Download citation
Download citation
link to html
The crystal structure of the title compound, C12H11NS, features parallel chains of alternating N-H...S hydrogen-bonded mirror-image conformers along [10\overline{1}]. The mol­ecular conformation is that of an envelope, with all of the framework atoms except one close to a mean plane (rms deviation 0.054 Å); one C atom of the cyclo­hexene­thione ring forms the envelope flap, which makes a dihedral angle of 48.6 (1)° with the rest of the mol­ecule. There is a [pi]-[pi]* inter­action between pairs of enanti­omers in adjacent chains; the distance between parallel planes is 3.466 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811006623/fl2336sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811006623/fl2336Isup2.hkl
Contains datablock I

CCDC reference: 820111

Key indicators

  • Single-crystal X-ray study
  • T = 90 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.033
  • wR factor = 0.087
  • Data-to-parameter ratio = 25.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 12
Alert level G PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 1 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound (1, Fig.1) is the sulfur analog of substituted carbazole 1,2,3-trihydrocarbazol-4(9H)-one (2) (Rodriguez et al., 1989). Both 1 and 2 show the same molecular conformation (envelope, with flap angles 48.6 (1)° for 1 and 48.2 (1)° for 2) and similar H-bonded chains (Table 1) of alternating enantiomers (N···S = 3.319 (1) Å, N—H···S = 172.0 (1)°, and N···SC = 98.0 (1)° for 1, N···O = 2.829 (1) Å, N—H···O = 162.3 (1)° and H···OC = 117.5 (1)° for 2).

In 1, all H-bonded chains are parallel, extending along the [101] crystallographic direction, and adjacent chains 5.583 (1) Å apart are arranged in corrugated sheets parallel to the (010) crystallographic plane (Fig. 22)). The mean planes of adjacent sheets are 5.099 (1) Å apart, but enantiomers in adjacent sheets have parallel π-nodal planes and are only 3.466 (1) Å apart, indicative of a π-π* interaction. Extended Hückel calculations (Chem3DPro, Cambridgesoft, 2009) suggest that the π-HOMO and π*-LUMO orbitals in 1 are larger and closer in energy than those in 2. This may explain why molecules of 2 show no π-type interaction and are thus packed in a different pattern: H-bonded chains 5.359 (1) Å apart extend along the [011] and [011] directions in alternating sheets, so adjacent sheets are rotated by 76.5 (1)°. The distance between adjacent sheets is 4.979 (1) Å and the only interactions between them are C—H···C van der Waals and C—H···O contacts.

Related literature top

For related structures, see: Hökelek et al. (1998); Ianelli et al. (1994); Çaylak et al. (2007); Rodriguez et al. (1989). Hückel calculations were performed using Chem3DPro (Cambridgesoft, 2009).

Experimental top

A solution of 1,2-dihydrocarbazol-4(3H)-one (5.4 mmol) in anhydrous 1,2-dimethoxyethane (30 ml) was stirred at room temperature for 15 min. Upon dissolution, the solution was chilled in an ice-water bath. Lawesson reagent, 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide, (2.9 mmol) was added to the vigorously stirred cold solution. The resulting mixture was stirred for 5 min and then allowed to warm to room temperature. After stirring for an additional 10 min, the white suspension dissolved, and the reaction mixture turned deep orange. The reaction mixture was poured into 150 ml of chilled water and the orange suspension was extracted with CHCl3 (3 x 80 ml). Evaporation under reduced pressure left a deep orange residue, which was purified on a silica column (100 g). The orange band was eluted with ethyl acetate. Evaporation of the solvent in vacuo gave the title compound as a yellow powder (92%). Recrystallization from dichloromethane yielded yellow needles, m.p. 173–175°C.

Refinement top

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95–0.99 Å, N—H 0.88 Å, Uiso=1.2Ueq, and thereafter refined as riding.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of 1 (50% probability displacement ellipsoids).
[Figure 2] Fig. 2. The unit cell, illustrating hydrogen bonds.
1,2-Dihydro-9H-carbazole-4(3H)-thione top
Crystal data top
C12H11NSF(000) = 424
Mr = 201.28Dx = 1.376 Mg m3
Monoclinic, P21/nMelting point: 447(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.6353 (14) ÅCell parameters from 3145 reflections
b = 12.1395 (15) Åθ = 2.8–31.8°
c = 9.5808 (14) ŵ = 0.29 mm1
β = 104.599 (10)°T = 90 K
V = 971.9 (2) Å3Prism, yellow
Z = 40.38 × 0.33 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
2915 reflections with I > 2σ(I)
ω and ϕ scansRint = 0.018
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
θmax = 31.8°, θmin = 2.8°
Tmin = 0.900, Tmax = 0.958h = 1212
6145 measured reflectionsk = 1715
3305 independent reflectionsl = 1414
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0381P)2 + 0.4607P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max = 0.001
wR(F2) = 0.087Δρmax = 0.42 e Å3
S = 1.04Δρmin = 0.30 e Å3
3305 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
128 parametersExtinction coefficient: 0.007 (2)
0 restraints
Crystal data top
C12H11NSV = 971.9 (2) Å3
Mr = 201.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6353 (14) ŵ = 0.29 mm1
b = 12.1395 (15) ÅT = 90 K
c = 9.5808 (14) Å0.38 × 0.33 × 0.15 mm
β = 104.599 (10)°
Data collection top
Nonius KappaCCD
diffractometer
3305 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2915 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.958Rint = 0.018
6145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
3305 reflectionsΔρmin = 0.30 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73572 (3)0.09251 (2)0.17793 (3)0.01632 (8)
N90.40190 (10)0.23264 (7)0.49231 (9)0.01459 (16)
H90.35960.27390.54860.018*
C10.64126 (13)0.35282 (8)0.50486 (11)0.01640 (19)
H1A0.64420.36930.60670.02*
H1B0.59750.41780.44560.02*
C20.81014 (12)0.32729 (9)0.49014 (11)0.01613 (19)
H2A0.86120.27240.56390.019*
H2B0.87560.39530.50720.019*
C30.80512 (12)0.28219 (8)0.33970 (11)0.01504 (18)
H3A0.7660.34090.26770.018*
H3B0.91530.26310.33550.018*
C40.69952 (12)0.18152 (8)0.29869 (10)0.01239 (17)
C50.40380 (12)0.00895 (8)0.27655 (10)0.01451 (18)
H50.47240.03980.22340.017*
C60.26491 (13)0.06343 (9)0.28577 (11)0.0179 (2)
H60.23940.13250.23890.021*
C70.16174 (13)0.01841 (9)0.36297 (12)0.0196 (2)
H70.06650.05670.36550.024*
C80.19647 (13)0.08102 (9)0.43570 (11)0.0181 (2)
H80.12730.11160.48850.022*
C100.53890 (12)0.25494 (8)0.45510 (10)0.01313 (17)
C110.56930 (11)0.17216 (8)0.36283 (10)0.01191 (17)
C120.44039 (11)0.09230 (8)0.34726 (10)0.01234 (17)
C130.33703 (12)0.13394 (8)0.42784 (10)0.01382 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01819 (13)0.01449 (12)0.01981 (13)0.00184 (8)0.01132 (9)0.00327 (8)
N90.0156 (4)0.0158 (4)0.0144 (4)0.0018 (3)0.0077 (3)0.0002 (3)
C10.0194 (5)0.0149 (4)0.0159 (4)0.0014 (4)0.0063 (4)0.0029 (3)
C20.0162 (4)0.0168 (4)0.0150 (4)0.0032 (4)0.0031 (3)0.0016 (3)
C30.0149 (4)0.0145 (4)0.0167 (4)0.0031 (3)0.0059 (3)0.0012 (3)
C40.0128 (4)0.0125 (4)0.0123 (4)0.0008 (3)0.0041 (3)0.0011 (3)
C50.0149 (4)0.0145 (4)0.0141 (4)0.0005 (3)0.0035 (3)0.0017 (3)
C60.0182 (5)0.0169 (5)0.0175 (4)0.0039 (4)0.0027 (4)0.0026 (4)
C70.0156 (5)0.0230 (5)0.0204 (5)0.0045 (4)0.0049 (4)0.0056 (4)
C80.0140 (4)0.0235 (5)0.0182 (4)0.0001 (4)0.0068 (4)0.0046 (4)
C100.0140 (4)0.0142 (4)0.0115 (4)0.0012 (3)0.0039 (3)0.0012 (3)
C110.0120 (4)0.0126 (4)0.0115 (4)0.0001 (3)0.0037 (3)0.0005 (3)
C120.0117 (4)0.0142 (4)0.0115 (4)0.0006 (3)0.0035 (3)0.0026 (3)
C130.0136 (4)0.0160 (4)0.0126 (4)0.0011 (3)0.0046 (3)0.0026 (3)
Geometric parameters (Å, º) top
C1—C101.4860 (14)C5—H50.95
C1—C21.5318 (14)C6—C71.4042 (16)
C1—H1A0.99C6—H60.95
C1—H1B0.99C7—C81.3882 (16)
C2—C31.5322 (14)C7—H70.95
C2—H2A0.99C8—C131.3920 (14)
C2—H2B0.99C8—H80.95
C3—C41.5162 (14)C10—N91.3463 (12)
C3—H3A0.99C10—C111.4061 (13)
C3—H3B0.99C11—C121.4553 (13)
C4—C111.4154 (13)C12—C131.4127 (13)
C4—S11.6692 (10)C13—N91.3988 (13)
C5—C61.3917 (14)N9—H90.88
C5—C121.4006 (13)
C10—C1—C2108.17 (8)C5—C6—C7121.32 (10)
C10—C1—H1A110.1C5—C6—H6119.3
C2—C1—H1A110.1C7—C6—H6119.3
C10—C1—H1B110.1C8—C7—C6121.15 (10)
C2—C1—H1B110.1C8—C7—H7119.4
H1A—C1—H1B108.4C6—C7—H7119.4
C1—C2—C3110.92 (8)C7—C8—C13117.08 (10)
C1—C2—H2A109.5C7—C8—H8121.5
C3—C2—H2A109.5C13—C8—H8121.5
C1—C2—H2B109.5N9—C10—C11109.79 (9)
C3—C2—H2B109.5N9—C10—C1124.55 (9)
H2A—C2—H2B108C11—C10—C1125.66 (9)
C4—C3—C2113.85 (8)C10—C11—C4120.68 (9)
C4—C3—H3A108.8C10—C11—C12106.34 (8)
C2—C3—H3A108.8C4—C11—C12132.83 (9)
C4—C3—H3B108.8C5—C12—C13118.80 (9)
C2—C3—H3B108.8C5—C12—C11135.05 (9)
H3A—C3—H3B107.7C13—C12—C11106.14 (8)
C11—C4—C3116.35 (8)C8—C13—N9128.98 (9)
C11—C4—S1123.85 (7)C8—C13—C12122.96 (10)
C3—C4—S1119.73 (7)N9—C13—C12108.06 (8)
C6—C5—C12118.64 (9)C10—N9—C13109.64 (8)
C6—C5—H5120.7C10—N9—H9125.2
C12—C5—H5120.7C13—N9—H9125.2
C10—C1—C2—C349.84 (11)C6—C5—C12—C131.45 (14)
C1—C2—C3—C455.67 (11)C6—C5—C12—C11179.79 (10)
C2—C3—C4—C1128.23 (12)C10—C11—C12—C5177.03 (10)
C2—C3—C4—S1154.52 (8)C4—C11—C12—C57.46 (19)
C12—C5—C6—C70.52 (15)C10—C11—C12—C131.84 (10)
C5—C6—C7—C81.47 (16)C4—C11—C12—C13173.67 (10)
C6—C7—C8—C130.35 (15)C7—C8—C13—N9178.60 (10)
C2—C1—C10—N9158.35 (9)C7—C8—C13—C121.70 (15)
C2—C1—C10—C1121.72 (13)C5—C12—C13—C82.64 (14)
N9—C10—C11—C4174.61 (9)C11—C12—C13—C8178.27 (9)
C1—C10—C11—C45.33 (15)C5—C12—C13—N9177.61 (8)
N9—C10—C11—C121.56 (11)C11—C12—C13—N91.47 (10)
C1—C10—C11—C12178.50 (9)C11—C10—N9—C130.66 (11)
C3—C4—C11—C102.22 (13)C1—C10—N9—C13179.40 (9)
S1—C4—C11—C10174.91 (7)C8—C13—N9—C10179.18 (10)
C3—C4—C11—C12177.20 (10)C12—C13—N9—C100.55 (11)
S1—C4—C11—C120.08 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···S1i0.882.453.3187 (9)172
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H11NS
Mr201.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)8.6353 (14), 12.1395 (15), 9.5808 (14)
β (°) 104.599 (10)
V3)971.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.38 × 0.33 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.900, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
6145, 3305, 2915
Rint0.018
(sin θ/λ)max1)0.741
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.04
No. of reflections3305
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.30

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···S1i0.882.453.3187 (9)172
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds