Download citation
Download citation
link to html
Urea forms a 3:1 solvate with N,N-dimethyl­formamide to give the title compound, 3CH4N2O·C3H7NO. The structure displays an extensive network of inter­molecular hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059934/pk2065sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059934/pk2065Isup2.hkl
Contains datablock I

CCDC reference: 673055

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](N-C) = 0.002 Å
  • R factor = 0.039
  • wR factor = 0.105
  • Data-to-parameter ratio = 16.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 50.00 A   3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The crystal structure of urea has been widely studied (see for example, Vaughan and Donohue (1952) and references therein; Swaminathan et al. (1984), Pryor and Sanger (1970), Guth et al. (1980) and Weber et al. (2002)). This novel crystalline solvate of urea was discovered during an investigation into the influence of different crystallization solvents on urea crystal morphology. A sample was obtained by slow evaporation of a saturated N,N-dimethyl formamide (DMF) solution at 298 K and identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent recrystallization produced a single-crystal suitable for X-ray diffraction at 150 K (Fig. 1). The compound crystallizes in space group P1 with three molecules of urea and one molecule of DMF in the asymmetric unit. The molecules comprising this structure offer a relatively large number of potential hydrogen bond donors (4 N—H groups in urea) and acceptors (1 carbonyl O-atom in urea and in DMF), hence it is not surprising to observe that molecular packing results in an extensive three dimensional hydrogen bonded network (Fig. 2) comprising 12 unique N—H···O hydrogen bonds (Table 1).

Related literature top

For details on the experimental methods used to obtain this form, see: Florence et al. (2003). For crystal structures of urea see: Vaughan & Donohue (1952) and references therein; Swaminathan et al. (1984); Pryor & Sanger (1970); Guth et al. (1980); Weber et al. (2002).

Experimental top

The compound was sourced from Sigma-Aldrich and used as supplied. A single-crystal sample of the 3/1 solvate was recrystallized from a saturated N,N-dimethyl formamide solution by isothermal solvent evaporation at room temperature.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. The positions of H atoms attached to nitrogen were refined freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 50% probablility displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing in the structure of the urea DMF (3/1) solvate illustrating the extended hydrogen bonded network. Molecules colour coded according to symmetry equivalence (DMF = black) and hydrogen bonds are shown as dashed lines.
#Diaminomethanal N,N-dimethylformamide (3/1) Urea N,N-dimethylformamide (3/1) top
Crystal data top
3CH4N2O·C3H7NOZ = 2
Mr = 253.26F(000) = 272
Triclinic, P1Dx = 1.219 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5246 (13) ÅCell parameters from 6184 reflections
b = 9.866 (4) Åθ = 3–29°
c = 10.821 (4) ŵ = 0.10 mm1
α = 65.61 (4)°T = 150 K
β = 79.43 (2)°Block, colourless
γ = 70.76 (2)°0.36 × 0.26 × 0.18 mm
V = 689.7 (5) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
3177 independent reflections
Graphite monochromator2407 reflections with I > 2σ(I)
Detector resolution: 15.9745 pixels mm-1Rint = 0.022
ϕ & ω scansθmax = 28.6°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2006).
h = 910
Tmin = 0.92, Tmax = 0.98k = 1113
14479 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.11P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.000236
3177 reflectionsΔρmax = 0.27 e Å3
190 parametersΔρmin = 0.21 e Å3
0 restraints
Crystal data top
3CH4N2O·C3H7NOγ = 70.76 (2)°
Mr = 253.26V = 689.7 (5) Å3
Triclinic, P1Z = 2
a = 7.5246 (13) ÅMo Kα radiation
b = 9.866 (4) ŵ = 0.10 mm1
c = 10.821 (4) ÅT = 150 K
α = 65.61 (4)°0.36 × 0.26 × 0.18 mm
β = 79.43 (2)°
Data collection top
Oxford Diffraction Gemini
diffractometer
3177 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2006).
2407 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.98Rint = 0.022
14479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.27 e Å3
3177 reflectionsΔρmin = 0.21 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06958 (17)0.32108 (13)0.27505 (12)0.0356
O20.02843 (12)0.22791 (9)0.31656 (8)0.0371
N30.06236 (17)0.41092 (13)0.34153 (12)0.0435
N40.18100 (18)0.33455 (16)0.16228 (12)0.0504
C50.82167 (18)0.21738 (14)0.65710 (12)0.0388
O60.79384 (13)0.35798 (9)0.57991 (8)0.0446
N70.78236 (18)0.17494 (14)0.79088 (11)0.0466
N80.89032 (19)0.10598 (13)0.60730 (12)0.0507
C90.47338 (17)0.53430 (13)0.79962 (12)0.0348
O100.62105 (12)0.44582 (10)0.86052 (8)0.0396
N110.33423 (16)0.61656 (14)0.85785 (12)0.0417
N120.45371 (18)0.54772 (14)0.67442 (11)0.0434
N130.71303 (17)0.86268 (13)0.19938 (11)0.0456
C140.6913 (3)1.02738 (19)0.15339 (18)0.0769
C150.6756 (2)0.78009 (19)0.34263 (14)0.0542
C160.7682 (2)0.79285 (16)0.11316 (13)0.0511
O170.80099 (19)0.85536 (12)0.00986 (10)0.0654
H310.013 (2)0.3994 (18)0.4182 (17)0.0537*
H320.134 (2)0.4718 (19)0.3162 (16)0.0533*
H410.184 (2)0.276 (2)0.1193 (17)0.0631*
H420.242 (2)0.397 (2)0.1383 (17)0.0639*
H710.740 (2)0.248 (2)0.8206 (16)0.0528*
H720.792 (2)0.082 (2)0.8414 (16)0.0532*
H810.911 (2)0.1357 (19)0.5179 (17)0.0558*
H820.914 (2)0.010 (2)0.6577 (16)0.0550*
H1110.237 (2)0.6740 (18)0.8152 (16)0.0488*
H1120.349 (2)0.6023 (18)0.9429 (16)0.0490*
H1210.356 (2)0.6083 (19)0.6330 (16)0.0504*
H1220.545 (2)0.4918 (18)0.6397 (15)0.0503*
H1410.78001.06270.08110.1148*
H1420.70141.05590.22410.1142*
H1430.57511.07670.11630.1149*
H1510.69890.67050.36170.0800*
H1520.75500.79320.39440.0794*
H1530.54840.82170.36890.0802*
H1610.77850.68450.15340.0614*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (6)0.0325 (6)0.0306 (6)0.0081 (5)0.0049 (5)0.0068 (5)
O20.0434 (5)0.0330 (4)0.0319 (4)0.0130 (4)0.0007 (3)0.0083 (3)
N30.0505 (7)0.0423 (6)0.0421 (6)0.0206 (5)0.0041 (5)0.0172 (5)
N40.0605 (8)0.0594 (7)0.0427 (6)0.0342 (6)0.0134 (5)0.0237 (6)
C50.0441 (7)0.0340 (6)0.0336 (6)0.0109 (5)0.0026 (5)0.0102 (5)
O60.0583 (6)0.0297 (4)0.0351 (5)0.0093 (4)0.0077 (4)0.0086 (4)
N70.0675 (8)0.0322 (6)0.0321 (6)0.0123 (5)0.0043 (5)0.0089 (5)
N80.0777 (9)0.0296 (5)0.0339 (6)0.0106 (5)0.0065 (5)0.0091 (5)
C90.0399 (6)0.0323 (6)0.0339 (6)0.0147 (5)0.0013 (5)0.0111 (5)
O100.0418 (5)0.0411 (5)0.0370 (4)0.0074 (4)0.0046 (4)0.0180 (4)
N110.0391 (6)0.0469 (6)0.0368 (6)0.0050 (5)0.0050 (5)0.0181 (5)
N120.0454 (6)0.0468 (6)0.0346 (6)0.0058 (5)0.0064 (5)0.0159 (5)
N130.0590 (7)0.0390 (6)0.0354 (5)0.0152 (5)0.0027 (5)0.0100 (5)
C140.1287 (17)0.0406 (8)0.0538 (9)0.0175 (10)0.0026 (10)0.0168 (7)
C150.0661 (9)0.0586 (9)0.0366 (7)0.0247 (7)0.0026 (6)0.0136 (6)
C160.0771 (10)0.0361 (7)0.0378 (7)0.0204 (7)0.0024 (7)0.0088 (6)
O170.1138 (10)0.0459 (6)0.0351 (5)0.0294 (6)0.0023 (5)0.0116 (4)
Geometric parameters (Å, º) top
C1—O21.2550 (15)C9—N121.3369 (17)
C1—N31.3367 (17)N11—H1110.841 (16)
C1—N41.3317 (17)N11—H1120.895 (16)
N3—H310.903 (17)N12—H1210.844 (17)
N3—H320.868 (16)N12—H1220.863 (16)
N4—H410.877 (18)N13—C141.450 (2)
N4—H420.817 (18)N13—C151.4471 (18)
C5—O61.2577 (16)N13—C161.3106 (18)
C5—N71.3350 (17)C14—H1410.957
C5—N81.3333 (17)C14—H1420.940
N7—H710.854 (17)C14—H1430.922
N7—H720.837 (17)C15—H1510.973
N8—H810.887 (17)C15—H1520.960
N8—H820.852 (17)C15—H1530.950
C9—O101.2592 (15)C16—O171.2309 (17)
C9—N111.3312 (17)C16—H1610.955
O2—C1—N3120.88 (11)H111—N11—H112124.4 (15)
O2—C1—N4120.68 (12)C9—N12—H121120.4 (11)
N3—C1—N4118.42 (12)C9—N12—H122116.7 (10)
C1—N3—H31117.1 (10)H121—N12—H122122.9 (15)
C1—N3—H32121.5 (11)C14—N13—C15117.53 (13)
H31—N3—H32121.2 (14)C14—N13—C16120.28 (12)
C1—N4—H41117.5 (11)C15—N13—C16122.18 (12)
C1—N4—H42117.8 (12)N13—C14—H141113.4
H41—N4—H42124.7 (17)N13—C14—H142112.2
O6—C5—N7121.26 (12)H141—C14—H142108.0
O6—C5—N8120.80 (12)N13—C14—H143105.7
N7—C5—N8117.94 (12)H141—C14—H143105.2
C5—N7—H71116.3 (11)H142—C14—H143112.2
C5—N7—H72121.2 (11)N13—C15—H151110.0
H71—N7—H72122.4 (15)N13—C15—H152109.2
C5—N8—H81117.1 (10)H151—C15—H152110.2
C5—N8—H82122.6 (11)N13—C15—H153110.2
H81—N8—H82120.3 (14)H151—C15—H153109.4
O10—C9—N11120.97 (11)H152—C15—H153107.6
O10—C9—N12120.39 (12)N13—C16—O17125.87 (13)
N11—C9—N12118.64 (12)N13—C16—H161113.8
C9—N11—H111119.0 (11)O17—C16—H161120.3
C9—N11—H112116.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O6i0.903 (17)2.052 (17)2.9462 (19)170.8 (16)
N3—H32···O10ii0.866 (17)2.475 (16)3.195 (2)141.1 (15)
N4—H41···O17iii0.872 (19)2.054 (19)2.924 (2)177.0 (14)
N4—H42···O10ii0.818 (18)2.131 (18)2.920 (2)162.1 (16)
N7—H71···O100.853 (19)2.05 (2)2.894 (2)170.4 (16)
N7—H72···O17iv0.838 (18)2.136 (18)2.969 (2)172.8 (17)
N8—H81···O2v0.887 (17)2.014 (17)2.8935 (18)171.4 (16)
N8—H82···O2vi0.851 (18)2.13 (2)2.903 (2)150.5 (15)
N11—H111···O2vii0.839 (17)2.028 (16)2.8435 (19)163.8 (17)
N11—H112···O10viii0.894 (16)2.018 (16)2.9103 (19)175.6 (17)
N12—H121···O2vii0.842 (17)2.568 (18)3.247 (2)138.6 (14)
N12—H122···O60.863 (17)2.074 (17)2.926 (2)169.7 (14)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y1, z+1; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x, y+1, z+1; (viii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula3CH4N2O·C3H7NO
Mr253.26
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.5246 (13), 9.866 (4), 10.821 (4)
α, β, γ (°)65.61 (4), 79.43 (2), 70.76 (2)
V3)689.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.26 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2006).
Tmin, Tmax0.92, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
14479, 3177, 2407
Rint0.022
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 0.98
No. of reflections3177
No. of parameters190
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O6i0.903 (17)2.052 (17)2.9462 (19)170.8 (16)
N3—H32···O10ii0.866 (17)2.475 (16)3.195 (2)141.1 (15)
N4—H41···O17iii0.872 (19)2.054 (19)2.924 (2)177.0 (14)
N4—H42···O10ii0.818 (18)2.131 (18)2.920 (2)162.1 (16)
N7—H71···O100.853 (19)2.05 (2)2.894 (2)170.4 (16)
N7—H72···O17iv0.838 (18)2.136 (18)2.969 (2)172.8 (17)
N8—H81···O2v0.887 (17)2.014 (17)2.8935 (18)171.4 (16)
N8—H82···O2vi0.851 (18)2.13 (2)2.903 (2)150.5 (15)
N11—H111···O2vii0.839 (17)2.028 (16)2.8435 (19)163.8 (17)
N11—H112···O10viii0.894 (16)2.018 (16)2.9103 (19)175.6 (17)
N12—H121···O2vii0.842 (17)2.568 (18)3.247 (2)138.6 (14)
N12—H122···O60.863 (17)2.074 (17)2.926 (2)169.7 (14)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y1, z+1; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x, y+1, z+1; (viii) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds