Download citation
Download citation
link to html
Cocrystallization is a promising method for generating new energetic materials with improved performances. Herein, a novel energetic cocrystal composed of 1H-tetrazole/sodium perchlorate was prepared using the solvent evaporation method. This cocrystal is characterized as containing organic azole derivatives and an ionic perchlorate salt, which is used as an oxidizer in pyrotechnics. The crystal structure was determined via single-crystal X-ray diffraction. The as-prepared crystal exhibited a lamellar structure consisting of 1H-tetrazole and sodium perchlorate layers. A molecular structure comparison between the cocrystal and pristine ingredients revealed variations in the bond lengths and angles owing to the cocrystallization. The hydrogen bond formed by adjacent tetrazole rings was strengthened. The 1H-tetrazole/sodium perchlorate cocrystal was structurally compared with crystals previously reported to the Cambridge Structural Database including sodium perchlorate in lamellar structures. The lamellar structure of the cocrystal exhibited weak layer-to-layer interactions compared with those of the other crystals. Fourier transform infrared and Raman spectroscopy analyses were conducted, and the relationship between the spectroscopy results and the crystal/molecular structure are discussed. The results of the spectroscopic analyses exhibited peak shifts that indicate structural changes in bond lengths and angles owing to the cocrystallization.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520622010204/aw5076sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622010204/aw5076Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520622010204/aw5076sup3.pdf
Tables S1 and S2

CCDC reference: 2085318

Computing details top

Data collection: CrysAlis PRO 1.171.40.66a (Rigaku OD, 2019); cell refinement: CrysAlis PRO 1.171.40.66a (Rigaku OD, 2019); data reduction: CrysAlis PRO 1.171.40.66a (Rigaku OD, 2019); program(s) used to solve structure: SHELXT 2018/2 (Sheldrick, 2018); program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

(I) top
Crystal data top
CH2ClN4NaO4F(000) = 192
Mr = 192.51Dx = 2.012 Mg m3
Monoclinic, P121/m1Cu Kα radiation, λ = 1.54184 Å
a = 4.9250 (1) ÅCell parameters from 1359 reflections
b = 6.9281 (1) Åθ = 4.7–74.8°
c = 9.5661 (2) ŵ = 5.90 mm1
β = 103.171 (2)°T = 295 K
V = 317.82 (1) Å3Plate, clear colourless
Z = 20.1 × 0.05 × 0.1 mm
Data collection top
XtaLAB AFC12 (RINC): Kappa dual home/near
diffractometer
680 independent reflections
Radiation source: micro-focus sealed X-ray tube, Rigaku (Cu) X-ray Source665 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 5.8140 pixels mm-1θmax = 74.9°, θmin = 4.8°
ω scansh = 65
Absorption correction: multi-scan
CrysAlisPro 1.171.40.66a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 48
Tmin = 0.385, Tmax = 1.000l = 1111
1576 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.1719P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.40 e Å3
680 reflectionsΔρmin = 0.33 e Å3
71 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.157 (11)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12579 (13)0.7500000.88736 (7)0.0265 (4)
Na20.2166 (3)0.2500000.85142 (13)0.0333 (4)
N60.7589 (6)0.2500000.5090 (3)0.0327 (7)
N70.7429 (6)0.2500000.6471 (3)0.0318 (7)
N80.4813 (5)0.2500000.6466 (3)0.0316 (7)
O40.1511 (6)0.7500000.9064 (3)0.0663 (11)
N90.3264 (5)0.2500000.5096 (3)0.0353 (7)
O50.1738 (6)0.5861 (3)0.8076 (3)0.0660 (8)
O30.3029 (6)0.7500001.0255 (3)0.0780 (13)
C100.5046 (7)0.2500000.4272 (4)0.0366 (8)
H100.468 (8)0.2500000.336 (5)0.033 (10)*
H60.907 (10)0.2500000.489 (5)0.042 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0267 (5)0.0343 (5)0.0197 (5)0.0000.0075 (3)0.000
Na20.0383 (8)0.0375 (8)0.0247 (7)0.0000.0085 (5)0.000
N60.0214 (14)0.0534 (17)0.0266 (13)0.0000.0120 (10)0.000
N70.0259 (13)0.0458 (16)0.0236 (13)0.0000.0055 (10)0.000
N80.0232 (13)0.0482 (16)0.0244 (13)0.0000.0075 (10)0.000
O40.0285 (14)0.136 (3)0.0369 (14)0.0000.0121 (11)0.000
N90.0205 (14)0.0625 (19)0.0237 (13)0.0000.0065 (10)0.000
O50.115 (2)0.0357 (12)0.0644 (14)0.0023 (11)0.0561 (14)0.0066 (9)
O30.0417 (16)0.154 (4)0.0299 (15)0.0000.0085 (13)0.000
C100.0258 (16)0.066 (2)0.0195 (16)0.0000.0075 (12)0.000
Geometric parameters (Å, º) top
Cl1—Na2i3.3180 (15)Na2—O5iv2.367 (2)
Cl1—O41.416 (3)Na2—O3v2.391 (3)
Cl1—O51.418 (2)N6—N71.341 (4)
Cl1—O5ii1.418 (2)N6—C101.317 (5)
Cl1—O31.408 (3)N6—H60.80 (5)
Na2—N7iii2.681 (3)N7—N81.288 (4)
Na2—N82.589 (3)N8—N91.358 (4)
Na2—O4i2.411 (3)N9—C101.307 (4)
Na2—O52.367 (2)C10—H100.85 (5)
O4—Cl1—Na2i39.99 (12)O5—Na2—O5iv159.34 (14)
O4—Cl1—O5110.66 (13)O5—Na2—O3v97.21 (8)
O4—Cl1—O5ii110.66 (13)O5iv—Na2—O3v97.21 (8)
O5—Cl1—Na2i125.55 (9)O3v—Na2—Cl1i104.18 (9)
O5ii—Cl1—Na2i125.55 (9)O3v—Na2—N7iii163.42 (11)
O5—Cl1—O5ii106.41 (18)O3v—Na2—N876.13 (10)
O3—Cl1—Na2i66.78 (14)O3v—Na2—O4i82.01 (11)
O3—Cl1—O4106.77 (19)N7—N6—H6120 (3)
O3—Cl1—O5ii111.20 (14)C10—N6—N7109.0 (3)
O3—Cl1—O5111.20 (14)C10—N6—H6131 (3)
N7iii—Na2—Cl1i92.40 (7)N6—N7—Na2vi118.8 (2)
N8—Na2—Cl1i179.69 (8)N8—N7—Na2vi135.0 (2)
N8—Na2—N7iii87.29 (9)N8—N7—N6106.2 (3)
O4i—Na2—Cl1i22.17 (7)N7—N8—Na2132.3 (2)
O4i—Na2—N7iii114.57 (10)N7—N8—N9110.2 (2)
O4i—Na2—N8158.14 (11)N9—N8—Na2117.50 (18)
O5iv—Na2—Cl1i95.37 (6)Cl1—O4—Na2i117.84 (17)
O5—Na2—Cl1i95.37 (6)C10—N9—N8106.0 (3)
O5iv—Na2—N7iii80.98 (8)Cl1—O5—Na2135.35 (14)
O5—Na2—N7iii80.98 (8)Cl1—O3—Na2v142.6 (2)
O5iv—Na2—N884.59 (6)N6—C10—H10124 (3)
O5—Na2—N884.59 (6)N9—C10—N6108.6 (3)
O5iv—Na2—O4i98.30 (6)N9—C10—H10127 (3)
O5—Na2—O4i98.30 (6)
Na2i—Cl1—O5—Na227.5 (3)O4—Cl1—O3—Na2v180.000 (1)
Na2i—Cl1—O3—Na2v180.000 (2)O5—Cl1—O4—Na2i121.15 (12)
Na2vi—N7—N8—Na20.000 (2)O5ii—Cl1—O4—Na2i121.15 (12)
Na2vi—N7—N8—N9180.000 (1)O5ii—Cl1—O5—Na2169.67 (8)
Na2—N8—N9—C10180.000 (1)O5ii—Cl1—O3—Na2v59.19 (11)
N6—N7—N8—Na2180.000 (1)O5—Cl1—O3—Na2v59.19 (11)
N6—N7—N8—N90.000 (1)O3—Cl1—O4—Na2i0.000 (1)
N7—N6—C10—N90.000 (1)O3—Cl1—O5—Na248.4 (3)
N7—N8—N9—C100.000 (1)C10—N6—N7—Na2vi180.000 (1)
N8—N9—C10—N60.000 (1)C10—N6—N7—N80.000 (1)
O4—Cl1—O5—Na270.1 (3)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+3/2, z; (iii) x1, y, z; (iv) x, y+1/2, z; (v) x+1, y+1, z+2; (vi) x+1, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds