (2)C7—C2—C1120.0 (3)
C11—C10—C9117.5 (3)C7—C2—C3119.2 (3)
C9—C10—Br1121.4 (2)C3—C2—C1120.8 (3)
O1—C11—C10118.8 (2)C16—C18—C19119.9 (3)
N5—C11—O1117.8 (2)C16—C15—C14120.1 (3)
N5—C11—C10123.4 (3)C4—C5—N2116.2 (3)
N3—C8—N2115.0 (2)C6—C5—N2124.9 (3)
N5—C8—N3126.4 (3)C6—C5—C4118.9 (3)
N5—C8—N2118.6 (2)N6—C17—C16179.0 (5)
N3—C9—C10120.1 (2)N1—C1—C2178.5 (5)
N4—C9—N3117.5 (3)C22—N7—C23117.8 (5)
N4—C9—C10122.4 (3)C22—N7—C24125.2 (5)
C19—C12—O1119.0 (3)C24—N7—C23117.0 (5)
C19—C12—C14124.5 (3)C3—C4—C5120.4 (3)
C14—C12—O1116.4 (3)C5—C6—C7120.1 (3)
C12—C19—C18117.1 (3)C2—C7—C6120.7 (3)
C12—C19—C20121.8 (3)C4—C3—C2120.8 (3)
C18—C19—C20121.0 (3)O2—C22—N7122.8 (5)
C12—C14—C15117.1 (3)O2—C22—C21118.9 (5)
C12—C14—C13121.7 (3)N7—C22—C21118.2 (5)
4-({6-Amino-5-bromo-2-[(4-cyanophenyl)amino]pyrimidin-4-yl}oxy)-3,5-dimethylbenzonitrile 1,4-dioxane 0.75-solvate (ETR-Dioxan) top
Crystal data top
C20H15BrN6O·0.75C4H8O2F(000) = 2048
Mr = 501.37Dx = 1.438 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.7721 (1) ÅCell parameters from 6939 reflections
b = 22.3659 (4) Åθ = 3.8–71.2°
c = 23.6458 (6) ŵ = 2.71 mm1
β = 93.364 (2)°T = 293 K
V = 4631.21 (15) Å3Plate, colourless
Z = 80.16 × 0.09 × 0.01 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Eos detector
8738 independent reflections
Radiation source: SuperNova (Cu) X-ray Source6403 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 16.4335 pixels mm-1θmax = 71.6°, θmin = 3.8°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2227
Tmin = 0.235, Tmax = 1.000l = 2820
16860 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0323P)2 + 7.2848P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
8738 reflectionsΔρmax = 0.53 e Å3
590 parametersΔρmin = 0.58 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Suitable single crystals were coated in inert oil (Paratone-N) and mounted in the goniometer using a fine nyloon loop. The data collection was acquired with a SuperNova diffractometer (tube operating at 50 kV and 0.8 mA), equipped with dual microsources (Mo and Cu) using Cu Kα radiation, Eos CCD detector at room temperature and CrysAlis PRO software (Rigaku, 2015). All data were corrected for Lorentzian, polarization, and absorption effects. The empirical absorption correction was accomplished using the multi-scan method by spherical harmonics in the SCALE3 ABSPACK scaling algorithm (Rigaku, 2015). The structures of ETR–DMA and ETR-oxalic were solved by SHELXT (Sheldrick, 2015) solution program with Intrinsic Phasing, ETR–DMSO1 was solved with SHELXD (Sheldrick, 2008) by Dual Space, while the ETR–DMSO2 and ETR–Dioxane were solved by SHELXS (Sheldrick, 2008) program using Direct Methods. The structures were further refined with SHELXL (Sheldrick, 2015) refinement package using least-squares minimization, which are implemented in Olex2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1B0.28181 (5)0.43494 (2)0.23068 (2)0.06270 (16)
Br1A0.20258 (6)0.84723 (2)0.00872 (3)0.0797 (2)
O1A0.0947 (3)0.85388 (11)0.06322 (13)0.0528 (7)
N3A0.0297 (3)0.68709 (14)0.00298 (14)0.0448 (8)
N5B0.6974 (3)0.36134 (14)0.28047 (14)0.0459 (8)
O1B0.6072 (3)0.45831 (12)0.27755 (13)0.0547 (7)
C12A0.2250 (4)0.86093 (16)0.09930 (18)0.0444 (9)
C9A0.0762 (4)0.72990 (18)0.01507 (17)0.0445 (9)
C16A0.4791 (4)0.87437 (18)0.16950 (18)0.0484 (10)
N5A0.1782 (3)0.75726 (14)0.05312 (14)0.0425 (7)
N3B0.5402 (3)0.28129 (15)0.24391 (15)0.0510 (8)
N2A0.2536 (3)0.65868 (14)0.04259 (15)0.0488 (8)
H2A0.2232700.6232590.0333150.059*
C11B0.5830 (4)0.39851 (17)0.26768 (16)0.0425 (9)
C8B0.6669 (4)0.30423 (18)0.26858 (17)0.0459 (9)
C10B0.4437 (4)0.38070 (18)0.24502 (17)0.0434 (9)
C8A0.1496 (4)0.70364 (16)0.03024 (16)0.0411 (8)
N4A0.1971 (4)0.71433 (16)0.04834 (15)0.0581 (10)
H4AA0.2053360.6784030.0611230.070*
H4AB0.2671600.7401860.0570790.070*
O20.2863 (3)0.59495 (15)0.08574 (13)0.0672 (9)
C5B0.9215 (4)0.26712 (19)0.31020 (17)0.0477 (9)
C11A0.0728 (4)0.79803 (16)0.04052 (16)0.0415 (9)
C2A0.6993 (4)0.66099 (19)0.11478 (17)0.0457 (9)
N2B0.7769 (4)0.26191 (15)0.28298 (16)0.0574 (10)
H2B0.7517090.2259640.2734790.069*
C4A0.4667 (4)0.60989 (17)0.08897 (17)0.0450 (9)
H4A0.4099060.5747480.0875850.054*
C10A0.0566 (4)0.78749 (17)0.00720 (17)0.0452 (9)
C19B0.8665 (4)0.49181 (18)0.28596 (17)0.0472 (9)
N1A0.9777 (4)0.6611 (2)0.15632 (19)0.0796 (13)
C19A0.3594 (5)0.87846 (17)0.07561 (18)0.0478 (9)
N4B0.2986 (4)0.29813 (17)0.20503 (16)0.0640 (11)
H4BA0.2917720.2606150.1973020.077*
H4BB0.2233070.3215810.1960870.077*
N6B1.2369 (5)0.51967 (19)0.44185 (18)0.0702 (11)
C5A0.4007 (4)0.66224 (16)0.06791 (16)0.0400 (8)
C16B0.9909 (4)0.50108 (17)0.37911 (17)0.0460 (9)
C15B0.8575 (5)0.48390 (18)0.40365 (18)0.0510 (10)
H15B0.8552120.4819720.4428770.061*
C17B1.1272 (5)0.51245 (19)0.41416 (19)0.0538 (10)
C2B1.2134 (5)0.2670 (2)0.36269 (19)0.0597 (12)
C7A0.6346 (4)0.71352 (19)0.0936 (2)0.0579 (12)
H7A0.6916760.7485920.0950610.069*
C18A0.4879 (4)0.88475 (18)0.11232 (19)0.0501 (10)
H18A0.5803890.8960270.0982340.060*
C6B0.9958 (5)0.3203 (2)0.3229 (2)0.0719 (15)
H6B0.9478020.3564670.3140250.086*
C12B0.7379 (4)0.47276 (16)0.31203 (18)0.0454 (9)
C15A0.3417 (5)0.85902 (18)0.19182 (18)0.0506 (10)
H15A0.3370480.8535510.2306740.061*
C18B0.9937 (4)0.50591 (18)0.32072 (18)0.0488 (10)
H18B1.0822500.5188190.3047230.059*
C14B0.7284 (4)0.46970 (17)0.37020 (18)0.0476 (9)
C4B0.9942 (5)0.2138 (2)0.32481 (19)0.0581 (11)
H4B0.9445160.1776660.3171930.070*
C9B0.4268 (4)0.32009 (19)0.23107 (17)0.0471 (9)
C14A0.2117 (4)0.85181 (17)0.15656 (18)0.0465 (9)
C6A0.4876 (4)0.71447 (18)0.0705 (2)0.0559 (11)
H6A0.4456920.7500630.0564120.067*
C7B1.1411 (5)0.3201 (2)0.3488 (2)0.0739 (15)
H7B1.1906180.3560830.3569030.089*
C17A0.6164 (5)0.8782 (2)0.2063 (2)0.0588 (11)
C13A0.0619 (5)0.8331 (2)0.1787 (2)0.0717 (14)
H13D0.0181060.8582120.1625560.108*
H13E0.0668920.8370150.2192020.108*
H13F0.0412640.7922700.1685030.108*
C3A0.6140 (4)0.60890 (18)0.11181 (17)0.0485 (10)
H3A0.6566450.5732090.1253100.058*
C1B1.3681 (6)0.2672 (2)0.3876 (2)0.0780 (16)
C60.3881 (6)0.5797 (3)0.0438 (2)0.0792 (16)
H6C0.3657110.6038410.0102680.095*
H6D0.3736270.5380320.0333130.095*
N6A0.7258 (5)0.8799 (2)0.23454 (18)0.0786 (13)
N1B1.4888 (5)0.2660 (3)0.4069 (2)0.113 (2)
C13B0.5836 (5)0.4505 (2)0.3960 (2)0.0703 (14)
H13A0.5724410.4079480.3925700.105*
H13B0.4979440.4698280.3765110.105*
H13C0.5878140.4615290.4352660.105*
C3B1.1391 (5)0.2138 (2)0.3504 (2)0.0656 (13)
H3B1.1872190.1776800.3595700.079*
C20B0.8708 (5)0.4958 (3)0.22233 (19)0.0737 (14)
H20A0.8784730.4563750.2067730.110*
H20B0.9576080.5190860.2127630.110*
H20C0.7790270.5146040.2069850.110*
C1A0.8553 (5)0.6609 (2)0.13833 (19)0.0571 (11)
O30.5833 (4)0.5561 (2)0.11432 (17)0.1089 (16)
C30.3209 (6)0.5622 (2)0.1354 (2)0.0704 (14)
H3C0.3051610.5199590.1279060.085*
H3D0.2528860.5741560.1642780.085*
C40.4808 (6)0.5724 (3)0.1563 (2)0.096 (2)
H4C0.4950180.6142650.1659470.115*
H4D0.5030200.5489420.1902790.115*
C50.5468 (6)0.5892 (3)0.0642 (2)0.0886 (19)
H5A0.6140220.5771730.0351100.106*
H5B0.5633810.6313980.0717290.106*
C20A0.3673 (6)0.8877 (2)0.0131 (2)0.0727 (14)
H20D0.3724860.8495970.0053760.109*
H20E0.4566220.9106430.0059650.109*
H20F0.2778980.9087500.0012850.109*
O10.1284 (3)0.46292 (14)0.01220 (15)0.0664 (9)
C10.0707 (6)0.4738 (2)0.0444 (2)0.0750 (15)
H1A0.0021890.4429040.0560200.090*
H1B0.1538000.4724870.0697170.090*
C20.0056 (5)0.4661 (2)0.0486 (2)0.0743 (14)
H2C0.0438450.4592040.0874130.089*
H2D0.0683460.4351560.0384430.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1B0.0341 (2)0.0604 (3)0.0919 (4)0.0118 (2)0.0107 (2)0.0097 (3)
Br1A0.0521 (3)0.0548 (3)0.1273 (5)0.0198 (2)0.0365 (3)0.0045 (3)
O1A0.0373 (14)0.0385 (14)0.080 (2)0.0072 (11)0.0202 (14)0.0106 (14)
N3A0.0313 (16)0.0430 (17)0.058 (2)0.0041 (13)0.0115 (15)0.0074 (15)
N5B0.0306 (16)0.0429 (18)0.063 (2)0.0035 (13)0.0101 (15)0.0000 (15)
O1B0.0333 (14)0.0432 (15)0.085 (2)0.0033 (12)0.0194 (14)0.0018 (14)
C12A0.0328 (19)0.0302 (18)0.069 (3)0.0031 (14)0.0065 (18)0.0050 (17)
C9A0.0290 (18)0.050 (2)0.054 (2)0.0020 (16)0.0068 (17)0.0001 (18)
C16A0.039 (2)0.046 (2)0.060 (3)0.0013 (17)0.0018 (19)0.0072 (19)
N5A0.0274 (15)0.0397 (17)0.059 (2)0.0041 (12)0.0118 (14)0.0048 (15)
N3B0.0333 (17)0.0472 (19)0.070 (2)0.0045 (14)0.0179 (16)0.0013 (17)
N2A0.0284 (16)0.0362 (16)0.080 (2)0.0023 (13)0.0148 (16)0.0087 (16)
C11B0.0304 (18)0.046 (2)0.050 (2)0.0005 (16)0.0050 (16)0.0038 (18)
C8B0.0304 (19)0.050 (2)0.056 (2)0.0038 (16)0.0134 (17)0.0019 (19)
C10B0.0276 (18)0.048 (2)0.054 (2)0.0073 (15)0.0045 (16)0.0075 (18)
C8A0.0273 (18)0.040 (2)0.055 (2)0.0035 (15)0.0054 (16)0.0014 (17)
N4A0.0368 (18)0.058 (2)0.076 (3)0.0066 (16)0.0256 (17)0.0118 (19)
O20.0536 (18)0.079 (2)0.069 (2)0.0129 (16)0.0032 (15)0.0186 (17)
C5B0.034 (2)0.052 (2)0.056 (3)0.0082 (17)0.0083 (18)0.0028 (19)
C11A0.0301 (18)0.0389 (19)0.055 (2)0.0005 (15)0.0035 (17)0.0034 (17)
C2A0.0282 (18)0.055 (2)0.052 (2)0.0034 (16)0.0079 (17)0.0021 (19)
N2B0.0348 (17)0.0440 (19)0.090 (3)0.0070 (15)0.0242 (18)0.0066 (18)
C4A0.038 (2)0.038 (2)0.058 (2)0.0001 (16)0.0061 (18)0.0020 (18)
C10A0.0340 (19)0.040 (2)0.060 (3)0.0086 (16)0.0087 (18)0.0016 (18)
C19B0.038 (2)0.049 (2)0.054 (2)0.0017 (17)0.0022 (18)0.0029 (19)
N1A0.043 (2)0.095 (3)0.097 (3)0.004 (2)0.031 (2)0.005 (3)
C19A0.046 (2)0.038 (2)0.059 (3)0.0025 (17)0.0024 (19)0.0035 (18)
N4B0.0366 (19)0.056 (2)0.096 (3)0.0004 (16)0.0268 (19)0.004 (2)
N6B0.059 (2)0.070 (3)0.080 (3)0.009 (2)0.013 (2)0.007 (2)
C5A0.0285 (18)0.041 (2)0.050 (2)0.0035 (15)0.0037 (16)0.0032 (17)
C16B0.043 (2)0.038 (2)0.057 (3)0.0000 (16)0.0005 (18)0.0043 (18)
C15B0.054 (2)0.046 (2)0.053 (2)0.0012 (19)0.006 (2)0.0003 (19)
C17B0.048 (2)0.048 (2)0.066 (3)0.0049 (19)0.001 (2)0.007 (2)
C2B0.040 (2)0.071 (3)0.066 (3)0.012 (2)0.020 (2)0.003 (2)
C7A0.033 (2)0.047 (2)0.093 (3)0.0060 (17)0.008 (2)0.001 (2)
C18A0.034 (2)0.045 (2)0.071 (3)0.0065 (17)0.0040 (19)0.000 (2)
C6B0.046 (3)0.051 (3)0.115 (4)0.006 (2)0.030 (3)0.003 (3)
C12B0.036 (2)0.0335 (19)0.066 (3)0.0030 (15)0.0032 (18)0.0009 (18)
C15A0.048 (2)0.052 (2)0.053 (2)0.0007 (18)0.0048 (19)0.0033 (19)
C18B0.036 (2)0.046 (2)0.065 (3)0.0026 (17)0.0065 (19)0.0026 (19)
C14B0.039 (2)0.039 (2)0.065 (3)0.0000 (16)0.0056 (19)0.0043 (19)
C4B0.047 (2)0.051 (2)0.074 (3)0.0090 (19)0.018 (2)0.001 (2)
C9B0.0321 (19)0.055 (2)0.052 (2)0.0023 (17)0.0085 (17)0.0024 (19)
C14A0.034 (2)0.041 (2)0.065 (3)0.0008 (16)0.0059 (18)0.0043 (19)
C6A0.033 (2)0.039 (2)0.094 (3)0.0031 (16)0.011 (2)0.007 (2)
C7B0.047 (3)0.062 (3)0.108 (4)0.001 (2)0.032 (3)0.006 (3)
C17A0.043 (2)0.065 (3)0.068 (3)0.001 (2)0.000 (2)0.011 (2)
C13A0.046 (3)0.073 (3)0.097 (4)0.004 (2)0.018 (2)0.004 (3)
C3A0.043 (2)0.047 (2)0.054 (2)0.0059 (18)0.0080 (18)0.0047 (19)
C1B0.055 (3)0.079 (4)0.095 (4)0.018 (3)0.033 (3)0.011 (3)
C60.071 (3)0.105 (5)0.063 (3)0.013 (3)0.006 (3)0.012 (3)
N6A0.047 (2)0.106 (4)0.081 (3)0.001 (2)0.011 (2)0.018 (3)
N1B0.062 (3)0.115 (4)0.154 (5)0.025 (3)0.062 (3)0.020 (4)
C13B0.050 (3)0.072 (3)0.090 (4)0.006 (2)0.017 (2)0.011 (3)
C3B0.055 (3)0.064 (3)0.076 (3)0.021 (2)0.018 (2)0.002 (2)
C20B0.058 (3)0.104 (4)0.058 (3)0.005 (3)0.004 (2)0.002 (3)
C1A0.041 (2)0.062 (3)0.066 (3)0.001 (2)0.012 (2)0.003 (2)
O30.064 (2)0.180 (5)0.083 (3)0.047 (3)0.007 (2)0.034 (3)
C30.067 (3)0.079 (3)0.065 (3)0.012 (3)0.006 (2)0.014 (3)
C40.070 (4)0.159 (6)0.058 (3)0.021 (4)0.000 (3)0.015 (4)
C50.061 (3)0.131 (5)0.075 (4)0.016 (3)0.015 (3)0.026 (4)
C20A0.064 (3)0.086 (4)0.068 (3)0.001 (3)0.001 (2)0.013 (3)
O10.0391 (16)0.0557 (18)0.103 (3)0.0099 (14)0.0052 (16)0.0131 (17)
C10.054 (3)0.076 (4)0.095 (4)0.016 (3)0.002 (3)0.009 (3)
C20.057 (3)0.070 (3)0.095 (4)0.009 (2)0.003 (3)0.026 (3)
Geometric parameters (Å, º) top
Br1B—C10B1.883 (3)C4A—C5A1.385 (5)
Br1A—C10A1.874 (4)C4A—C3A1.372 (5)
O1A—C12A1.395 (4)C19B—C12B1.384 (5)
O1A—C11A1.369 (4)C19B—C18B1.382 (5)
N3A—C9A1.353 (5)C19B—C20B1.510 (6)
N3A—C8A1.328 (4)N1A—C1A1.132 (5)
N5B—C11B1.324 (4)C19A—C18A1.389 (6)
N5B—C8B1.332 (5)C19A—C20A1.498 (6)
O1B—C11B1.372 (4)N4B—C9B1.343 (5)
O1B—C12B1.405 (4)N6B—C17B1.143 (5)
C12A—C19A1.390 (5)C5A—C6A1.394 (5)
C12A—C14A1.381 (6)C16B—C15B1.391 (5)
C9A—N4A1.330 (5)C16B—C17B1.437 (6)
C9A—C10A1.398 (5)C16B—C18B1.386 (5)
C16A—C18A1.379 (6)C15B—C14B1.380 (6)
C16A—C15A1.387 (5)C2B—C7B1.376 (6)
C16A—C17A1.446 (6)C2B—C1B1.447 (6)
N5A—C8A1.333 (5)C2B—C3B1.380 (6)
N5A—C11A1.320 (4)C7A—C6A1.371 (5)
N3B—C8B1.328 (5)C6B—C7B1.381 (6)
N3B—C9B1.341 (5)C12B—C14B1.384 (6)
N2A—C8A1.377 (4)C15A—C14A1.382 (6)
N2A—C5A1.393 (4)C14B—C13B1.503 (5)
C11B—C10B1.365 (5)C4B—C3B1.376 (6)
C8B—N2B1.380 (5)C14A—C13A1.502 (5)
C10B—C9B1.401 (6)C17A—N6A1.137 (5)
O2—C61.415 (6)C1B—N1B1.129 (6)
O2—C31.402 (5)C6—C51.462 (7)
C5B—N2B1.393 (5)O3—C41.425 (6)
C5B—C6B1.381 (6)O3—C51.418 (6)
C5B—C4B1.387 (5)C3—C41.477 (7)
C11A—C10A1.364 (5)O1—C11.425 (6)
C2A—C7A1.386 (5)O1—C21.420 (6)
C2A—C3A1.384 (5)C1—C2i1.501 (6)
C2A—C1A1.446 (5)
C11A—O1A—C12A115.7 (3)C18A—C19A—C12A116.9 (4)
C8A—N3A—C9A116.0 (3)C18A—C19A—C20A121.3 (4)
C11B—N5B—C8B114.5 (3)N2A—C5A—C6A123.8 (3)
C11B—O1B—C12B115.8 (3)C4A—C5A—N2A117.6 (3)
C19A—C12A—O1A118.0 (4)C4A—C5A—C6A118.5 (3)
C14A—C12A—O1A118.0 (3)C15B—C16B—C17B120.0 (4)
C14A—C12A—C19A124.0 (4)C18B—C16B—C15B120.1 (4)
N3A—C9A—C10A120.3 (3)C18B—C16B—C17B119.9 (4)
N4A—C9A—N3A117.0 (4)C14B—C15B—C16B120.5 (4)
N4A—C9A—C10A122.7 (4)N6B—C17B—C16B177.9 (5)
C18A—C16A—C15A121.0 (4)C7B—C2B—C1B120.1 (5)
C18A—C16A—C17A119.2 (4)C7B—C2B—C3B119.3 (4)
C15A—C16A—C17A119.8 (4)C3B—C2B—C1B120.6 (4)
C11A—N5A—C8A114.6 (3)C6A—C7A—C2A120.9 (4)
C8B—N3B—C9B116.1 (3)C16A—C18A—C19A120.4 (4)
C8A—N2A—C5A129.4 (3)C7B—C6B—C5B120.3 (4)
N5B—C11B—O1B117.7 (3)C19B—C12B—O1B118.1 (4)
N5B—C11B—C10B123.7 (4)C19B—C12B—C14B123.8 (4)
C10B—C11B—O1B118.5 (3)C14B—C12B—O1B118.1 (3)
N5B—C8B—N2B118.5 (3)C14A—C15A—C16A120.3 (4)
N3B—C8B—N5B128.0 (3)C19B—C18B—C16B120.9 (4)
N3B—C8B—N2B113.5 (4)C15B—C14B—C12B117.6 (4)
C11B—C10B—Br1B122.1 (3)C15B—C14B—C13B121.2 (4)
C11B—C10B—C9B117.0 (3)C12B—C14B—C13B121.2 (4)
C9B—C10B—Br1B120.9 (3)C3B—C4B—C5B120.6 (4)
N3A—C8A—N5A127.9 (3)N3B—C9B—C10B120.4 (3)
N3A—C8A—N2A114.4 (3)N3B—C9B—N4B117.2 (4)
N5A—C8A—N2A117.6 (3)N4B—C9B—C10B122.4 (4)
C3—O2—C6110.3 (4)C12A—C14A—C15A117.4 (4)
C6B—C5B—N2B125.3 (4)C12A—C14A—C13A120.6 (4)
C6B—C5B—C4B118.9 (4)C15A—C14A—C13A122.0 (4)
C4B—C5B—N2B115.8 (4)C7A—C6A—C5A120.2 (4)
N5A—C11A—O1A117.5 (3)C2B—C7B—C6B120.6 (5)
N5A—C11A—C10A124.0 (3)N6A—C17A—C16A178.2 (5)
C10A—C11A—O1A118.5 (3)C4A—C3A—C2A120.0 (4)
C7A—C2A—C1A119.9 (4)N1B—C1B—C2B178.4 (6)
C3A—C2A—C7A119.1 (3)O2—C6—C5111.2 (4)
C3A—C2A—C1A120.9 (4)C4B—C3B—C2B120.3 (4)
C8B—N2B—C5B131.4 (4)N1A—C1A—C2A179.3 (6)
C3A—C4A—C5A121.3 (4)C5—O3—C4109.1 (4)
C9A—C10A—Br1A120.9 (3)O2—C3—C4110.7 (4)
C11A—C10A—Br1A121.9 (3)O3—C4—C3110.7 (5)
C11A—C10A—C9A117.2 (3)O3—C5—C6111.3 (5)
C12B—C19B—C20B122.0 (4)C2—O1—C1108.7 (3)
C18B—C19B—C12B117.1 (4)O1—C1—C2i110.3 (4)
C18B—C19B—C20B120.8 (4)O1—C2—C1i110.9 (4)
C12A—C19A—C20A121.7 (4)
Symmetry code: (i) x, y+1, z.
6-Amino-5-bromo-4-(4-cyano-2,6-dimethylphenoxy)-2-[(4-cyanophenyl)amino]pyrimidin-1-ium hemioxalate (ETR-Oxalic) top
Crystal data top
C20H16BrN6O2+·0.5C2O42F(000) = 1944
Mr = 480.31Dx = 1.532 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 15.5664 (6) ÅCell parameters from 4815 reflections
b = 15.3769 (7) Åθ = 3.8–28.1°
c = 18.4445 (8) ŵ = 2.01 mm1
β = 109.359 (4)°T = 293 K
V = 4165.3 (3) Å3Plate, colourless
Z = 80.3 × 0.1 × 0.01 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Eos detector
4747 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3352 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 16.4335 pixels mm-1θmax = 28.8°, θmin = 2.9°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
k = 1320
Tmin = 0.382, Tmax = 1.000l = 2424
10364 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.005
4747 reflectionsΔρmax = 0.53 e Å3
282 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Suitable single crystals were coated in inert oil (Paratone-N) and mounted in the goniometer using a fine nyloon loop. The data collection was acquired with a SuperNova diffractometer (tube operating at 50 kV and 0.8 mA), equipped with dual microsources (Mo and Cu) using Cu Kα radiation, Eos CCD detector at room temperature and CrysAlis PRO software (Rigaku, 2015). All data were corrected for Lorentzian, polarization, and absorption effects. The empirical absorption correction was accomplished using the multi-scan method by spherical harmonics in the SCALE3 ABSPACK scaling algorithm (Rigaku, 2015). The structures of ETR–DMA and ETR-oxalic were solved by SHELXT (Sheldrick, 2015) solution program with Intrinsic Phasing, ETR–DMSO1 was solved with SHELXD (Sheldrick, 2008) by Dual Space, while the ETR–DMSO2 and ETR–Dioxane were solved by SHELXS (Sheldrick, 2008) program using Direct Methods. The structures were further refined with SHELXL (Sheldrick, 2015) refinement package using least-squares minimization, which are implemented in Olex2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27127 (2)0.38911 (2)0.76223 (2)0.05078 (15)
O20.22996 (14)0.52090 (16)0.08766 (10)0.0509 (6)
O30.13128 (13)0.51047 (14)0.02912 (10)0.0403 (5)
O40.35286 (14)0.36338 (15)0.63667 (11)0.0462 (5)
N50.65497 (15)0.41316 (16)0.77575 (12)0.0351 (5)
H50.6902440.4380040.8165460.042*
N60.54447 (14)0.44167 (15)0.82892 (11)0.0306 (5)
H60.5865990.4620380.8682830.037*
N70.50290 (16)0.39032 (15)0.70238 (12)0.0342 (5)
N80.44297 (16)0.46193 (18)0.89364 (12)0.0443 (6)
H8A0.4874420.4799940.9324040.053*
H8B0.3888200.4598950.8961650.053*
C90.7032 (2)0.3047 (2)0.61344 (16)0.0474 (8)
H90.6730070.2822970.5648070.057*
C100.7964 (2)0.29792 (19)0.64360 (16)0.0399 (7)
C110.56607 (18)0.41467 (17)0.76703 (14)0.0303 (6)
C120.39078 (19)0.40625 (18)0.76422 (15)0.0335 (6)
C130.45786 (18)0.43724 (18)0.83002 (14)0.0307 (6)
C140.41795 (19)0.38764 (18)0.70223 (15)0.0337 (6)
C160.37744 (19)0.3571 (2)0.56968 (15)0.0397 (7)
C170.8466 (2)0.25452 (19)0.60077 (17)0.0448 (7)
C180.6534 (2)0.3442 (2)0.65381 (15)0.0457 (7)
H180.5904550.3492070.6322700.055*
C190.4105 (2)0.3404 (3)0.43520 (18)0.0583 (10)
C210.6985 (2)0.37645 (18)0.72723 (15)0.0334 (6)
C220.3969 (2)0.4224 (3)0.46069 (19)0.0566 (9)
H220.3990160.4712320.4316070.068*
C230.3801 (2)0.4315 (2)0.52991 (17)0.0472 (8)
C240.8420 (2)0.3321 (2)0.71589 (17)0.0445 (7)
H240.9051160.3291960.7363190.053*
C250.3898 (3)0.2744 (2)0.54579 (19)0.0563 (9)
N260.4423 (3)0.3312 (4)0.30620 (19)0.1122 (17)
C270.4290 (2)0.3347 (4)0.36320 (19)0.0781 (14)
C280.7926 (2)0.3704 (2)0.75696 (17)0.0403 (7)
H280.8230220.3925530.8056410.048*
C290.4077 (3)0.2688 (3)0.4766 (2)0.0663 (10)
H290.4180160.2145750.4586600.080*
C310.3862 (5)0.1957 (3)0.5935 (3)0.110 (2)
H31A0.4266720.2039990.6450970.165*
H31B0.4044060.1451320.5717770.165*
H31C0.3251880.1880050.5939750.165*
C340.3671 (3)0.5202 (3)0.5610 (2)0.0752 (12)
H34A0.3131570.5196320.5753230.113*
H34B0.3610380.5635300.5221520.113*
H34C0.4189010.5335510.6052470.113*
C0AA0.21047 (17)0.51754 (18)0.01702 (14)0.0311 (6)
N20.8851 (2)0.2202 (2)0.56672 (17)0.0611 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0326 (2)0.0742 (3)0.0481 (2)0.00861 (14)0.01677 (15)0.01373 (15)
O20.0368 (11)0.0954 (17)0.0212 (9)0.0114 (11)0.0105 (8)0.0040 (10)
O30.0293 (10)0.0661 (14)0.0227 (9)0.0005 (9)0.0050 (7)0.0034 (9)
O40.0309 (11)0.0755 (15)0.0300 (10)0.0111 (10)0.0072 (8)0.0183 (10)
N50.0290 (12)0.0529 (14)0.0231 (10)0.0037 (10)0.0083 (9)0.0100 (10)
N60.0278 (11)0.0431 (13)0.0191 (9)0.0011 (10)0.0055 (8)0.0057 (10)
N70.0320 (12)0.0477 (14)0.0220 (11)0.0017 (10)0.0078 (9)0.0085 (10)
N80.0301 (12)0.0772 (18)0.0263 (11)0.0010 (12)0.0103 (9)0.0107 (12)
C90.0513 (19)0.066 (2)0.0279 (14)0.0013 (16)0.0166 (13)0.0048 (14)
C100.0506 (17)0.0401 (16)0.0366 (15)0.0063 (14)0.0247 (13)0.0075 (13)
C110.0320 (14)0.0364 (14)0.0218 (12)0.0013 (12)0.0081 (10)0.0022 (11)
C120.0285 (14)0.0463 (16)0.0255 (13)0.0013 (12)0.0088 (10)0.0082 (12)
C130.0319 (14)0.0358 (14)0.0255 (12)0.0033 (11)0.0110 (10)0.0003 (11)
C140.0311 (14)0.0420 (15)0.0255 (13)0.0020 (12)0.0061 (10)0.0057 (11)
C160.0328 (15)0.0576 (19)0.0245 (13)0.0033 (14)0.0038 (11)0.0137 (14)
C170.0578 (18)0.0446 (18)0.0378 (15)0.0102 (15)0.0235 (14)0.0095 (14)
C180.0384 (16)0.070 (2)0.0287 (14)0.0024 (15)0.0116 (12)0.0042 (15)
C190.0406 (18)0.100 (3)0.0317 (16)0.0063 (19)0.0083 (13)0.0162 (19)
C210.0347 (14)0.0417 (16)0.0270 (13)0.0028 (12)0.0143 (11)0.0008 (12)
C220.053 (2)0.077 (2)0.0378 (17)0.0050 (19)0.0118 (14)0.0061 (18)
C230.0382 (17)0.061 (2)0.0386 (16)0.0032 (15)0.0074 (13)0.0084 (16)
C240.0342 (15)0.058 (2)0.0443 (16)0.0054 (14)0.0172 (13)0.0023 (15)
C250.068 (2)0.0544 (19)0.0446 (18)0.0044 (18)0.0154 (16)0.0143 (16)
N260.055 (2)0.239 (6)0.0427 (18)0.012 (3)0.0166 (15)0.024 (3)
C270.0408 (19)0.151 (4)0.0392 (19)0.010 (2)0.0088 (15)0.020 (2)
C280.0359 (16)0.0525 (19)0.0327 (15)0.0011 (13)0.0118 (12)0.0058 (13)
C290.075 (3)0.074 (3)0.047 (2)0.003 (2)0.0152 (17)0.028 (2)
C310.189 (6)0.052 (3)0.095 (4)0.013 (3)0.057 (4)0.011 (3)
C340.094 (3)0.061 (2)0.066 (2)0.018 (2)0.020 (2)0.005 (2)
C0AA0.0314 (14)0.0398 (15)0.0205 (11)0.0022 (12)0.0066 (10)0.0002 (11)
N20.077 (2)0.0617 (17)0.0567 (17)0.0227 (16)0.0385 (16)0.0058 (15)
Geometric parameters (Å, º) top
Br1—C121.867 (3)C12—C141.374 (4)
O2—C0AA1.237 (3)C16—C231.367 (5)
O3—C0AA1.249 (3)C16—C251.381 (5)
O4—C141.348 (3)C17—N21.132 (4)
O4—C161.413 (3)C18—C211.394 (4)
N5—C111.339 (3)C19—C221.386 (5)
N5—C211.407 (3)C19—C271.452 (4)
N6—C111.358 (3)C19—C291.348 (6)
N6—C131.357 (3)C21—C281.387 (4)
N7—C111.323 (3)C22—C231.393 (4)
N7—C141.322 (4)C23—C341.519 (5)
N8—C131.325 (3)C24—C281.377 (4)
C9—C101.375 (4)C25—C291.397 (5)
C9—C181.381 (4)C25—C311.507 (6)
C10—C171.445 (4)N26—C271.138 (4)
C10—C241.389 (4)C0AA—C0AAi1.556 (5)
C12—C131.397 (4)
C14—O4—C16117.6 (2)N2—C17—C10179.3 (4)
C11—N5—C21128.8 (2)C9—C18—C21119.2 (3)
C13—N6—C11121.4 (2)C22—C19—C27117.6 (4)
C14—N7—C11117.0 (2)C29—C19—C22120.9 (3)
C10—C9—C18121.4 (3)C29—C19—C27121.5 (4)
C9—C10—C17120.2 (3)C18—C21—N5124.5 (3)
C9—C10—C24119.6 (3)C28—C21—N5116.4 (3)
C24—C10—C17120.2 (3)C28—C21—C18119.1 (3)
N5—C11—N6116.0 (2)C19—C22—C23119.9 (4)
N7—C11—N5122.2 (2)C16—C23—C22117.1 (3)
N7—C11—N6121.8 (2)C16—C23—C34121.2 (3)
C13—C12—Br1121.22 (19)C22—C23—C34121.7 (3)
C14—C12—Br1122.3 (2)C28—C24—C10119.3 (3)
C14—C12—C13116.5 (2)C16—C25—C29116.1 (3)
N6—C13—C12117.7 (2)C16—C25—C31121.1 (3)
N8—C13—N6117.7 (2)C29—C25—C31122.8 (4)
N8—C13—C12124.6 (2)N26—C27—C19178.9 (5)
O4—C14—C12117.2 (3)C24—C28—C21121.4 (3)
N7—C14—O4117.7 (2)C19—C29—C25121.4 (3)
N7—C14—C12125.1 (2)O2—C0AA—O3124.3 (2)
C23—C16—O4118.5 (3)O2—C0AA—C0AAi118.3 (3)
C23—C16—C25124.6 (3)O3—C0AA—C0AAi117.3 (3)
C25—C16—O4116.7 (3)
Symmetry code: (i) x+1/2, y, z.
Interaction energies (kJ mol-1) for selected contacts top
Eele is electrostatic, Epol is polarization, Edisp is dispersion, Erep is repulsion and Etot is the total energy.
CrystalInteraction pairContactEeleEpolEdispErepEtot
ETRETR–ETRN2—H2···N6-23.2-10.3-73.841.5-63.1
N4—H4A···C18
N4—H4A···C19
ETR–ETRN4—H4B···N1-30.3-7.6-6.815.3-29.6
ETR–ETRC13—H13C···Br1-6.6-5.3-50.123.5-36.2
ETR–DMSO1ETR–DMSON2—H2···O2-43.7-15.9-13.626.4-45.8
ETR–ETRN4—H4A···N3-41.7-15.5-20.640.7-38.1
ETR–DMSON4—H4B···O2-40.0-13.0-13.723.4-42.6
ETR–DMSO2ETR–DMSON2—H2···O2-54.9-19.4-12.328.7-56.5
C4—H4···O2
ETR–ETRC4···C4 (ππ)-14.4-2.7-26.110.5-31.4
DMSO–DMSOC21—H21A···O2-39.0-12.1-15.012.7-50.8
ETR–ETRC3—H3···N1-23.9-5.0-9.811.7-27.0
ETR–DMSOC21—H21B···N1-14.9-3.8-5.74.9-18.9
ETR–DMAETR–DMAN2—H2···O2-30.8-9.0-16.011.4-42.4
C4—H4···O2
ETR–ETRN4—H4A···N3-45.3-16.0-21.946.2-37.0
ETR–DMAN4—H4B···O2-26.5-6.9-12.511.7-33.3
ETR–DioxaneETR–DioxaneN4A—H4AA···O2-30.0-9.5-11.621.5-30.0
ETR–DioxaneN2A—H2A···O1-30.2-7.7-18.820.0-36.6
Dioxane–DioxaneC1—H1A···O2-5.2-2.5-15.37.4-14.7
ETR–ETRBr1A···N6B-2.6-2.1-48.018.7-32.1
ETR–OxalateETR–OxalateN3—H3···O2-132.6-36.1-23.3125.6-77.7
ETR–ETRBr1···N6-11.6-2.3-51.035.4-30.6
ETR–OxalateN4—H4A···O3-23.0-6.2-11.324.1-18.1
Partitioned and total lattice energies (kJ mol-1) top
Ecoul is the Coulombic term, Epol is the polarization term, Edisp is the dispersion term, Eatt is the attraction term (the sum of the Coulombic, polarization and dispersion terms), Erep is the repulsion term and Elatt is the CLP crystal lattice energy.
StructureEcoulEpolEdispEattErepElatt
ETR-12.1-52.5-198.5-263.181.4-200.1
ETR–DMSO1-24.2-37.0-111.9-173.351.8-121.4
ETR–DMSO2-19.1-37.1-110.0-166.261.1-105.0
ETR–DMA-28.6-36.2-114.3-179.140.4-138.6
ETR–Dioxane-12.9-15.4-66.4-94.730.1-64.7
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds