Download citation
Download citation
link to html
The title compound, C19H24O6, is a sesquiterpene lactone isolated from the Kenyan plant Warburgia ugandensis. Ring A adopts a chair conformation, ring B is in a C2 twist conformation and the lactone ring is nearly planar with maximum deviation 0.007 (1) Å. The reported absolute configuration is based on that of the similar compound bromo-parasiticolide A and is supported by analysis of Bijvoet differences from light atoms in Mo K[alpha] radiation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812033636/bt5979sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812033636/bt5979Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536812033636/bt5979Isup3.cml
Supplementary material

CCDC reference: 899625

Key indicators

  • Single-crystal X-ray study
  • T = 100 K, P = 0.0 kPa
  • Mean [sigma](C-C) = 0.001 Å
  • R factor = 0.036
  • wR factor = 0.092
  • Data-to-parameter ratio = 28.2

checkCIF/PLATON results

No syntax errors found



Alert level C STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.400 From the CIF: _refine_ls_abs_structure_Flack_su 0.600 PLAT033_ALERT_4_C Flack x Parameter Value Deviates from Zero ..... 0.400 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 5
Alert level G REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 32.56 From the CIF: _reflns_number_total 6507 From the CIF: _diffrn_reflns_limit_ max hkl 19. 13. 31. From the CIF: _diffrn_reflns_limit_ min hkl -19. -13. -30. TEST1: Expected hkl limits for theta max Calculated maximum hkl 19. 19. 32. Calculated minimum hkl -19. -19. -32. REFLT03_ALERT_4_G ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases. From the CIF: _diffrn_reflns_theta_max 32.56 From the CIF: _reflns_number_total 6507 Count of symmetry unique reflns 3745 Completeness (_total/calc) 173.75% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2762 Fraction of Friedel pairs measured 0.738 Are heavy atom types Z>Si present no PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High . 0.600 PLAT152_ALERT_1_G The Supplied and Calc. Volume s.u. Differ by ... 3 Units PLAT791_ALERT_4_G Note: The Model has Chirality at C1 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C4 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C6 (Verify) S PLAT791_ALERT_4_G Note: The Model has Chirality at C8 (Verify) R PLAT791_ALERT_4_G Note: The Model has Chirality at C11 (Verify) R PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 9 PLAT916_ALERT_2_G Hooft y and Flack x Parameter values differ by . 0.30 PLAT951_ALERT_5_G Reported and Calculated Kmax Values Differ by .. 6
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 13 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Coloratanolide and drimanolide sesquiterpene lactones, such as title compound I, have been isolated from the stem bark of Warburgia ugandensis Sprague (Canellaceae) as described by Wube et al. (2005). Plants of the genus Warburgia are of interest because of their use by herbalists in Kenya for the treatment of a number of parasitic diseases (Kokwaro, 1976). Compound I is the first sesquiterpene lactone to be crystallographically characterized which has the coloratanolide skeleton, (CAS 60306–54-9). The absolute configuration reported herein is based on the configuration of bromo-parasiticolide A (Fukuyama et al., 1975), CCDC refcode PARASB (Allen, 2002), and supported by analysis of 2776 Bijvoet pairs.

Related literature top

For related structures, see: Fukuyama et al. (1975) (Bromo-parasiticolide A; PARASB); Ikhiri et al. (1995) (ZOXLIH); Aranda et al. (2001) (ABUKIR); King et al. (1973) (PRPRDE); Rossmann & Lipscomb (1958) (IRSBBZ); Rahbaek et al. (1997) (NEYKOR), Zhang et al. (2006) (UCOLAA, UCOKUT); Harinantenaina et al. (2007) (NIDJUG); McCorkindale et al. (1981) (PEBRLD); Hayashi et al. (2010) (VUTCIX). For the absolute configuration of sesquiterpene lactones, see: Fischer et al. (1979). For a description of the Cambridge Structural Database, see: Allen (2002). For the absolute configuration from Bijvoet pairs, see: Hooft et al. (2008). For compounds from Warburgia ugandensis, see: Wube et al. (2005) and for elated compounds, see: Garland (1969); Kokwaro (1976).

Experimental top

Compound I was isolated from the stem bark of Warburgia ugandensis Sprague (Canellaceae) collected in Eldoret, Uasin Gishu District, Kenya. Crystals suitable for diffraction were grown from acetone/hexane/ethyl ether.

Refinement top

H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95–1.00 Å, Uiso = 1.2Ueq of the attached carbon atom (1.5 for methyl), and thereafter treated as riding. A torsional parameter was refined for each methyl group.

The absolute configuration and space group assignment were established in part by analysis of 2776 Bijvoet pairs. Although the refined Flack parameter x = 0.4 (6) (Flack, 1983) is not definitive, the Hooft parameter y = 0.1 (3) and Hooft P2(true) = 0.998 (Hooft et al., 2008) are strong indicators that the reported configuration is correct. This configuration is consistent with that of bromo-parasiticolide A (Fukuyama et al., 1975), CCDC refcode PARASB (Allen, 2002) and with the accepted configuration of sesquiterpene lactones from higher plants (Fischer et al., 1979).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
(1R,4R,5aS,7S,9aS)-7,9a-Dimethyl- 6-methylene-3-oxo-1,3,4,5,5a,6,7,8,9,9a- decahydronaphtho[1,2-c]furan-1,4-diyl diacetate top
Crystal data top
C19H24O6Dx = 1.291 Mg m3
Mr = 348.38Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 6310 reflections
Hall symbol: P 4nw 2abwθ = 2.5–32.6°
a = 13.014 (2) ŵ = 0.10 mm1
c = 21.167 (3) ÅT = 100 K
V = 3584.9 (9) Å3Prism, colorless
Z = 80.37 × 0.25 × 0.25 mm
F(000) = 1488
Data collection top
Nonius KappaCCD
diffractometer
6507 independent reflections
Radiation source: sealed tube5934 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.021
Detector resolution: 9 pixels mm-1θmax = 32.6°, θmin = 3.1°
ϕ and ω scansh = 1919
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.966, Tmax = 0.977l = 3031
11378 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.548P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6507 reflectionsΔρmax = 0.28 e Å3
231 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983). 2776 Bijvoet pairs
0 constraintsAbsolute structure parameter: 0.4 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H24O6Z = 8
Mr = 348.38Mo Kα radiation
Tetragonal, P43212µ = 0.10 mm1
a = 13.014 (2) ÅT = 100 K
c = 21.167 (3) Å0.37 × 0.25 × 0.25 mm
V = 3584.9 (9) Å3
Data collection top
Nonius KappaCCD
diffractometer
6507 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
5934 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.977Rint = 0.021
11378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.28 e Å3
S = 1.02Δρmin = 0.21 e Å3
6507 reflectionsAbsolute structure: Flack (1983). 2776 Bijvoet pairs
231 parametersAbsolute structure parameter: 0.4 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.99387 (7)0.15194 (7)0.38460 (4)0.01487 (16)
C21.10097 (8)0.17487 (8)0.41219 (5)0.01852 (17)
H2A1.12160.24540.40010.022*
H2B1.09720.1720.45890.022*
C31.18311 (8)0.09896 (9)0.38923 (5)0.02218 (19)
H3A1.24830.11310.41170.027*
H3B1.19520.110.34360.027*
C41.15268 (8)0.01396 (8)0.40011 (5)0.02003 (18)
H41.14510.02380.44670.024*
C51.04822 (8)0.03292 (8)0.37083 (4)0.01737 (17)
C60.96687 (7)0.03709 (7)0.39832 (4)0.01477 (15)
H60.97170.02880.44520.018*
C70.85545 (7)0.01232 (8)0.38106 (4)0.01717 (17)
H7A0.84330.06240.38550.021*
H7B0.84250.03150.33650.021*
C80.78177 (8)0.07130 (7)0.42426 (4)0.01629 (17)
H80.7110.07140.40580.02*
C90.81884 (7)0.17881 (7)0.43274 (4)0.01617 (16)
C100.75719 (8)0.26445 (8)0.45837 (5)0.01949 (18)
C110.91383 (8)0.32891 (8)0.42864 (5)0.01760 (17)
H110.92610.36850.38890.021*
C120.91114 (7)0.21474 (7)0.41591 (4)0.01502 (16)
C130.99210 (8)0.17746 (8)0.31324 (4)0.02007 (18)
H13A0.92240.16750.29670.03*
H13B1.03980.13190.29080.03*
H13C1.0130.24910.30690.03*
C141.23690 (9)0.08734 (10)0.37789 (6)0.0301 (2)
H14A1.2160.15830.38650.045*
H14B1.30080.07220.40050.045*
H14C1.24780.07850.33240.045*
C151.02974 (9)0.10108 (9)0.32528 (5)0.0227 (2)
H15A0.96250.10760.30830.027*
H15B1.08380.14310.30980.027*
C161.02993 (9)0.44956 (8)0.47234 (5)0.02094 (19)
C171.10061 (10)0.46776 (9)0.52658 (5)0.0266 (2)
H17A1.1390.53150.51960.04*
H17B1.14870.41010.53020.04*
H17C1.06050.47360.56560.04*
C180.71756 (8)0.05724 (8)0.49413 (5)0.02047 (18)
C190.72455 (9)0.10197 (10)0.55937 (5)0.0262 (2)
H19A0.65520.11380.57590.039*
H19B0.76110.0540.58710.039*
H19C0.76190.16730.55770.039*
O11.00912 (8)0.50921 (7)0.43108 (4)0.0327 (2)
O20.98905 (6)0.35231 (6)0.47497 (3)0.01904 (14)
O30.81477 (6)0.35250 (6)0.45508 (4)0.02120 (15)
O40.67051 (6)0.26478 (7)0.47800 (4)0.02641 (17)
O50.78024 (6)0.02495 (6)0.48730 (3)0.01794 (14)
O60.66441 (8)0.09022 (8)0.45248 (4)0.0323 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0147 (4)0.0157 (4)0.0142 (4)0.0010 (3)0.0002 (3)0.0010 (3)
C20.0154 (4)0.0190 (4)0.0212 (4)0.0020 (3)0.0014 (3)0.0006 (4)
C30.0148 (4)0.0253 (5)0.0265 (5)0.0002 (4)0.0006 (4)0.0006 (4)
C40.0184 (4)0.0222 (5)0.0195 (4)0.0046 (3)0.0007 (3)0.0013 (3)
C50.0191 (4)0.0171 (4)0.0159 (4)0.0011 (3)0.0017 (3)0.0018 (3)
C60.0154 (4)0.0153 (4)0.0137 (4)0.0006 (3)0.0001 (3)0.0005 (3)
C70.0178 (4)0.0176 (4)0.0161 (4)0.0031 (3)0.0002 (3)0.0014 (3)
C80.0149 (4)0.0186 (4)0.0154 (4)0.0019 (3)0.0008 (3)0.0012 (3)
C90.0158 (4)0.0168 (4)0.0160 (4)0.0010 (3)0.0007 (3)0.0002 (3)
C100.0187 (4)0.0206 (4)0.0192 (4)0.0020 (3)0.0018 (3)0.0011 (3)
C110.0185 (4)0.0165 (4)0.0178 (4)0.0004 (3)0.0019 (3)0.0008 (3)
C120.0162 (4)0.0152 (4)0.0137 (4)0.0005 (3)0.0020 (3)0.0008 (3)
C130.0241 (5)0.0214 (4)0.0147 (4)0.0002 (4)0.0017 (3)0.0038 (3)
C140.0222 (5)0.0337 (6)0.0342 (6)0.0087 (4)0.0005 (4)0.0060 (5)
C150.0255 (5)0.0218 (5)0.0208 (4)0.0002 (4)0.0027 (4)0.0028 (4)
C160.0249 (5)0.0159 (4)0.0220 (4)0.0026 (4)0.0036 (4)0.0028 (3)
C170.0311 (6)0.0235 (5)0.0253 (5)0.0089 (4)0.0024 (4)0.0033 (4)
C180.0191 (4)0.0222 (4)0.0202 (4)0.0040 (4)0.0008 (4)0.0028 (4)
C190.0248 (5)0.0304 (6)0.0233 (5)0.0026 (4)0.0003 (4)0.0089 (4)
O10.0492 (6)0.0191 (4)0.0299 (4)0.0068 (4)0.0052 (4)0.0050 (3)
O20.0226 (4)0.0154 (3)0.0191 (3)0.0040 (3)0.0034 (3)0.0015 (2)
O30.0197 (3)0.0178 (3)0.0261 (3)0.0027 (3)0.0010 (3)0.0020 (3)
O40.0181 (3)0.0295 (4)0.0316 (4)0.0029 (3)0.0022 (3)0.0046 (3)
O50.0172 (3)0.0207 (3)0.0159 (3)0.0035 (3)0.0009 (2)0.0027 (3)
O60.0364 (5)0.0361 (5)0.0243 (4)0.0189 (4)0.0047 (4)0.0026 (3)
Geometric parameters (Å, º) top
C1—C121.5054 (14)C10—O31.3709 (13)
C1—C21.5403 (14)C11—O21.4187 (12)
C1—C131.5468 (13)C11—O31.4386 (13)
C1—C61.5627 (13)C11—C121.5104 (14)
C2—C31.5346 (15)C11—H111
C2—H2A0.99C13—H13A0.98
C2—H2B0.99C13—H13B0.98
C3—C41.5393 (16)C13—H13C0.98
C3—H3A0.99C14—H14A0.98
C3—H3B0.99C14—H14B0.98
C4—C51.5143 (14)C14—H14C0.98
C4—C141.5279 (15)C15—H15A0.95
C4—H41C15—H15B0.95
C5—C151.3321 (14)C16—O11.1994 (14)
C5—C61.5131 (13)C16—O21.3740 (12)
C6—C71.5297 (14)C16—C171.4902 (15)
C6—H61C17—H17A0.98
C7—C81.5313 (14)C17—H17B0.98
C7—H7A0.99C17—H17C0.98
C7—H7B0.99C18—O61.2000 (13)
C8—O51.4646 (12)C18—O51.3529 (12)
C8—C91.4908 (14)C18—C191.5013 (15)
C8—H81C19—H19A0.98
C9—C121.3373 (14)C19—H19B0.98
C9—C101.4766 (14)C19—H19C0.98
C10—O41.2021 (13)
C12—C1—C2112.03 (8)O4—C10—O3121.84 (10)
C12—C1—C13107.62 (8)O4—C10—C9129.76 (10)
C2—C1—C13110.01 (8)O3—C10—C9108.37 (8)
C12—C1—C6106.06 (7)O2—C11—O3107.67 (8)
C2—C1—C6108.56 (8)O2—C11—C12110.52 (8)
C13—C1—C6112.55 (8)O3—C11—C12104.98 (8)
C3—C2—C1112.68 (8)O2—C11—H11111.1
C3—C2—H2A109.1O3—C11—H11111.1
C1—C2—H2A109.1C12—C11—H11111.1
C3—C2—H2B109.1C9—C12—C1124.74 (9)
C1—C2—H2B109.1C9—C12—C11108.49 (9)
H2A—C2—H2B107.8C1—C12—C11126.58 (9)
C2—C3—C4112.83 (8)C1—C13—H13A109.5
C2—C3—H3A109C1—C13—H13B109.5
C4—C3—H3A109H13A—C13—H13B109.5
C2—C3—H3B109C1—C13—H13C109.5
C4—C3—H3B109H13A—C13—H13C109.5
H3A—C3—H3B107.8H13B—C13—H13C109.5
C5—C4—C14114.59 (9)C4—C14—H14A109.5
C5—C4—C3108.98 (8)C4—C14—H14B109.5
C14—C4—C3111.47 (9)H14A—C14—H14B109.5
C5—C4—H4107.1C4—C14—H14C109.5
C14—C4—H4107.1H14A—C14—H14C109.5
C3—C4—H4107.1H14B—C14—H14C109.5
C15—C5—C6123.58 (9)C5—C15—H15A120
C15—C5—C4124.53 (9)C5—C15—H15B120
C6—C5—C4111.88 (8)H15A—C15—H15B120
C5—C6—C7116.39 (8)O1—C16—O2122.57 (10)
C5—C6—C1110.31 (8)O1—C16—C17126.69 (10)
C7—C6—C1111.73 (8)O2—C16—C17110.74 (9)
C5—C6—H6105.9C16—C17—H17A109.5
C7—C6—H6105.9C16—C17—H17B109.5
C1—C6—H6105.9H17A—C17—H17B109.5
C6—C7—C8110.20 (8)C16—C17—H17C109.5
C6—C7—H7A109.6H17A—C17—H17C109.5
C8—C7—H7A109.6H17B—C17—H17C109.5
C6—C7—H7B109.6O6—C18—O5123.49 (10)
C8—C7—H7B109.6O6—C18—C19124.89 (10)
H7A—C7—H7B108.1O5—C18—C19111.61 (9)
O5—C8—C9106.34 (7)C18—C19—H19A109.5
O5—C8—C7110.25 (8)C18—C19—H19B109.5
C9—C8—C7109.86 (8)H19A—C19—H19B109.5
O5—C8—H8110.1C18—C19—H19C109.5
C9—C8—H8110.1H19A—C19—H19C109.5
C7—C8—H8110.1H19B—C19—H19C109.5
C12—C9—C10108.79 (9)C16—O2—C11115.91 (8)
C12—C9—C8125.92 (9)C10—O3—C11109.35 (8)
C10—C9—C8125.23 (9)C18—O5—C8115.54 (8)
C12—C1—C2—C3170.06 (8)C8—C9—C10—O41.98 (17)
C13—C1—C2—C370.28 (11)C12—C9—C10—O31.20 (11)
C6—C1—C2—C353.28 (10)C8—C9—C10—O3176.04 (9)
C1—C2—C3—C453.11 (12)C10—C9—C12—C1176.62 (8)
C2—C3—C4—C553.61 (11)C8—C9—C12—C10.59 (15)
C2—C3—C4—C14178.93 (9)C10—C9—C12—C111.26 (10)
C14—C4—C5—C155.67 (16)C8—C9—C12—C11175.95 (9)
C3—C4—C5—C15120.00 (11)C2—C1—C12—C9137.96 (10)
C14—C4—C5—C6175.82 (9)C13—C1—C12—C9100.99 (11)
C3—C4—C5—C658.51 (10)C6—C1—C12—C919.68 (12)
C15—C5—C6—C711.94 (14)C2—C1—C12—C1147.52 (12)
C4—C5—C6—C7169.54 (8)C13—C1—C12—C1173.53 (11)
C15—C5—C6—C1116.70 (11)C6—C1—C12—C11165.80 (8)
C4—C5—C6—C161.83 (10)O2—C11—C12—C9116.73 (9)
C12—C1—C6—C5177.79 (7)O3—C11—C12—C90.90 (10)
C2—C1—C6—C557.24 (9)O2—C11—C12—C168.02 (12)
C13—C1—C6—C564.78 (10)O3—C11—C12—C1176.15 (8)
C12—C1—C6—C751.08 (9)O1—C16—O2—C114.93 (15)
C2—C1—C6—C7171.64 (8)C17—C16—O2—C11174.94 (9)
C13—C1—C6—C766.34 (10)O3—C11—O2—C1692.25 (10)
C5—C6—C7—C8166.12 (8)C12—C11—O2—C16153.62 (8)
C1—C6—C7—C865.93 (10)O4—C10—O3—C11178.80 (10)
C6—C7—C8—O574.35 (10)C9—C10—O3—C110.60 (11)
C6—C7—C8—C942.52 (10)O2—C11—O3—C10117.91 (9)
O5—C8—C9—C12107.52 (10)C12—C11—O3—C100.14 (10)
C7—C8—C9—C1211.78 (13)O6—C18—O5—C81.47 (15)
O5—C8—C9—C1075.71 (11)C19—C18—O5—C8177.62 (9)
C7—C8—C9—C10164.99 (9)C9—C8—O5—C18158.03 (8)
C12—C9—C10—O4179.22 (11)C7—C8—O5—C1882.93 (10)

Experimental details

Crystal data
Chemical formulaC19H24O6
Mr348.38
Crystal system, space groupTetragonal, P43212
Temperature (K)100
a, c (Å)13.014 (2), 21.167 (3)
V3)3584.9 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.25 × 0.25
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.966, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
11378, 6507, 5934
Rint0.021
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.02
No. of reflections6507
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21
Absolute structureFlack (1983). 2776 Bijvoet pairs
Absolute structure parameter0.4 (6)

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds