Download citation
Download citation
link to html
The title mol­ecule, C30H24, was prepared as a possible precursor to buckminsterfullerene cages. The two enanti­omers adopt the anti configuration, with one S/R and two R/S methyl groups, one anti to the other two. The truxene framework is slightly non-planar: with respect to the central six-ring mean plane, the three methyl C atoms are 1.377 (3), -1.475 (3) and 1.515 (3) Å distant, whereas the respective proximate peripheral six-ring mean planes make dihedral angles of 6.27 (6), 3.45 (7) and -7.37 (7)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811048616/qm2041sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811048616/qm2041Isup2.hkl
Contains datablock I

CCDC reference: 858546

Key indicators

  • Single-crystal X-ray study
  • T = 90 K, P = 0.0 kPa
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.053
  • wR factor = 0.157
  • Data-to-parameter ratio = 26.8

checkCIF/PLATON results

No syntax errors found



Alert level C DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 0.481 Test value = 0.450 DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT097_ALERT_2_C Large Reported Max. (Positive) Residual Density 0.48 eA-3 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 2 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 609
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 14 PLAT793_ALERT_4_G The Model has Chirality at C01 (Verify) .... S PLAT793_ALERT_4_G The Model has Chirality at C10 (Verify) .... R PLAT793_ALERT_4_G The Model has Chirality at C19 (Verify) .... S
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Buckminsterfullerene is a spherical fullerene molecule with the formula C60. It was first prepared in 1985 by Kroto et al. Buckybowls have been recognized as valuable intermediates in the synthesis of buckminsterfullerene and also show many valuable and interesting properties, including surface selective chemistry. As a part of ongoing investigations for synthesis of bucky bowls, the title molecule, trimethyltruxene, C30H24, was prepared as a possible precursor to buckminsterfullerene cages. Furthermore, these truxene compounds, which serve as backbone of bucky bowl derivatives also have shown properties of organic field-effect transistors (OFETs) based on oligothiophene-functionalized truxene derivatives, which have been fabricated for use as novel star-shaped organic semiconductors in solution (Sun et al., 2005).

Two isomers of the title compound, syn and anti are possible. De Frutos et al. (2002) prepared mixtures of the two isomers, which could be converted to the pure, more stable syn compound by reaction with base, potassium t-butoxide. We report here the structure of the less stable anti isomer, which is not a viable precursor for buckybowls.

The parent heptacyclic aromatic system, truxene (10,15-dihydro-5H-diindeno[1,2 - a:1',2'-c]fluorene), is planar with 3/m (C3 h) symmetry. The title molecule, I, is slightly non-planar with no discernable pattern: with respect to the central 6-ring mean plane, the three methyl groups are +1.377 (3), -1.475 (3) and +1.515 (3) Å distant, whereas the proximate peripheral 6-ring mean planes make dihedral angles of +6.27 (6)°, +3.45 (7)° and -7.37 (7)°.

Related literature top

For related structures, see: De Frutos et al. (1999, 2002). For the synthesis of truxenes, see: Amick & Scott (2007); Dehmlow & Kelle (1997); Kipping (1894a,b); Hausmann (1889); Wislicenus (1887). For buckminsterfullerene, see: Kroto et al. (1985). Buckybowls are intermediates in the synthesis of buckminsterfullerene. Truxene compounds, which serve as backbone of bucky bowl derivatives, have been fabricated for use as novel star-shaped organic semiconductors in solution, see:Sun et al. (2005).

Experimental top

Synthesis of truxene was carried by the one-pot, acid catalyzed, head-to-tail cyclotrimerization synthesis method detailed in (Amick & Scott, 2007) The trimethylation of truxene was carried out by treating truxene with n-butyl lithium, followed by treatment with methyl iodide. A suitable single-crystal was obtained by recrystallization from diethyl ether, dichloromethane and methanol.

Refinement top

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (aromatic C), 1.00 (alkyl C) Å, and Uiso=1.2Ueq, thereafter refined as riding. A torsional parameter was refined for each methyl group, with C—H bond distances 0.98 Å and Uiso = 1.5Ueq. The largest peak in the final difference map was at the center of the C18–C26 bond, and the top 33 peaks lay near bond centers.

Structure description top

Buckminsterfullerene is a spherical fullerene molecule with the formula C60. It was first prepared in 1985 by Kroto et al. Buckybowls have been recognized as valuable intermediates in the synthesis of buckminsterfullerene and also show many valuable and interesting properties, including surface selective chemistry. As a part of ongoing investigations for synthesis of bucky bowls, the title molecule, trimethyltruxene, C30H24, was prepared as a possible precursor to buckminsterfullerene cages. Furthermore, these truxene compounds, which serve as backbone of bucky bowl derivatives also have shown properties of organic field-effect transistors (OFETs) based on oligothiophene-functionalized truxene derivatives, which have been fabricated for use as novel star-shaped organic semiconductors in solution (Sun et al., 2005).

Two isomers of the title compound, syn and anti are possible. De Frutos et al. (2002) prepared mixtures of the two isomers, which could be converted to the pure, more stable syn compound by reaction with base, potassium t-butoxide. We report here the structure of the less stable anti isomer, which is not a viable precursor for buckybowls.

The parent heptacyclic aromatic system, truxene (10,15-dihydro-5H-diindeno[1,2 - a:1',2'-c]fluorene), is planar with 3/m (C3 h) symmetry. The title molecule, I, is slightly non-planar with no discernable pattern: with respect to the central 6-ring mean plane, the three methyl groups are +1.377 (3), -1.475 (3) and +1.515 (3) Å distant, whereas the proximate peripheral 6-ring mean planes make dihedral angles of +6.27 (6)°, +3.45 (7)° and -7.37 (7)°.

For related structures, see: De Frutos et al. (1999, 2002). For the synthesis of truxenes, see: Amick & Scott (2007); Dehmlow & Kelle (1997); Kipping (1894a,b); Hausmann (1889); Wislicenus (1887). For buckminsterfullerene, see: Kroto et al. (1985). Buckybowls are intermediates in the synthesis of buckminsterfullerene. Truxene compounds, which serve as backbone of bucky bowl derivatives, have been fabricated for use as novel star-shaped organic semiconductors in solution, see:Sun et al. (2005).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
(5R,10S,15R)-rel-5,10,15-trimethyl-10,15- dihydro-5H-tribenzo[a,f,k]trindene top
Crystal data top
C30H24F(000) = 816
Mr = 384.49Dx = 1.263 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6571 reflections
a = 8.6755 (2) Åθ = 2.5–33.5°
b = 18.2860 (4) ŵ = 0.07 mm1
c = 12.8206 (3) ÅT = 90 K
β = 96.007 (1)°Prism, yellow
V = 2022.69 (8) Å30.15 × 0.15 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
7338 independent reflections
Radiation source: sealed tube5008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9 pixels mm-1θmax = 33.5°, θmin = 2.6°
CCD rotation images, thick slices scansh = 1313
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 2823
Tmin = 0.955, Tmax = 0.976l = 1919
13386 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0893P)2 + 0.0548P]
where P = (Fo2 + 2Fc2)/3
7338 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.29 e Å3
0 constraints
Crystal data top
C30H24V = 2022.69 (8) Å3
Mr = 384.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6755 (2) ŵ = 0.07 mm1
b = 18.2860 (4) ÅT = 90 K
c = 12.8206 (3) Å0.15 × 0.15 × 0.13 mm
β = 96.007 (1)°
Data collection top
Nonius KappaCCD
diffractometer
7338 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
5008 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.976Rint = 0.034
13386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
7338 reflectionsΔρmin = 0.29 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.07933 (13)0.09157 (6)0.49364 (9)0.0170 (2)
H010.04750.05720.55260.020*
C020.19146 (13)0.05432 (6)0.41175 (10)0.0174 (2)
C030.33977 (14)0.02847 (7)0.42222 (10)0.0203 (2)
H030.37980.02960.48840.024*
C040.42872 (14)0.00091 (7)0.33434 (10)0.0206 (2)
H040.52940.01780.34090.025*
C050.37157 (14)0.00050 (7)0.23706 (10)0.0192 (2)
H050.43460.01730.17740.023*
C060.22251 (13)0.02602 (6)0.22615 (10)0.0177 (2)
H060.18350.02540.15960.021*
C070.13174 (13)0.05235 (6)0.31430 (9)0.0154 (2)
C080.02504 (13)0.08458 (6)0.32688 (9)0.0153 (2)
C090.13369 (13)0.09525 (6)0.25572 (9)0.0152 (2)
C100.13230 (13)0.06937 (6)0.14305 (9)0.0172 (2)
H100.04000.08940.09900.021*
C110.28051 (14)0.10304 (6)0.11113 (10)0.0174 (2)
C120.34197 (15)0.09751 (7)0.01588 (10)0.0213 (3)
H120.28600.07340.04180.026*
C130.48723 (15)0.12793 (7)0.00611 (10)0.0223 (3)
H130.53000.12490.05900.027*
C140.57001 (14)0.16264 (6)0.09067 (10)0.0197 (2)
H140.66960.18230.08320.024*
C150.50823 (14)0.16888 (6)0.18647 (10)0.0182 (2)
H150.56470.19280.24410.022*
C160.36210 (13)0.13934 (6)0.19621 (9)0.0154 (2)
C170.27069 (13)0.13486 (6)0.28678 (9)0.0149 (2)
C180.30010 (12)0.16021 (6)0.38920 (9)0.0148 (2)
C190.43313 (13)0.20650 (6)0.43845 (9)0.0165 (2)
H190.53460.18290.42860.020*
C200.40577 (13)0.20572 (6)0.55330 (9)0.0162 (2)
C210.49513 (13)0.23644 (7)0.63774 (10)0.0191 (2)
H210.58850.26140.62780.023*
C220.44625 (14)0.23020 (7)0.73774 (10)0.0204 (2)
H220.50610.25150.79620.025*
C230.30980 (14)0.19282 (7)0.75213 (10)0.0197 (2)
H230.27840.18840.82060.024*
C240.21912 (13)0.16198 (6)0.66747 (9)0.0178 (2)
H240.12680.13630.67790.021*
C250.26576 (13)0.16933 (6)0.56710 (9)0.0153 (2)
C260.19633 (13)0.14324 (6)0.46379 (9)0.0148 (2)
C270.05726 (13)0.10782 (6)0.43211 (9)0.0149 (2)
C280.15190 (14)0.16121 (7)0.53548 (11)0.0226 (3)
H28A0.07530.18600.58490.034*
H28B0.24220.14790.57140.034*
H28C0.18430.19400.47680.034*
C290.13709 (15)0.01460 (7)0.13416 (11)0.0230 (3)
H29A0.14410.02850.06100.034*
H29B0.04250.03540.15780.034*
H29C0.22770.03340.17810.034*
C300.42829 (15)0.28518 (7)0.39498 (10)0.0223 (3)
H30A0.43380.28380.31900.033*
H30B0.51660.31290.42860.033*
H30C0.33150.30880.40970.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.0155 (5)0.0216 (5)0.0142 (5)0.0022 (4)0.0025 (4)0.0001 (4)
C020.0162 (5)0.0190 (5)0.0171 (6)0.0013 (4)0.0021 (4)0.0002 (4)
C030.0189 (5)0.0244 (6)0.0184 (6)0.0038 (5)0.0051 (5)0.0007 (5)
C040.0163 (5)0.0235 (6)0.0224 (6)0.0043 (5)0.0036 (5)0.0006 (5)
C050.0167 (5)0.0208 (6)0.0196 (6)0.0017 (4)0.0004 (4)0.0024 (5)
C060.0165 (5)0.0205 (5)0.0162 (6)0.0013 (4)0.0016 (4)0.0009 (4)
C070.0137 (5)0.0161 (5)0.0164 (5)0.0005 (4)0.0022 (4)0.0001 (4)
C080.0144 (5)0.0170 (5)0.0143 (5)0.0010 (4)0.0007 (4)0.0001 (4)
C090.0147 (5)0.0172 (5)0.0139 (5)0.0002 (4)0.0019 (4)0.0004 (4)
C100.0160 (5)0.0215 (5)0.0143 (5)0.0022 (4)0.0023 (4)0.0018 (4)
C110.0177 (5)0.0193 (5)0.0155 (5)0.0012 (4)0.0035 (4)0.0004 (4)
C120.0229 (6)0.0254 (6)0.0156 (6)0.0037 (5)0.0026 (5)0.0035 (5)
C130.0246 (6)0.0269 (6)0.0168 (6)0.0022 (5)0.0080 (5)0.0001 (5)
C140.0190 (5)0.0197 (5)0.0214 (6)0.0024 (4)0.0065 (5)0.0001 (5)
C150.0174 (5)0.0193 (5)0.0183 (6)0.0018 (4)0.0032 (4)0.0004 (4)
C160.0158 (5)0.0166 (5)0.0142 (5)0.0005 (4)0.0033 (4)0.0003 (4)
C170.0141 (5)0.0165 (5)0.0143 (5)0.0007 (4)0.0019 (4)0.0007 (4)
C180.0132 (5)0.0163 (5)0.0147 (5)0.0004 (4)0.0007 (4)0.0002 (4)
C190.0147 (5)0.0197 (5)0.0153 (5)0.0012 (4)0.0021 (4)0.0024 (4)
C200.0157 (5)0.0172 (5)0.0154 (5)0.0017 (4)0.0003 (4)0.0013 (4)
C210.0169 (5)0.0207 (5)0.0197 (6)0.0020 (5)0.0012 (4)0.0040 (5)
C220.0212 (6)0.0226 (6)0.0169 (6)0.0003 (5)0.0013 (5)0.0046 (5)
C230.0221 (6)0.0228 (6)0.0139 (6)0.0024 (5)0.0011 (4)0.0003 (4)
C240.0173 (5)0.0205 (5)0.0155 (6)0.0001 (4)0.0018 (4)0.0004 (4)
C250.0153 (5)0.0159 (5)0.0144 (5)0.0016 (4)0.0002 (4)0.0004 (4)
C260.0147 (5)0.0161 (5)0.0134 (5)0.0014 (4)0.0011 (4)0.0002 (4)
C270.0146 (5)0.0169 (5)0.0132 (5)0.0000 (4)0.0019 (4)0.0006 (4)
C280.0165 (5)0.0283 (6)0.0230 (6)0.0009 (5)0.0023 (5)0.0062 (5)
C290.0229 (6)0.0226 (6)0.0240 (7)0.0045 (5)0.0055 (5)0.0057 (5)
C300.0254 (6)0.0201 (6)0.0218 (6)0.0035 (5)0.0046 (5)0.0013 (5)
Geometric parameters (Å, º) top
C01—C021.5161 (17)C15—C161.3956 (16)
C01—C271.5201 (15)C15—H150.9500
C01—C281.5416 (17)C16—C171.4754 (15)
C01—H011.0000C17—C181.3906 (16)
C02—C031.3904 (16)C18—C261.4148 (15)
C02—C071.4021 (16)C18—C191.5148 (16)
C03—C041.3917 (18)C19—C201.5159 (16)
C03—H030.9500C19—C301.5419 (17)
C04—C051.3895 (17)C19—H191.0000
C04—H040.9500C20—C211.3831 (16)
C05—C061.3955 (16)C20—C251.4123 (16)
C05—H050.9500C21—C221.3966 (17)
C06—C071.3939 (17)C21—H210.9500
C06—H060.9500C22—C231.3958 (17)
C07—C081.4756 (15)C22—H220.9500
C08—C091.3924 (15)C23—C241.3915 (17)
C08—C271.4142 (16)C23—H230.9500
C09—C171.4131 (16)C24—C251.3952 (16)
C09—C101.5188 (16)C24—H240.9500
C10—C111.5199 (16)C25—C261.4756 (16)
C10—C291.5405 (17)C26—C271.3919 (16)
C10—H101.0000C28—H28A0.9800
C11—C121.3864 (16)C28—H28B0.9800
C11—C161.4035 (17)C28—H28C0.9800
C12—C131.3950 (17)C29—H29A0.9800
C12—H120.9500C29—H29B0.9800
C13—C141.3896 (18)C29—H29C0.9800
C13—H130.9500C30—H30A0.9800
C14—C151.3951 (16)C30—H30B0.9800
C14—H140.9500C30—H30C0.9800
C02—C01—C27101.95 (9)C18—C17—C09120.18 (10)
C02—C01—C28110.87 (9)C18—C17—C16131.61 (10)
C27—C01—C28112.83 (10)C09—C17—C16108.19 (10)
C02—C01—H01110.3C17—C18—C26119.89 (10)
C27—C01—H01110.3C17—C18—C19129.52 (10)
C28—C01—H01110.3C26—C18—C19110.59 (10)
C03—C02—C07120.61 (11)C18—C19—C20102.11 (9)
C03—C02—C01128.25 (11)C18—C19—C30112.34 (10)
C07—C02—C01111.01 (10)C20—C19—C30111.02 (10)
C02—C03—C04119.03 (11)C18—C19—H19110.4
C02—C03—H03120.5C20—C19—H19110.4
C04—C03—H03120.5C30—C19—H19110.4
C05—C04—C03120.59 (11)C21—C20—C25120.82 (11)
C05—C04—H04119.7C21—C20—C19128.64 (10)
C03—C04—H04119.7C25—C20—C19110.51 (10)
C04—C05—C06120.64 (12)C20—C21—C22119.09 (11)
C04—C05—H05119.7C20—C21—H21120.5
C06—C05—H05119.7C22—C21—H21120.5
C07—C06—C05119.01 (11)C23—C22—C21120.30 (11)
C07—C06—H06120.5C23—C22—H22119.8
C05—C06—H06120.5C21—C22—H22119.8
C06—C07—C02120.09 (10)C24—C23—C22120.90 (11)
C06—C07—C08131.50 (11)C24—C23—H23119.6
C02—C07—C08108.34 (10)C22—C23—H23119.6
C09—C08—C27120.21 (10)C23—C24—C25119.04 (11)
C09—C08—C07131.59 (11)C23—C24—H24120.5
C27—C08—C07108.19 (10)C25—C24—H24120.5
C08—C09—C17119.62 (11)C24—C25—C20119.81 (11)
C08—C09—C10129.86 (10)C24—C25—C26131.77 (10)
C17—C09—C10110.52 (9)C20—C25—C26108.39 (10)
C09—C10—C11101.95 (9)C27—C26—C18119.88 (10)
C09—C10—C29112.54 (10)C27—C26—C25132.24 (10)
C11—C10—C29110.72 (9)C18—C26—C25107.88 (10)
C09—C10—H10110.5C26—C27—C08119.80 (10)
C11—C10—H10110.5C26—C27—C01129.68 (10)
C29—C10—H10110.5C08—C27—C01110.44 (10)
C12—C11—C16120.66 (11)C01—C28—H28A109.5
C12—C11—C10128.45 (11)C01—C28—H28B109.5
C16—C11—C10110.75 (10)H28A—C28—H28B109.5
C11—C12—C13118.97 (12)C01—C28—H28C109.5
C11—C12—H12120.5H28A—C28—H28C109.5
C13—C12—H12120.5H28B—C28—H28C109.5
C14—C13—C12120.66 (11)C10—C29—H29A109.5
C14—C13—H13119.7C10—C29—H29B109.5
C12—C13—H13119.7H29A—C29—H29B109.5
C13—C14—C15120.62 (11)C10—C29—H29C109.5
C13—C14—H14119.7H29A—C29—H29C109.5
C15—C14—H14119.7H29B—C29—H29C109.5
C14—C15—C16118.91 (11)C19—C30—H30A109.5
C14—C15—H15120.5C19—C30—H30B109.5
C16—C15—H15120.5H30A—C30—H30B109.5
C15—C16—C11120.16 (11)C19—C30—H30C109.5
C15—C16—C17131.30 (11)H30A—C30—H30C109.5
C11—C16—C17108.46 (10)H30B—C30—H30C109.5
C27—C01—C02—C03178.33 (12)C11—C16—C17—C18178.54 (12)
C28—C01—C02—C0357.99 (16)C15—C16—C17—C09176.37 (12)
C27—C01—C02—C072.60 (12)C11—C16—C17—C090.28 (13)
C28—C01—C02—C07117.74 (11)C09—C17—C18—C263.09 (16)
C07—C02—C03—C040.37 (18)C16—C17—C18—C26174.99 (11)
C01—C02—C03—C04175.00 (11)C09—C17—C18—C19176.57 (11)
C02—C03—C04—C051.24 (18)C16—C17—C18—C195.3 (2)
C03—C04—C05—C061.61 (19)C17—C18—C19—C20173.01 (11)
C04—C05—C06—C070.33 (18)C26—C18—C19—C207.30 (12)
C05—C06—C07—C021.26 (17)C17—C18—C19—C3067.99 (15)
C05—C06—C07—C08177.68 (11)C26—C18—C19—C30111.70 (11)
C03—C02—C07—C061.63 (18)C18—C19—C20—C21176.85 (11)
C01—C02—C07—C06174.48 (10)C30—C19—C20—C2163.23 (16)
C03—C02—C07—C08178.80 (11)C18—C19—C20—C255.03 (12)
C01—C02—C07—C082.70 (13)C30—C19—C20—C25114.90 (11)
C06—C07—C08—C093.7 (2)C25—C20—C21—C220.88 (17)
C02—C07—C08—C09179.52 (12)C19—C20—C21—C22178.83 (11)
C06—C07—C08—C27175.11 (12)C20—C21—C22—C230.61 (18)
C02—C07—C08—C271.63 (13)C21—C22—C23—C240.82 (18)
C27—C08—C09—C175.30 (17)C22—C23—C24—C250.48 (18)
C07—C08—C09—C17173.44 (11)C23—C24—C25—C201.95 (17)
C27—C08—C09—C10173.82 (11)C23—C24—C25—C26179.84 (12)
C07—C08—C09—C107.4 (2)C21—C20—C25—C242.18 (17)
C08—C09—C10—C11177.42 (12)C19—C20—C25—C24179.53 (10)
C17—C09—C10—C113.40 (12)C21—C20—C25—C26179.47 (10)
C08—C09—C10—C2963.93 (16)C19—C20—C25—C261.18 (12)
C17—C09—C10—C29115.25 (11)C17—C18—C26—C276.66 (16)
C09—C10—C11—C12179.26 (12)C19—C18—C26—C27173.06 (10)
C29—C10—C11—C1259.33 (17)C17—C18—C26—C25173.32 (10)
C09—C10—C11—C163.59 (13)C19—C18—C26—C256.95 (12)
C29—C10—C11—C16116.35 (11)C24—C25—C26—C275.5 (2)
C16—C11—C12—C130.69 (18)C20—C25—C26—C27176.45 (12)
C10—C11—C12—C13174.61 (12)C24—C25—C26—C18174.51 (12)
C11—C12—C13—C140.63 (19)C20—C25—C26—C183.56 (12)
C12—C13—C14—C151.14 (19)C18—C26—C27—C084.24 (16)
C13—C14—C15—C160.32 (18)C25—C26—C27—C08175.74 (11)
C14—C15—C16—C111.00 (17)C18—C26—C27—C01172.36 (11)
C14—C15—C16—C17177.32 (11)C25—C26—C27—C017.7 (2)
C12—C11—C16—C151.52 (18)C09—C08—C27—C261.74 (17)
C10—C11—C16—C15174.55 (10)C07—C08—C27—C26177.27 (10)
C12—C11—C16—C17178.61 (11)C09—C08—C27—C01178.95 (10)
C10—C11—C16—C172.54 (13)C07—C08—C27—C010.06 (13)
C08—C09—C17—C182.87 (17)C02—C01—C27—C26178.41 (11)
C10—C09—C17—C18176.40 (10)C28—C01—C27—C2659.45 (16)
C08—C09—C17—C16178.63 (10)C02—C01—C27—C081.55 (12)
C10—C09—C17—C162.09 (13)C28—C01—C27—C08117.41 (11)
C15—C16—C17—C181.9 (2)

Experimental details

Crystal data
Chemical formulaC30H24
Mr384.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)8.6755 (2), 18.2860 (4), 12.8206 (3)
β (°) 96.007 (1)
V3)2022.69 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.15 × 0.15 × 0.13
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.955, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
13386, 7338, 5008
Rint0.034
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.04
No. of reflections7338
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.29

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds