Download citation
Download citation
link to html
The geometry around the Sn atom of the title compound, [Sn(C6H5)2Cl2(C2H6OS)2], is distorted octa­hedral, with Sn—C and Sn—O distances lying in the ranges 2.139 (4)–2.156 (4) and 2.270 (2)–2.279 (2) Å, respectively. Mol­ecules are linked by inter­molecular C—H...O and C—H...Cl hydrogen bonds, and by C—H...π inter­actions with distances of 2.8 and 2.75 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025858/at2303sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025858/at2303Isup2.hkl
Contains datablock I

CCDC reference: 628843

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.021
  • wR factor = 0.048
  • Data-to-parameter ratio = 13.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT128_ALERT_4_C Non-standard setting of Space group Pc .... Pn PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.20 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.39 Ratio
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 26.36 From the CIF: _reflns_number_total 2934 Count of symmetry unique reflns 2017 Completeness (_total/calc) 145.46% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 917 Fraction of Friedel pairs measured 0.455 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

There have been several reports dealing with the impact of organotin chemistry in the biosphere (Gielen, 1994; Ng et al., 1991). Exploration of the structural-activity relationships of such systems has led to numerous reports in recent years (Gielen, 1994; Selvaratnam et al., 1994; McManus et al., 1994). Organotin compounds are of current interest due to their dramatic increase of industrial, agricultural and biological applications (Xie et al., 1996; Nath et al., 2001). The studies of organotin and biologically important ligands have gained importance due to potential pharmaceutical applications of organotin compounds (Anderson et al., 1984). We report here the crystal structure of the title compound (I) as a continuation of our efforts in the synthesis and structural characterization of organotin(IV) complexes (Shahzadi et al., 2006) (Fig 1).

The Sn atom is bonded to two phenyls, two DMSO groups and two chlorides forming a distorted octahedral geometry. The Sn—C distances lie in the range 2.139 (4) - 2.156 (4) Å which is longer than Sn—C distance reported earlier (Shahzadi et al., 2006). The C1—Sn1—C7 and O1—Sn1—Cl2 angles are 172.19 (3) and 170.97 (6)°, respectively (Table 1). The molecules are linked by C—H···O and C—H···Cl hydrogen bonds (Table 1, Fig.2) and C—H···π interactions between H11—Cg1 (symmetry equivalent -1 + x, y, z) and H13A and Cg2 (symmetry equivalent 1/2 + x, 1 - y, -1/2 + z) with distances of 2.8 and 2.75, where Cg1 and Cg2 are the phenyl rings C1—C6 and C7—C12, respectively.

Related literature top

For related literature, see: Anderson et al. (1984); Gielen (1994); McManus et al. (1994); Nath et al. (2001); Ng et al. (1991); Selvaratnam et al. (1994); Shahzadi et al. (2006); Xie et al. (1996).

Experimental top

1-(2-Pyridyl)piperazine (2 mmol), carbondisulfide (2 mmol) and diphenyltin dichloride (1 mmol) were suspended in dry methanol (150 ml) in a two necked round bottom flask. The mixture was stirred at room temperature for 24 h. Solid product obtained was filtered off and recrystallized from DMSO to obtain colourless crystals suitable for X-ray analysis (yield 65%; m.p. 414–416 K).

Refinement top

H atoms were included in calculated positions using the riding method, with C—H = 0.95 - 0.98 Å and Ueq values 1.2 times those of the parent atoms (1.5 times those of the methyl C atoms).

Structure description top

There have been several reports dealing with the impact of organotin chemistry in the biosphere (Gielen, 1994; Ng et al., 1991). Exploration of the structural-activity relationships of such systems has led to numerous reports in recent years (Gielen, 1994; Selvaratnam et al., 1994; McManus et al., 1994). Organotin compounds are of current interest due to their dramatic increase of industrial, agricultural and biological applications (Xie et al., 1996; Nath et al., 2001). The studies of organotin and biologically important ligands have gained importance due to potential pharmaceutical applications of organotin compounds (Anderson et al., 1984). We report here the crystal structure of the title compound (I) as a continuation of our efforts in the synthesis and structural characterization of organotin(IV) complexes (Shahzadi et al., 2006) (Fig 1).

The Sn atom is bonded to two phenyls, two DMSO groups and two chlorides forming a distorted octahedral geometry. The Sn—C distances lie in the range 2.139 (4) - 2.156 (4) Å which is longer than Sn—C distance reported earlier (Shahzadi et al., 2006). The C1—Sn1—C7 and O1—Sn1—Cl2 angles are 172.19 (3) and 170.97 (6)°, respectively (Table 1). The molecules are linked by C—H···O and C—H···Cl hydrogen bonds (Table 1, Fig.2) and C—H···π interactions between H11—Cg1 (symmetry equivalent -1 + x, y, z) and H13A and Cg2 (symmetry equivalent 1/2 + x, 1 - y, -1/2 + z) with distances of 2.8 and 2.75, where Cg1 and Cg2 are the phenyl rings C1—C6 and C7—C12, respectively.

For related literature, see: Anderson et al. (1984); Gielen (1994); McManus et al. (1994); Nath et al. (2001); Ng et al. (1991); Selvaratnam et al. (1994); Shahzadi et al. (2006); Xie et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL and PLATON (Spek 2003).

Figures top
[Figure 1] Fig. 1. Structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of (I) viewed down the b axis showing the hydrogen bonding interactions with dotted lines..
Dichloridobis(dimethyl sulfoxide-κO)diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2Cl2(C2H6OS)2]F(000) = 500
Mr = 500.05Dx = 1.680 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 3405 reflections
a = 9.8877 (8) Åθ = 2.5–26.4°
b = 7.9766 (6) ŵ = 1.78 mm1
c = 12.588 (1) ÅT = 100 K
β = 95.506 (1)°Rectangular, colourless
V = 988.24 (13) Å30.40 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2934 independent reflections
Radiation source: fine-focus sealed tube2884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 128
Tmin = 0.536, Tmax = 0.717k = 99
5514 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0248P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2934 reflectionsΔρmax = 0.63 e Å3
212 parametersΔρmin = 0.50 e Å3
2 restraintsAbsolute structure: Flack (1983), with 917 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (17)
Crystal data top
[Sn(C6H5)2Cl2(C2H6OS)2]V = 988.24 (13) Å3
Mr = 500.05Z = 2
Monoclinic, PnMo Kα radiation
a = 9.8877 (8) ŵ = 1.78 mm1
b = 7.9766 (6) ÅT = 100 K
c = 12.588 (1) Å0.40 × 0.20 × 0.20 mm
β = 95.506 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2934 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2884 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 0.717Rint = 0.020
5514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.048Δρmax = 0.63 e Å3
S = 1.05Δρmin = 0.50 e Å3
2934 reflectionsAbsolute structure: Flack (1983), with 917 Freidel pairs
212 parametersAbsolute structure parameter: 0.024 (17)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.87116 (2)0.73205 (2)0.06392 (2)0.01157 (6)
S11.06401 (9)0.52499 (11)0.09835 (7)0.01579 (19)
S21.02952 (11)0.42840 (11)0.23125 (7)0.0206 (2)
Cl10.77624 (10)0.98627 (11)0.02938 (7)0.01949 (19)
Cl20.82060 (10)0.81165 (12)0.24691 (7)0.0198 (2)
O10.9310 (2)0.6217 (3)0.09105 (19)0.0155 (5)
O20.9624 (3)0.4828 (3)0.1231 (2)0.0210 (6)
C11.0711 (4)0.8424 (4)0.0825 (3)0.0127 (7)
C21.1228 (4)0.9177 (4)0.0049 (3)0.0159 (8)
H21.07050.91660.07220.019*
C31.2497 (4)0.9946 (4)0.0047 (3)0.0189 (8)
H31.28441.04280.05620.023*
C41.3253 (4)1.0006 (4)0.1028 (3)0.0189 (8)
H41.41151.05410.10960.023*
C51.2750 (4)0.9282 (4)0.1915 (3)0.0167 (8)
H51.32700.93270.25900.020*
C61.1492 (4)0.8494 (4)0.1819 (3)0.0149 (7)
H61.11560.80000.24280.018*
C70.6846 (4)0.5975 (4)0.0322 (3)0.0147 (7)
C80.6804 (4)0.4271 (4)0.0050 (3)0.0154 (7)
H80.76290.36830.00090.019*
C90.5576 (4)0.3430 (5)0.0136 (3)0.0175 (8)
H90.55660.22750.03210.021*
C100.4357 (4)0.4273 (4)0.0052 (3)0.0166 (8)
H100.35150.37000.01800.020*
C110.4387 (4)0.5969 (5)0.0224 (3)0.0190 (8)
H110.35630.65550.02910.023*
C120.5621 (4)0.6799 (5)0.0400 (3)0.0168 (8)
H120.56290.79570.05780.020*
C131.1218 (4)0.5947 (5)0.2208 (3)0.0245 (9)
H13A1.04800.58430.27820.037*
H13B1.19900.52580.23770.037*
H13C1.15020.71220.21390.037*
C141.0108 (4)0.3205 (5)0.1386 (3)0.0228 (8)
H14A0.97380.26310.07890.034*
H14B1.08860.25730.16030.034*
H14C0.94050.32810.19890.034*
C151.2005 (5)0.3876 (6)0.2057 (4)0.0369 (11)
H15A1.20140.30620.14740.055*
H15B1.25080.34210.27010.055*
H15C1.24330.49210.18540.055*
C160.9765 (6)0.2180 (5)0.2451 (5)0.0407 (13)
H16A0.88120.21610.26040.061*
H16B1.03290.16470.30390.061*
H16C0.98610.15690.17870.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01164 (11)0.01114 (10)0.01229 (10)0.00108 (13)0.00299 (7)0.00024 (13)
S10.0119 (4)0.0192 (4)0.0167 (4)0.0013 (4)0.0036 (3)0.0044 (3)
S20.0318 (6)0.0153 (5)0.0153 (4)0.0075 (4)0.0047 (4)0.0014 (3)
Cl10.0171 (5)0.0160 (4)0.0259 (4)0.0041 (3)0.0045 (4)0.0067 (3)
Cl20.0225 (5)0.0229 (5)0.0153 (4)0.0040 (4)0.0088 (4)0.0041 (3)
O10.0127 (13)0.0181 (13)0.0159 (12)0.0018 (10)0.0027 (10)0.0040 (10)
O20.0231 (16)0.0156 (13)0.0231 (14)0.0049 (12)0.0045 (11)0.0003 (10)
C10.0123 (18)0.0096 (16)0.0163 (17)0.0028 (14)0.0022 (14)0.0031 (13)
C20.018 (2)0.0145 (18)0.0164 (18)0.0027 (15)0.0050 (15)0.0024 (14)
C30.026 (2)0.0113 (17)0.0206 (18)0.0011 (15)0.0098 (15)0.0023 (14)
C40.015 (2)0.0116 (17)0.030 (2)0.0018 (15)0.0049 (16)0.0027 (15)
C50.016 (2)0.0133 (17)0.0198 (18)0.0054 (15)0.0026 (15)0.0022 (14)
C60.0189 (19)0.0115 (17)0.0147 (17)0.0029 (14)0.0042 (14)0.0022 (13)
C70.0170 (19)0.0164 (18)0.0113 (16)0.0010 (15)0.0050 (14)0.0024 (13)
C80.0149 (19)0.0170 (18)0.0147 (17)0.0025 (15)0.0034 (14)0.0019 (14)
C90.020 (2)0.0125 (18)0.0206 (18)0.0025 (15)0.0033 (16)0.0005 (15)
C100.0115 (19)0.0183 (18)0.0205 (18)0.0047 (14)0.0041 (15)0.0003 (14)
C110.0122 (19)0.0211 (19)0.0242 (19)0.0041 (15)0.0036 (15)0.0018 (15)
C120.016 (2)0.0148 (18)0.0201 (18)0.0009 (15)0.0039 (15)0.0001 (14)
C130.027 (2)0.024 (2)0.025 (2)0.0026 (17)0.0149 (18)0.0065 (16)
C140.021 (2)0.0165 (19)0.032 (2)0.0020 (16)0.0081 (17)0.0010 (16)
C150.020 (2)0.025 (2)0.061 (3)0.0036 (19)0.015 (2)0.002 (2)
C160.038 (3)0.020 (2)0.069 (4)0.007 (2)0.031 (3)0.018 (2)
Geometric parameters (Å, º) top
Sn1—C72.139 (4)C7—C121.390 (5)
Sn1—C12.156 (4)C7—C81.402 (5)
Sn1—O12.270 (2)C8—C91.387 (5)
Sn1—O22.279 (2)C8—H80.9500
Sn1—Cl12.4821 (9)C9—C101.393 (5)
Sn1—Cl22.4860 (9)C9—H90.9500
S1—O11.535 (3)C10—C111.397 (5)
S1—C141.773 (4)C10—H100.9500
S1—C131.784 (4)C11—C121.387 (5)
S2—O21.519 (3)C11—H110.9500
S2—C161.772 (4)C12—H120.9500
S2—C151.781 (5)C13—H13A0.9800
C1—C21.393 (5)C13—H13B0.9800
C1—C61.407 (5)C13—H13C0.9800
C2—C31.391 (5)C14—H14A0.9800
C2—H20.9500C14—H14B0.9800
C3—C41.381 (6)C14—H14C0.9800
C3—H30.9500C15—H15A0.9800
C4—C51.391 (5)C15—H15B0.9800
C4—H40.9500C15—H15C0.9800
C5—C61.389 (5)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C7—Sn1—C1172.19 (13)C12—C7—Sn1119.4 (3)
C7—Sn1—O186.36 (11)C8—C7—Sn1122.5 (3)
C1—Sn1—O186.54 (11)C9—C8—C7121.0 (4)
C7—Sn1—O286.02 (12)C9—C8—H8119.5
C1—Sn1—O289.46 (11)C7—C8—H8119.5
O1—Sn1—O279.35 (9)C8—C9—C10120.2 (3)
C7—Sn1—Cl192.38 (10)C8—C9—H9119.9
C1—Sn1—Cl191.08 (9)C10—C9—H9119.9
O1—Sn1—Cl191.61 (6)C9—C10—C11119.2 (4)
O2—Sn1—Cl1170.89 (7)C9—C10—H10120.4
C7—Sn1—Cl293.11 (10)C11—C10—H10120.4
C1—Sn1—Cl293.38 (9)C12—C11—C10120.0 (4)
O1—Sn1—Cl2170.97 (6)C12—C11—H11120.0
O2—Sn1—Cl291.62 (7)C10—C11—H11120.0
Cl1—Sn1—Cl297.42 (3)C11—C12—C7121.5 (3)
O1—S1—C14104.30 (17)C11—C12—H12119.3
O1—S1—C13104.04 (16)C7—C12—H12119.3
C14—S1—C1398.65 (19)S1—C13—H13A109.5
O2—S2—C16104.5 (2)S1—C13—H13B109.5
O2—S2—C15103.3 (2)H13A—C13—H13B109.5
C16—S2—C1598.0 (2)S1—C13—H13C109.5
S1—O1—Sn1122.81 (13)H13A—C13—H13C109.5
S2—O2—Sn1131.88 (15)H13B—C13—H13C109.5
C2—C1—C6118.2 (3)S1—C14—H14A109.5
C2—C1—Sn1119.5 (3)S1—C14—H14B109.5
C6—C1—Sn1122.1 (3)H14A—C14—H14B109.5
C3—C2—C1121.2 (3)S1—C14—H14C109.5
C3—C2—H2119.4H14A—C14—H14C109.5
C1—C2—H2119.4H14B—C14—H14C109.5
C4—C3—C2119.9 (3)S2—C15—H15A109.5
C4—C3—H3120.0S2—C15—H15B109.5
C2—C3—H3120.0H15A—C15—H15B109.5
C3—C4—C5120.0 (4)S2—C15—H15C109.5
C3—C4—H4120.0H15A—C15—H15C109.5
C5—C4—H4120.0H15B—C15—H15C109.5
C6—C5—C4120.2 (3)S2—C16—H16A109.5
C6—C5—H5119.9S2—C16—H16B109.5
C4—C5—H5119.9H16A—C16—H16B109.5
C5—C6—C1120.4 (3)S2—C16—H16C109.5
C5—C6—H6119.8H16A—C16—H16C109.5
C1—C6—H6119.8H16B—C16—H16C109.5
C12—C7—C8118.1 (4)
C14—S1—O1—Sn1117.33 (19)C1—C2—C3—C41.6 (5)
C13—S1—O1—Sn1139.74 (17)C2—C3—C4—C50.7 (5)
C7—Sn1—O1—S1126.56 (18)C3—C4—C5—C60.2 (5)
C1—Sn1—O1—S150.17 (17)C4—C5—C6—C10.2 (5)
O2—Sn1—O1—S139.93 (16)C2—C1—C6—C50.6 (5)
Cl1—Sn1—O1—S1141.16 (15)Sn1—C1—C6—C5177.1 (3)
C16—S2—O2—Sn1143.5 (2)O1—Sn1—C7—C12131.5 (3)
C15—S2—O2—Sn1114.4 (2)O2—Sn1—C7—C12148.9 (3)
C7—Sn1—O2—S2119.4 (2)Cl1—Sn1—C7—C1240.0 (3)
C1—Sn1—O2—S267.0 (2)Cl2—Sn1—C7—C1257.5 (3)
O1—Sn1—O2—S2153.6 (2)O1—Sn1—C7—C849.3 (3)
Cl2—Sn1—O2—S226.4 (2)O2—Sn1—C7—C830.2 (3)
O1—Sn1—C1—C243.7 (3)Cl1—Sn1—C7—C8140.8 (3)
O2—Sn1—C1—C2123.1 (3)Cl2—Sn1—C7—C8121.6 (3)
Cl1—Sn1—C1—C247.8 (3)C12—C7—C8—C90.1 (5)
Cl2—Sn1—C1—C2145.3 (3)Sn1—C7—C8—C9179.1 (3)
O1—Sn1—C1—C6139.8 (3)C7—C8—C9—C100.1 (5)
O2—Sn1—C1—C660.5 (3)C8—C9—C10—C110.2 (5)
Cl1—Sn1—C1—C6128.6 (3)C9—C10—C11—C120.6 (6)
Cl2—Sn1—C1—C631.1 (3)C10—C11—C12—C70.8 (6)
C6—C1—C2—C31.5 (5)C8—C7—C12—C110.6 (5)
Sn1—C1—C2—C3178.1 (3)Sn1—C7—C12—C11178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O1i0.982.393.260 (5)148
C3—H3···Cl2ii0.952.793.721 (4)166
C14—H14B···Cl2iii0.982.733.663 (4)160
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+2, z1/2; (iii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2Cl2(C2H6OS)2]
Mr500.05
Crystal system, space groupMonoclinic, Pn
Temperature (K)100
a, b, c (Å)9.8877 (8), 7.9766 (6), 12.588 (1)
β (°) 95.506 (1)
V3)988.24 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.78
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.536, 0.717
No. of measured, independent and
observed [I > 2σ(I)] reflections
5514, 2934, 2884
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.05
No. of reflections2934
No. of parameters212
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.50
Absolute structureFlack (1983), with 917 Freidel pairs
Absolute structure parameter0.024 (17)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001), SHELXTL and PLATON (Spek 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O1i0.982.393.260 (5)147.6
C3—H3···Cl2ii0.952.793.721 (4)166.3
C14—H14B···Cl2iii0.982.733.663 (4)159.6
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+2, z1/2; (iii) x+1/2, y+1, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds