Download citation
Download citation
link to html
The title compound, C16H14Cl3N3O2S, is an important inter­mediate for the synthesis of biologically active heterocyclic compounds. The chloro- and dichloro­phenyl rings are oriented at a dihedral angle of 40.41 (3)°. The intra­molecular N—H...O hydrogen bond results in the formation of a nearly planar five-membered ring, which is oriented at dihedral angles of 24.36 (3) and 22.27 (3)° with respect to the chloro- and dichloro­phenyl rings, respectively. In the crystal structure, inter­molecular N—H...O hydrogen bonds link the mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059119/hk2375sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059119/hk2375Isup2.hkl
Contains datablock I

CCDC reference: 672990

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.100
  • Data-to-parameter ratio = 18.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C9 ..... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Thiosemicarbazide is interesting because of the formation of complexes with biological activities (Shen et al., 1998). Some substituted thiourea derivatives have shown interesting biological effects, including anti-HIV properties (Mao et al., 1999), and thiourea derivatives have also been successfully screened for various biological actions (Antholine & Taketa, 1982). As a ligand with potential S– and N-atom donors, thiosemicarbazide is interesting because of the structural chemistry of its multifunctional coordination modes (N-monodentate, S-monodentate or N:S-bidentate). In order to investigate further this kind of ligand, we synthesized the title compound, (I), and reported herein its crystal structure.

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (C1—C6) and B (C11—C16) are, of course, planar. The intramolecular N—H···O hydrogen bond (Table 1) results in the formation of a nearly planar five-membered ring; C (N3/C8/C9/O2/H3N). The dihedral angles between them are A/B = 40.41 (3)°, A/C = 24.36 (3)° and B/C = 22.27 (3)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Related literature top

For related literature, see: Shen et al. (1998); Mao et al. (1999); Antholine & Taketa (1982). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of 2-(2,4-dichlorophenoxy) propanohydrazide (2.48 g, 20 mmol) and 4-chlorophenyl isothiocyanate (0.84 g, 20 mmol). Single crystals suitable for X-ray analysis were obtained by recrystallization from an aqeous ethanol solution at room temperature (yield; 76%; m.p. 465–466 K).

Refinement top

H atoms of NH groups were located in difference syntheses and constrained to ride on their parent atoms, [N—H = 0.8725, 0.9582 and 0.9954 Å and Uiso(H) = 1.5Ueq(N)]. The remaining H atoms were positioned geometrically, with C—H = 0.95 and 1.00 Å for aromatic and methine H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Bruker, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Preparation of the title compound.
4-(4-Chlorophenyl)-1-[2-(2,4-dichlorophenoxy)propanoyl]thiosemicarbazide top
Crystal data top
C16H14Cl3N3O2SZ = 2
Mr = 418.71F(000) = 428
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Melting point: 465(1) K
a = 7.8930 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9195 (3) ÅCell parameters from 11915 reflections
c = 13.3491 (4) Åθ = 1.0–27.5°
α = 96.514 (2)°µ = 0.65 mm1
β = 98.681 (2)°T = 120 K
γ = 104.476 (2)°Block, colorless
V = 888.25 (5) Å30.20 × 0.13 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
4083 independent reflections
Radiation source: fine-focus sealed tube3217 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.040
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 1.6°
ϕ scans and ω scans with κ offseth = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.881, Tmax = 0.926l = 1717
17933 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.035P)2 + 0.9894P]
where P = (Fo2 + 2Fc2)/3
4083 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C16H14Cl3N3O2Sγ = 104.476 (2)°
Mr = 418.71V = 888.25 (5) Å3
Triclinic, P1Z = 2
a = 7.8930 (3) ÅMo Kα radiation
b = 8.9195 (3) ŵ = 0.65 mm1
c = 13.3491 (4) ÅT = 120 K
α = 96.514 (2)°0.20 × 0.13 × 0.12 mm
β = 98.681 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4083 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3217 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.926Rint = 0.040
17933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
4083 reflectionsΔρmin = 0.47 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.12353 (7)1.36448 (7)0.36324 (5)0.02892 (15)
Cl20.13947 (8)0.44813 (8)0.08375 (5)0.03269 (16)
Cl30.78798 (10)0.05093 (8)0.06665 (5)0.04314 (19)
S10.24894 (8)0.84661 (7)0.21890 (5)0.02685 (16)
O10.2064 (2)0.87470 (19)0.44166 (12)0.0254 (4)
O20.3218 (2)0.6062 (2)0.21131 (12)0.0322 (4)
N10.3706 (2)1.0769 (2)0.38554 (14)0.0210 (4)
H1N0.33941.11440.44100.031*
N20.0791 (2)0.9544 (2)0.35479 (15)0.0225 (4)
H2N0.07831.01270.41950.034*
N30.0680 (2)0.8317 (2)0.30982 (14)0.0210 (4)
H3N0.07630.76460.24340.031*
C10.9023 (3)1.2756 (3)0.36897 (17)0.0196 (4)
C20.7841 (3)1.2060 (3)0.27939 (17)0.0225 (5)
H20.82401.20520.21570.027*
C30.6067 (3)1.1372 (3)0.28158 (17)0.0214 (5)
H30.52471.09010.21960.026*
C40.5497 (3)1.1377 (2)0.37567 (17)0.0185 (4)
C50.6708 (3)1.2093 (3)0.46567 (17)0.0203 (5)
H50.63161.21030.52960.024*
C60.8474 (3)1.2790 (3)0.46331 (17)0.0210 (5)
H60.92951.32810.52480.025*
C70.2363 (3)0.9647 (2)0.32242 (17)0.0193 (4)
C80.2060 (3)0.8005 (3)0.35744 (17)0.0210 (5)
C90.3661 (3)0.6672 (3)0.30407 (17)0.0246 (5)
H90.47100.70970.28720.030*
C100.4072 (3)0.5491 (3)0.37497 (19)0.0286 (5)
H10A0.51230.46390.34150.043*
H10B0.43080.60000.43840.043*
H10C0.30520.50630.39130.043*
C110.4399 (3)0.4790 (3)0.14855 (16)0.0216 (5)
C120.3656 (3)0.3914 (3)0.08300 (17)0.0217 (5)
C130.4719 (3)0.2600 (3)0.01604 (17)0.0252 (5)
H130.42140.20130.02910.030*
C140.6526 (3)0.2161 (3)0.01616 (18)0.0265 (5)
C150.7295 (3)0.3017 (3)0.07964 (18)0.0261 (5)
H150.85410.27000.07840.031*
C160.6221 (3)0.4346 (3)0.14523 (18)0.0242 (5)
H160.67400.49560.18810.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0179 (3)0.0313 (3)0.0347 (3)0.0013 (2)0.0074 (2)0.0026 (2)
Cl20.0211 (3)0.0441 (4)0.0370 (3)0.0096 (3)0.0122 (2)0.0123 (3)
Cl30.0487 (4)0.0326 (4)0.0340 (4)0.0024 (3)0.0001 (3)0.0117 (3)
S10.0214 (3)0.0291 (3)0.0257 (3)0.0021 (2)0.0082 (2)0.0078 (2)
O10.0244 (9)0.0259 (9)0.0214 (8)0.0002 (7)0.0080 (7)0.0047 (7)
O20.0295 (9)0.0350 (10)0.0211 (8)0.0084 (8)0.0100 (7)0.0089 (7)
N10.0181 (9)0.0234 (10)0.0197 (9)0.0016 (8)0.0080 (7)0.0007 (8)
N20.0180 (9)0.0222 (10)0.0229 (10)0.0009 (8)0.0068 (8)0.0043 (8)
N30.0164 (9)0.0226 (10)0.0198 (9)0.0007 (8)0.0048 (7)0.0019 (8)
C10.0162 (11)0.0178 (11)0.0259 (11)0.0048 (8)0.0073 (9)0.0024 (9)
C20.0238 (12)0.0220 (11)0.0216 (11)0.0041 (9)0.0089 (9)0.0019 (9)
C30.0222 (11)0.0200 (11)0.0192 (11)0.0021 (9)0.0036 (9)0.0002 (9)
C40.0176 (11)0.0151 (10)0.0232 (11)0.0046 (8)0.0058 (9)0.0020 (8)
C50.0228 (11)0.0202 (11)0.0189 (11)0.0068 (9)0.0064 (9)0.0024 (9)
C60.0200 (11)0.0212 (11)0.0197 (11)0.0055 (9)0.0003 (9)0.0004 (9)
C70.0194 (11)0.0177 (11)0.0209 (11)0.0050 (9)0.0044 (9)0.0023 (8)
C80.0201 (11)0.0227 (11)0.0192 (11)0.0036 (9)0.0054 (9)0.0022 (9)
C90.0238 (12)0.0270 (12)0.0192 (11)0.0011 (10)0.0064 (9)0.0021 (9)
C100.0306 (13)0.0236 (12)0.0270 (12)0.0002 (10)0.0046 (10)0.0026 (10)
C110.0216 (11)0.0238 (12)0.0150 (10)0.0006 (9)0.0020 (9)0.0007 (9)
C120.0195 (11)0.0289 (12)0.0191 (11)0.0075 (9)0.0065 (9)0.0069 (9)
C130.0327 (13)0.0253 (12)0.0194 (11)0.0098 (10)0.0093 (10)0.0007 (9)
C140.0326 (13)0.0220 (12)0.0203 (11)0.0036 (10)0.0004 (10)0.0006 (9)
C150.0195 (12)0.0281 (13)0.0270 (12)0.0021 (10)0.0020 (9)0.0026 (10)
C160.0214 (12)0.0240 (12)0.0269 (12)0.0059 (9)0.0076 (9)0.0005 (9)
Geometric parameters (Å, º) top
Cl1—C11.745 (2)C3—H30.9500
Cl2—C121.727 (2)C4—C51.392 (3)
Cl3—C141.738 (2)C5—C61.384 (3)
S1—C71.671 (2)C5—H50.9500
O1—C81.239 (3)C6—H60.9500
O2—C111.370 (3)C8—C91.518 (3)
O2—C91.423 (3)C9—C101.503 (3)
N1—C71.358 (3)C9—H91.0000
N1—C41.414 (3)C10—H10A0.9800
N1—H1N0.8725C10—H10B0.9800
N2—C71.360 (3)C10—H10C0.9800
N2—N31.382 (3)C11—C161.385 (3)
N2—H2N0.9582C11—C121.396 (3)
N3—C81.329 (3)C12—C131.386 (3)
N3—H3N0.9954C13—C141.382 (3)
C1—C21.375 (3)C13—H130.9500
C1—C61.392 (3)C14—C151.382 (3)
C2—C31.388 (3)C15—C161.389 (3)
C2—H20.9500C15—H150.9500
C3—C41.396 (3)C16—H160.9500
C11—O2—C9119.48 (18)O1—C8—C9120.6 (2)
C7—N1—C4130.11 (18)N3—C8—C9116.85 (19)
C7—N1—H1N113.2O2—C9—C10113.9 (2)
C4—N1—H1N116.6O2—C9—C8106.38 (18)
C7—N2—N3119.54 (18)C10—C9—C8109.12 (19)
C7—N2—H2N119.4O2—C9—H9109.1
N3—N2—H2N118.8C10—C9—H9109.1
C8—N3—N2118.69 (18)C8—C9—H9109.1
C8—N3—H3N117.8C9—C10—H10A109.5
N2—N3—H3N123.5C9—C10—H10B109.5
C2—C1—C6121.1 (2)H10A—C10—H10B109.5
C2—C1—Cl1119.13 (17)C9—C10—H10C109.5
C6—C1—Cl1119.77 (17)H10A—C10—H10C109.5
C1—C2—C3120.3 (2)H10B—C10—H10C109.5
C1—C2—H2119.8O2—C11—C16125.2 (2)
C3—C2—H2119.8O2—C11—C12115.4 (2)
C2—C3—C4119.4 (2)C16—C11—C12119.3 (2)
C2—C3—H3120.3C13—C12—C11120.6 (2)
C4—C3—H3120.3C13—C12—Cl2119.42 (17)
C5—C4—C3119.7 (2)C11—C12—Cl2119.93 (18)
C5—C4—N1116.60 (19)C14—C13—C12118.8 (2)
C3—C4—N1123.6 (2)C14—C13—H13120.6
C6—C5—C4120.9 (2)C12—C13—H13120.6
C6—C5—H5119.6C13—C14—C15121.6 (2)
C4—C5—H5119.6C13—C14—Cl3119.52 (18)
C5—C6—C1118.7 (2)C15—C14—Cl3118.85 (19)
C5—C6—H6120.7C14—C15—C16119.1 (2)
C1—C6—H6120.7C14—C15—H15120.5
N1—C7—N2110.96 (18)C16—C15—H15120.5
N1—C7—S1127.86 (17)C11—C16—C15120.5 (2)
N2—C7—S1121.17 (16)C11—C16—H16119.8
O1—C8—N3122.6 (2)C15—C16—H16119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.872.022.854 (2)160
N2—H2N···O1i0.961.992.861 (2)150
N3—H3N···O21.002.042.526 (2)107
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H14Cl3N3O2S
Mr418.71
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.8930 (3), 8.9195 (3), 13.3491 (4)
α, β, γ (°)96.514 (2), 98.681 (2), 104.476 (2)
V3)888.25 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.20 × 0.13 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.881, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
17933, 4083, 3217
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 1.04
No. of reflections4083
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.47

Computer programs: COLLECT (Bruker, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.872.022.854 (2)159.8
N2—H2N···O1i0.961.992.861 (2)149.7
N3—H3N···O21.002.042.526 (2)107
Symmetry code: (i) x, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds